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Abstract—Probability hypothesis density (PHD) filter is 

a suboptimal Bayesian multi-target filter based on random finite 

set. The Gaussian mixture PHD filter is an analytic solution to the 

PHD filter for linear Gaussian multi-target models. However, 

when targets move near each other, the GM-PHD filter cannot 

correctly estimate the number of targets and their states. To solve 

the problem, a novel reweighting scheme for closely spaced 

targets is proposed under the framework of the GM-PHD filter, 

which can be able to correctly redistribute the weights of closely 

spaced targets, and effectively improve the multiple target state 

estimation precision. Simulation results demonstrate that the 

proposed algorithm can accurately estimate the number of targets 

and their states, and effectively improve the performance of 

multi-target tracking algorithm. 

 
Keywords—closely spaced targets, random finite set, 

probability hypothesis density filter, Gaussian mixture PHD, 
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I. INTRODUCTION 

N recent years, the random finite set (RFS) theory [1] for 

tracking multiple targets has attracted considerable 

attention, which offers an elegant representation of a finite, 

time-vary number of targets and measurements. Both the 

probability hypothesis density (PHD) [2] and the cardinality 

PHD (CPHD) [3] are suboptimal approximation but more 

tractable alternative to the RFSs Bayesian multiple target 

filtering. Two major implementations of the PHD filter are 

particle PHD [4] and Gaussian mixture PHD [5]. Moreover, 

there are some modified versions of both PHD and CPHD in 

[6-8]. 

For the problem of closely spaced target tracking, there are 

some approaches reported in the literature. In [9], a dynamic 

detection probability method is introduced into the GM-PHD 

filter, which is used to compute the detection probability of 

individual targets. However, the size of each target must be 

known as prior, and the size of all targets must be same. The 

two factors make the algorithm not to be widely applicable. In 

[10-12], the labeled RFSs is introduced into the multi-Bernoulli 

filter to address target trajectories and their uniqueness, and can 
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achieve better performance when targets move near each other. 

Unfortunately, the labeled RFSs filters required 

super-exponential growth of the number of components to 

adequately represent the multi-target states, and more 

complexity than the PHD filter. In [13, 14], a PGM-PHD filter 

is proposed to solve the problem of tracking closely spaced 

targets, where a penalized weight competition method is 

adopted under the framework of the GM-PHD filter. The 

penalized method is used to refine the weights of closely spaced 

targets in the update step of the GM-PHD filter, and the 

PGM-PHD filter gets over the defect of the GM-PHD filter. 

Unfortunately, the PGM-PHD filter is not able to recognize the 

identity of individual target, and the track estimation of 

individual target cannot be obtained directly. In order to solve 

this problem, a collaborative penalized Gaussian mixture PHD 

(CPGM-PHD) filter is proposed in [15], which utilizes 

different identity of individual target to collaboratively penalize 

the weights of closely spaced targets. The CPGM-PHD filter 

not only improves the estimation accuracy of both the target 

number and their states, but also provides target trajectories 

over time. However, the penalized weight scheme of both the 

PGM-PHD and CPGM-PHD filter has the defect that the 

weights of closely spaced targets cannot be solved completely. 

To solve the problem of tracking closely spaced targets, an 

improved Gaussian mixture probability hypothesis density 

algorithm is proposed, where a novel target reweighting 

method is utilized to alleviate the weight error of closely spaced 

targets.  

The remainder of this paper is organized as follows. Section 

2 explains the background of multi-target tracking and 

illustrates the problem of closely spaced targets. The proposed 

multi-target tracking algorithm is discussed in Section 3. In 

Section 4, we study the performance of the proposed approach 

via different Monte Carlo simulations. Finally, the conclusions 

are given in Section 5. 

II. PROBLEM FORMULATION 

-A.  PHD Filter 

In RFS theoretical framework, the multi-target states and 

multi-target observations defined as random finite sets are 

 ,1 ,2 ,, ,...,
k

k k k k N
x x xX   and  ,1 ,2 ,, ,...,

k
k k k k M

z z zZ  , where 

the kN  and kM  denote the target number and measurement 

number at time k , respectively.  

