A Modified Signal Feed-Through Pulsed Flip-Flop for Low Power Applications
Abstract
In this paper a modified signal feed-through pulsed flip-flop has been presented for low power applications. Signal feed-through flip-flop uses a pass transistor to feed input data directly to the output. Feed through transistor and feedback signals have been modified for delay, static and dynamic power reduction. HSPICE simulation shows 22% reduction in leakage power and 8% of dynamic power. Delay has been reduced by 14% using TSMC 90nm technology parameters. The proposed pulsed flip-flop has the lowest PDP (Power Delay Product) among other pulsed flip-flops discussed.References
H. Kawaguchi and T. Sakurai, "A reduced clock-swing flip-flop (RCSFF) for 63% power reduction," IEEE J. Solid-State Circuits, vol. 33, pp. 807–811, May 1998.
R. Burd, U. Salim, F.Weber, L. DiGregorio, and D. Draper H. Partovi, "Flow-through latch and edge-triggered flip-flop hybrid elements," in IEEE Tech. Dig. ISSCC, pp. 138–139, 1996.
F Klass, "Semi-dynamic and dynamic flip-flops with embedded logic," in Symp. on VLSI Circuits, Dig. of Tech. Papers, pp. 108–109, June 1998.
B. Nikolic et, "Sense amplifier-based flip-flop," Int. Solid-State Circuits Conf., Dig. of Tech, pp. 282–283, Feb. 1999.
M. Matsui et al., "A 200 MHz 13mm 2-D DCT macrocell using sense amplifying pipeline flip-flop scheme," IEEE J. Solid-State Circuits, vol. 29, pp. 1482–1490, 1994.
D. De Caro, E. Napoli, and N. Petra A. G. M. Strollo, "A novel high speed sense-amplifier-based flip-flop," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, pp. pp. 1266–1274, Nov. 2005.
C. Amir, A. Das, K. Aingaran, C. Truong, R.Wang, A. Mehta, R. Heald, and G.Yee F. Klass, "A new family of semi-dynamic and dynamic flip flops with embedded logic for high-performance processors," IEEE J. Solid-State Circuits, vol. 34, pp. 712-716, May 1999.
G. Colon-Bonet, T. Fischer, R. Riedlinger, T. J. Sullivan, and T. Grutkowski S. D. Naffziger, "The implementation of the Itanium 2 microprocessor," IEEE J. Solid-State Circuits, vol. 37, pp. 1448–1460, Nov. 2002.
S. Narendra, Z. Chen, S. Borkar, M. Sachdev, and V. De J. Tschanz, "Comparative delay and energy of single edge-triggered and dual edge triggered pulsed flip-flops for high-performance microprocessors," in Proc. ISPLED, pp. 207–212, 2001.
S. Kim, and Y. Jun B. Kong, "Reduction, Conditional-capture flip-flop for statistical power," IEEE J. Solid-State Circuits, vol. 36, pp. 1263–1271, Aug. 2001.
M. Aleksic, and V. G. Oklobdzija N. Nedovic, "Conditional precharge techniques for power-efficient dual-edge clocking," n Proc Int. Symp.Low-Power Electron. Design, Monterey, pp. 56–59, 2002.
T. Darwish, and M. Bayoumi P. Zhao, "High-performance and low power conditional discharge flip-flop," IEEE Trans. Very Large Scale Integr. (VLSI) Systems, vol. 12, pp. 477–484, May 2004.
M. Hamada, T. Fujita, H. Hara, N. Ikumi, and Y. Oowaki C. K. Teh, "Conditional data mapping flip-flops for low-power and high-performance systems," IEEE Trans. Very Large Scale Integr. (VLSI) Systems, vol. 14, pp. 1379–1383, Dec. 2006.
J.-F. Lin, and M.-H. Sheu Y.-T. Hwang, "Low power pulse triggered flip-flop design with conditional pulse enhancement scheme," IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 20, pp. 361–366, Feb. 2012.
Jin-Fa Lin, "Low-Power Pulse-Triggered Flip-Flop Design Based on a Signal Feed-Through," IEEE Transactions on Very Large Scale Integration (VLSI) Systems , vol. 22, pp. 181 - 185, 2014.
D. Harris, Skew-Tolerant Circuit Design. San Francisco: CA: Morgan Kaufmann, 2001.
S. Kozu et al., "A 100 MHz 0.4W RISC processor with 200 MHz multiply-adder, using pulseregister technique," Proc. IEEE Intl. Solid-State Circuits Conf, pp. 140–141, 1996.
David Money Harris Neil H. E. Weste, CMOS VLSI Design:A Circuits and Systems Perspective, 4th ed.: Pearson Education , 2011.
W.-L. Goh, and K.-S. Yeo M.-W. Phyu, "A low-power static dual edge triggered flip-flop using an output-controlled discharge configuration," in Proc. IEEE Int. Symp. Circuits Syst, pp. 2429–2432, May 2005.
A. Khademzadeh, A. Afzali-Kusha, and M. Nourani S. H. Rasouli, "Low power single- and double-edge-triggered flip-flops for high speed applications," IEE Proc. Circuits Devices Syst., vol. 152, pp. 118–122, Apr. 2005.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.