The PHD filter is a suboptimal alternative to multi-target 

Bayesian filter, which propagates the first order statistical 

moment of the posterior multi-target states. The PHD filter 
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recursive calculation consists of prediction step and update step. 

The prediction equation is 
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When the latest measurement set kZ  is available at time k , 

the PHD update equation can be described as 
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where 
,S k

p  is the survival probability, 
,S k

p  is the detection 

probability, and  z  is the clutter intensity.  k
x  is the 

intensity function of the newborn targets, and  | 1
|

k k
   is the 

spawn target intensity. 

 

B.  Gaussian Mixture PHD Filter 

Although the PHD filter can greatly reduce the calculation 

load of multiple targets Bayesian filter, it is still need to be 

approximated by some numerical method. Gaussian mixture 

PHD (GM-PHD) filter can provide a closed-form solution 

through the summation of mixing weights of Gaussian 

components to approximate the PHD function. 

Let  ; ,m PN  illustrate a Gaussian density with mean m  

and covariance P . Assume the posterior intensity at time k  is 

expressed as a Gaussian mixture with 1kJ   components as 

    
1

( ) ( ) ( )
1 1 11

1

;
kJ
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x xw m Pv

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where ( )
1

i
kw   is the weight of ith  Gaussian mixture at time 1k  . 

Then, the predicted intensity at time k  is also a Gaussian 

mixture with | 1k kJ    components calculated as 
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When the measurement set kZ  is available at time k , the 

posterior intensity at time k  is a Gaussian mixture and can be 

described as 
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where  ( )i
kw  denotes the weight of ith  target computed as 
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The posterior PHD is propagated by the PHD recursion similar 

to Kalman filter. Detail process of the GM-PHD filter can be 

referred to [5]. 

 

C.  The Defects of the GM-PHD Filter 

The performance of the GM-PHD filter degrades 

dramatically when targets are in close proximity, such as 

crossing or paralleling targets. The GM-PHD filter utilizes a 

weighted summation of Gaussian components to estimate the 

targets state in time, and extracts the state of targets based on a 

given state extraction threshold. At each iterative update step, 

the estimation of individual target may be lost when the weight 

of the individual target below the given state extraction 

threshold. In closely spaced targets tracking scenario, the major 

reason of this phenomenon is that the corresponding 

measurements of these targets are not available at the update 

step. Take, for instance, two targets into account. The problem 

is graphically illustrated in Fig.1. 

 

 
Fig. 1. Position relationship between predicted targets and measurements. (a) 

Symbol representation for targets and measurements. (b) position relationship 
between predicted targets and measurements. (c) one of possible and 

reasonable position relationship between predicted targets and measurements 

Suppose that two targets with the state 1
1| 1k kx    and 2

1| 1k kx    

survive at time 1k  . Two predicted targets with the state 1
| 1k kx   

and 2
| 1k kx   stem from survival targets 1

1| 1k kx    and 2
1| 1k kx   , 

respectively, meanwhile two measurements a
kz  and b

kz  are 

generated at time k . In order to analyse conveniently, suppose 

that the clutter rate is zero, and the detection probability is one. 

In the update step of the GM-PHD filter, each predicted target 

is updated with the two measurements. So, four targets are 

created including 1,a
kx , 1,b

kx , 2,a
kx  and 2,b

kx , where ,m n
kx  shows 

the state of a target generated by updating the mth  target with 

the nth  measurement. 

Let ,m n
kw  be the weight of the target ,m n

kx  after the update 

step of GM-PHD, where m  and n  are the same above. As is 

shown in Fig.1(b), because both the two measurements are 

closer to the predicted target 1
| 1k kx   comparing to the predicted 

target 2
| 1k kx  , therefore 1,a

kw  and 1,b
kw  are much greater than 

2,a
kw  and 2,b

kw , and similarly the corresponding normalized 

weight 1,a
kw  and 1,b

kw  are much greater than 2,a
kw  and 2,b

kw . For 

example, suppose that the normalized weights 1, 0.8a
kw  , 

1, 0.65b
kw  ,  2, 0.2a

kw  , and  2, 0.35b
kw  , respectively. As a 

result, the two targets 1,a
kx  and 1,b

kx  are extracted as the 

estimation results in that the weights of the two targets above a 

given extraction threshold  Thw  (generally 0.5Thw  ). 

In multiple target tracking, it is assumed that one target only 

generate one measurement and vice visa, named one-to-one 

rule. The one-to-one rule means that a target can only use one 

measurement in the update step. If a target confirms the rule, 
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the target can have only one effective state where the 

corresponding normalized weight above the threshold Thw , 

otherwise, the target violates the one-to-one rule. As the 

example illustrated above, the GM-PHD filter break out 

one-to-one rule when targets move near each other. The two 

targets 1,a
kx  and 1,b

kx  evolve from the target 1
| 1k kx   at time k . 

Under the one-to-one rule, the reasonable estimation result 

should be composed of the targets evolving from different 

predicted targets. That is, one evolves from the target 1
| 1k kx  , 

and other is originated from the target  2
| 1k kx  . 

III. THE PROPOSED MULTI-TARGET ALGORITHM 

As is illustrated in Section 2.3, the GM-PHD filter cannot 

correctly update each target when targets move near each other. 

One of possible and reasonable position relationship between 

predicted targets and measurements is demonstrated in Fig.1(c). 

If there is a strategy that can update closely spaced targets by 

using the measurements shown in Fig.1(b) to achieve the same 

result as using the measurements in Fig.1(c) in update step of 

the GM-PHD filter, then the problem of closely spaced targets 

can be solved. In this section, a novel reweighting scheme is 

incorporated into the GM-PHD filter to redistribute the 

incorrect weights of closely spaced targets. 

Assuming that the predicted multi-target intensity can be 

approximated by Eq.(4), and the multi-target measurement set 

 , 1

kN

k n k nZ z 
  is available at time k . For the purpose of 

distinguishing individual target, an unique label is assigned for 

each target, which is denoted by . Each Gaussian components 

of the individual target has the same label. In the update step of 

the GM-PHD filter, each target is updated by the measurement 

set  kZ . The updated weights of each target can be obtained as 
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where ,l n
kw  and ,l n

kw  denote the normalized and original weight 

of target state l
kx . kH  is the measurement matrix, and kR  is 

the measurement noise covariance. 

After update step of the GM-PHD filter, two matrices with 

the size | 1k k kJ N   can be formed to store original weights and 

normalized weights of targets, which are called weight matrix  

wM  and normalized weight matrix wM , respectively. In 

multi-target tracking, the targets and measurements should 

obey one-to-one rule as illustrated above. If the weight 

summation of Gaussian components with the same label is 

bigger than one in wM , it means that the rule is break by some 

targets, and the weights of the targets need to be reweighted. 

The CPGM-PHD filter uses a collaborative penalized weight 

scheme to manage the weights of targets when targets move 

near each other. Unfortunately, the filter fails to deal with some 

targets that break one-to-one rule. The drawback of the 

CPGM-PHD filter is demonstrated by Fig.2. The normalized 

weight matrix wM  has three rows 1l  , 2l   and 3l  , 

where rows 2l   and 3l   belong to target 1, and row 1l   

belongs to target 2. In Fig.2(4), it can be seen that the weight 
2,2 0.9335w   is the maximum in current normalized weight 

matrix, and belongs to the target 1. Therefore, the target 1 is 

firstly selected for reweighting. Due to the fact that the weight  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The process of weights punishment in the CPGM-PHD filter 
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summation of Gaussian components of the row 2l   in 
wM  is 

2 0.9671rs  , the target 1 is considered to be correct in the 

CPGM-PHD filter, and will not be reweighted. Then, the target 

2 is selected for next reweighting, and the reweighted result of 

Gaussian components of the row 1l   is shown in Fig.2(6).  

Owning to fact that there is no other targets in current 

normalized weight matrix, the process of weights punishment 

in the CPGM-PHD filter terminates. However, the rows 2l   

and 3l   belong to target 1, the weight summation of the target 

is 1.6241 in Fig.2(4), which is bigger than one. According to 

one-to-one rule in multi-target tracking, the weights of the 

target need to be reweighted. Unfortunately, the collaborative 

penalized weight scheme of the CPGM-PHD filter does not 

reweights the weights of the target 1. 

To solve the drawback of the CPGM-PHD filter and improve 

the estimation accuracy of closely spaced targets, a novel 

reweighting scheme is incorporated into the framework of the 

GM-PHD filter. 

At the end of each update step of the GM-PHD filter, the 

novel reweighting scheme starts to work. A set SL  is 

initialized with null, and the details of the novel reweighting 

scheme are described as follows. 

(1) Gaussian component with the maximum weight in 

current normalized weight matrix is obtained as 
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where | 1k kJ   is the number of Gaussian components. 

(2) Gaussian components, having the same label as Gaussian 

component with maximum weight, are selected, and weight 

summation of these components can be obtained as 
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(3) If 1  , the weights of the target should be redistributed 

as 
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where   is the number of Gaussian components of the target, 

and scaling  factor   is distributed uniformly on the interval 

[0,1]. Then, go to (2).  Otherwise, the target needs not to be 

reweighted. 

(4) If I NULL , then go to (1). Otherwise, the novel 

reweighting scheme terminates. 

The main steps of the proposed algorithm implementation 

are summary as follows. 

Prediction: Suppose that, at time 1k  , the posterior 

multi-target intensity is given, which can be approximated by 

Eq.(3). At time k , the newborn target intensity can be obtained  

as 
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Then the predicted multi-target intensity | 1k kv   can be obtained 

as 
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where 1kF   is the state transition matrix, and 
1kQ 

 is the 

process noise covariance. Each newborn target is given a new 

label. A label set is form by concatenating the prediction labels 

and newborn target labels, which can be obtain as 
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| 1 1 , , ,,,..., , , 1,kJi

k k k k k kk i JL L


           (22) 

Update : when the measurement set  , 1

kN

k n k nZ z 
  is 

available at time k , the multi-target posterior intensity kv  can 

be obtained as Eq.(5), the updated weight  ( )i
k zw  is computed 

by Eq.(6), where the likelihood function  g , the updated 

mean ( )
|
i

k km  and updated covariance ( )
|
i

k kP  can be approximated 

as 

    ( ) ( )( )
| 1 | 1| ; ,ˆ
i ii T

k k kk k k kg zxz z R H P H  N  (23) 

  ( ) ( ) ( ) ( )
| | 1 | 1( ) ˆ
i i i i

k k k k k k kz zm m K z     (24) 

 ( ) ( )
| 1 | 1ˆ
i i

kk k k kmz H   (25) 

 ( ) ( )( )
| | 1
i ii

k k k kk k
I HP PK    

 (26) 

  
1

( ) ( ) ( )
| 1 | 1

i i iT T
k k k kk k k k kK P H R H P H



    (27) 

There are   | 11 k k kN J   Gaussian components generated in 

the update step of the GM-PHD filter, where each prediction 

item has 1 kN  Gaussian components. The updated label set 

can be obtained by assigning the same label as the related 

predicted components 

 | 1 1 ...k k Nkzz
k k k k

v
L L L L

     (28) 

Then, the reweighting scheme starts to work as demonstrated 

above. 

Fig.3 illustrates one of the reweighting processes of the 

proposed algorithm. In Fig.3(2), 2,2 0.9335w   is the 

maximum in current normalized weight matrix, meanwhile  

rows 2l   and 3l   belong to target 1, and the weight 

summation of  target 1 is 2 3 1.6241r rs s  . Therefore, the 

weights of Target 1 should be reweighted. The weights of the 

two rows in original weight matrix are firstly rectified by the 

novel reweighting scheme, and then renormalized the original 

weights matrix. The updated original weight matrix and 

updated normalized weight matrix are shown in Fig.3(3) and 

Fig.3(4), respectively. In Fig.3(4), the weight summation of 

target 1 is 2 3 0.9893r rs s  , so the reweighting process of target 

1 stops and the novel reweighting scheme continues to dispose 

the remaining targets. As seen, the weight summation of target 
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2 is 1 2.0107rs   in Fig.3(4). After reweighting the target 2, the  

 

new original weight matrix and normalized weight matrix are 

shown in Fig.3(5) and 3(6). However, the weight summation of 

target 2 is 1 1.03702rs   in Fig.3(6), which is not meet the 

one-to-one rule, and needs to be reweighted again. After second 

reweighting target 2, the original weight matrix and normalized 

weight matrix are shown in Fig.3(7) and 3(8). In Fig.3(8), the 

weight summation of target 2 is 1 0.9985rs  , which has 

reached a reasonable scope. By combining the rows 2l   and 

3l   in Fig.3(4) and the row 1l   in Fig.3(8), a new 

normalized weight matrix can be formed. Because each target 

can obey the one-to-one rule in the new normalized weight 

matrix, the process of the novel reweighting scheme dealing 

with closely spaced targets terminates at current time step. 

IV. SIMULATION RESULTS 

In this section, the effectiveness of the proposed algorithm is 

studied by multi-target tracking experiment compared to the 

existing relevant methods. Suppose, targets move in a two 

dimensional plane with     2500,500 500,500 m   . At time  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k , state vector of each target [ , , , ]
k k

T

k k k x yX x y v v  is 

composed of position [ , ]T

k kx y  and velocity [ , ]
k k

T

x yv v . 1sT    

is  the  sample  interval,  and  all  simulation  scenarios  are  100 

 times. Each target follows a linear Gaussian dynamical model 

and sensor has a linear Gaussian measurement model, i.e., 

          1| 1 1
| ; ,kk k k

x xf QF  
 N  (29) 

          | 1
| ; ,k kk k

z x x xg H R
 N  (30) 

where the process noise covariance matrix 

  0.5,0.5Q diag  and the measurement noise matrix 

  2500,2500R diag , respectively. 

The survival probability , 0.99S kp   and detection 

probability , 0.99D kp  . The intensity of new birth targets RFS 

is given by 

        3 ( )

1
( ) 0.1 ( ; , )i

k i
x x m P


 N  (31) 

where   100,100,25,25diagP  , and ( )i
m  is different 

according to different scenario. 

  

Fig. 3. The reweighting process of the proposed algorithm 
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The pruning threshold 0.00001thT  , the merging threshold 

4U  , and the maximum number of Gaussian components 

max 100T  . 

To effectively evaluate the performance of different 

algorithms, 200 Monte Carlo runs are performed. Three criteria 

are adopted, which are the estimated target number, the mean 

number of targets estimation error (NTE) [14], and the optimal 

sub-pattern assignment (OSPA) [15]. The OSPA distance and 

NTE can be described as 

    ˆ ˆ,k kk k
ENTE X XX X    (32) 

          
 

     

1

,

1

1

ˆ

1
ˆ,

ˆ

ˆmin , ˆk

k

p

kp c k
k

p

p
X pi i

kci k

X

OSPA X X
X

cd x x XX





 

 
     
  

 (33) 

where parameters kX  and ˆ
kX  denote the true set and 

estimated set of target. The parameters p  and c  are set to 2 

and 100, respectively. 

Scenario 1. Multi-target with crossing motion 

Fig.4 shows a simulated scenario with three crossing targets, 

where the clutter rate is modeled as a Poisson RFS with the 

mean 6 2
5 10c m

  . 

 
Fig. 4. Three targets with crossing motion scenario 

Fig.5 illustrates the comparison result of different algorithms 

in crossing target scenario. As seen, the PGM-PHD filter, the 

CPGM-PHD filter and proposed algorithm outperform the 

GM-PHD filter in OSPA distance, NTE and estimated target 

number. Owning to the fact that the proposed algorithm is able 

to effectively solve the problem of closely spaced targets, it 

achieves more excellent performance. The lower OSPA 

distance means that the proposed algorithm has higher 

estimation accuracy. However, there is a peak of the OSPA 

distance between time 50 and 70 from the proposed algorithm 

shown in Fig.5(a). The reason is that the estimation accuracy of 

the proposed algorithm is relatively low when targets move 

near each other. 

 
(a) OSPA distance 

 
(b) NTE 

 
(c) Estimated target number 

Fig. 5. Simulation results of three crossing targets 
 

Scenario 2. Multi-target with paralleling motion 

 
Fig. 6. Three targets with paralleling motion scenario 
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(a) OSPA distance 

 
(b) NTE 

 
(c) Estimated target number 

Fig. 7. Simulation results of three paralleling targets 

As is shown in Fig.6, three paralleling targets are simulated, 

and the clutter rate is modeled as a Poisson RFS with the mean 
6 2

10 10c m
  . 

 

Scenario 3. Multi-target cross or parallel under different 

clutter rates 

In order to study the effective of the proposed algorithm in 

unknown and complex tracking environment, two experiments 

are carried out from different clutter rates to compare the 

performance of different algorithms. One of the experiments 

adopts multiple targets with crossing motion scenario, and 

another adopts multiple targets with paralleling motion 

scenario. The OPSA distance and NTE are utilized to evaluate 

the performance of different algorithms. 

 
(a) OSPA distance 

 
(b) NTE 

Fig. 8. Simulation results of different clutter rates in three crossing target 

scenario 

The clutter rate c  varies from 0 to 20 with the interval of 5 

in each clutter rate test. The detection probability 
,

0.98
D k

p  , 

and the other parameters are the same as those of scenarios 1 

and 2, respectively. 

Fig.8 shows the OSPA and NTE criteria of the four 

algorithms in three crossing targets scenario with different 

clutter rates. As the clutter rate increased, the disturbance of the 

clutters is more seriously, which makes both the OSPA distance 

and NTE obtained from the four algorithms have been 

improved to some extent. However, the proposed algorithm 

illustrates its excellent tracking performance, where the OSPA 

distance and NTE increase little far less than that of the other 

filters. It can be concluded that the proposed algorithm has a 

better performance in both the target number estimation and 

their states, which is favourable for tracking closely spaced 

targets. 

The comparison results of OSPA distance and NTE of 

different algorithms are shown in Fig.9, in which three 

paralleling targets are simulated in a scenario with varied 

clutter rates. It can be seen that the performance of the proposed 

algorithm outperform the GM-PHD, PGM-PHD and 

CPGM-PHD filters again in paralleling target scenario with 

various clutter rates. Due to the novel reweighting scheme, both 

the OSPA distance and NTE of proposed algorithm have great 

advantages. Specifically, the OSPA distance of the proposed 

algorithm increases slowly as significant increase in clutter rate 

shown in Fig.9(a), Meanwhile the NTE of the proposed 
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algorithm remains almost zero even though clutter rate 

increased significantly. The better performance of the proposed 

algorithm means it has strong robust without disturbed by 

clutter in complex tracking environment. 

 
(a) OSPA distance 

 
(a) NTE 

Fig.9. Simulation results of different clutter rates in three paralleling target 

scenario 

V. CONCLUSIONS 

For tracking closely spaced targets, a novel reweighting 

scheme is introduced under the framework of the GM-PHD 

filter. Based on the reweighting scheme, the weight error of 

closely spaced targets can be properly alleviated. The 

numerical studies show that the proposed algorithm can 

accurately estimate the number of target and their states in 

unknown and complex tracking environment. 
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