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Abstract—In this presentation, a new low computational burden 

method for the direction of arrival (DOA) estimation from noisy 

signal using small snapshots is presented. The approach 

introduces State Space-based Method (SSM) to represent the 

received array signal, and uses small snapshots directly to form 

the Hankel data matrix. Those Hankel data matrices are then 

utilized to construct forward-backward data matrix that is used to 

estimate the state space model parameters from which the DOA of 

the incident signals can be extracted. In contrast to existing 

methods, such as MUSIC, Root-MUSIC that use the covariance 

data matrix to estimate the DOA and the sparse representation 

(SR) based DOA which is obtained by solving the sparsest 

representation of the snapshots, the SSM algorithm employs 

forward-backward data matrix formed only using small snapshots 

and doesn't need additional spatial smoothing method to process 

coherent signals. Three numerical experiments are employed to 

compare the performance among the SSM, Root-MUSIC and 

SR-based method as well as Cramér–Rao bound (CRB). The 

simulation results demonstrate that when a small number of 

snapshots, even a single one, are used, the SSM always performs 

better than the other two method no matter under the 

circumstance of uncorrelated or correlated signal. The simulation 

results also show that the computational burden is reduced 

significantly and the number of antenna elements is saved greatly. 

 
Keywords—state space-based method, DOA estimation, small 

snapshots, array signal, antenna elements, forward-backward 

data Matrix 

I. INTRODUCTION 

here are many algorithms that are used to estimate the 

direction of arrival (DOA) and much research is going on 

to enhance their estimate accuracy as well as to reduce their 

computational burden[1]-[3]. More advanced techniques based 

on the subspace of the signal such as MUSIC, Root-MUSIC 

provide the high resolution DOA estimation. MUSIC algorithm 

[4] estimates the spatial spectrum at all spatial angles. 

Root-MUSIC[5]-[7]computes the discrete poles estimates along 

with the corresponding DOA. Much literature provides the 

performance analysis of these approaches, i.e. [7]-[13]. The 

existing algorithms such as MUSIC and Root-MUSIC assume 

that the signals impinging on the array are non-coherent. Under 

the uncorrelated condition, the covariance matrix satisfies the 

full rank condition. If the incident signals are correlated with 

each other, the full rank property of the covariance matrix is not 

satisfied anymore, those subspace-based algorithms failed 
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completely. Furthermore, in order to generate a very accurate 

estimate, the subspace-based algorithms must use large 

snapshots and more array elements to estimate the covariance 

matrix which causes the heavy computational burden. 

Recently, some new DOA estimation methods based on the 

sparse signal recovery have been proposed [15]-[16], which are 

based on the property that the spatial spectrum of the source 

signals is sparse when the number of signals is limited. In 

accordance with sparse signal recovery, the sensing matrix is 

composed of a deterministic overcomplete dictionary which is 

formed by using the discretization grid of potential DOAs. 

Thus, the DOA estimation is converted into a problem of 

recovering a sparse vector with an over-complete dictionary, 

which can be achieved by solving the convex optimization 

problem [14], [17]. Compared with the conventional DOA 

estimation methods, the methods based on the sparse 

representation (SR) can obtain better estimation precision. 

However, since the true DOAs will rarely be exactly aligned 

with the discretization grid, the DOA estimation precision is 

restricted by the resolution of the grid set. A dense grid is 

necessary to achieve fine resolution, but too fine grid division 

will result in large computation time, so the overcomplete 

dictionary makes the relationship of tradeoff between 

computation time and estimation accuracy. Although the 

methods based on the sparse representation (SR) have higher 

resolution, they suffer from the heavy computational load, 

and the calculation complexity increases quickly with the 

number of snapshots. So those kinds of DOA estimation method 

are not suited for real time applications. 

[18]-[20] have developed state space model which is one of 

the most useful approaches for frequency estimation of signals 

composed of a sum of exponentials perturbed by noise. The idea 

of employing state space method for frequency estimation was 

discussed in [21] in great detail. Their research results show that 

state space approach performs better than other algorithms in 

the presence of perturbation. In addition, state space method 

directly provides the amplitude, phase and the frequencies 

estimates simultaneously. 

By analogy with the harmonic retrieval problem in 

literature [22], [23], we relate state space model to the received 

array signal, and this relation is given by the model parameter 

containing the DOA of the incident signals, then the DOA 

information can be obtained from the model parameter based on 

the fact that
2 / ( )k kj j d cos

e e
   
 where ,d  denote the wavelength 

and the space between the two adjacent array elements 

respectively, and k denotes the direction of arrival from the kth 

incident signal, Once k is estimated using state space-based 
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method (SSM), The DOA of the kth incident signal can be also 

obtained . 

II. DATA MODEL 

It is assumed that the narrowband sources are located in the far 

field of the antenna array and each array element is isotropic 

omni-directional point sensors radiating in free space. Let us 

consider a uniformly linear antenna array (ULA) with M of 

elements into which K signals impinge from the direction
k .

k denotes the direction of arrival of the kth incident signal. 

Therefore, the 1M  vector  0 1 1( ) ( ) ( ) ( )
T

Mt y t y t y t  y  is 

the set of voltages measured at the feed point of the antenna 

elements of the ULA, which is written as 

 

1

( ) ( ) ( ) ( )
K

k k

k

t s t t


 y a n

                       

(1) 

where ( ), 1...ks t k K denotes the kth incident signal coming 

from the kth direction
k ,  0 1 1( ) ( ) ( ) ( )

T

k k k M ka a a      a

denotes the 1M  steering vector at
k ,  

T
denotes the matrix 

transpose, and  0 1 1( ) ( ) ( ) ( )
T

Mt n t n t n t  n denotes the 1M 

vector of noise. 

Eq. (1) can be written as following: 
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(2) 

In the absence of noise, the signal received by the mth element 

is expressed as 

1

( ) ( ) ( ), 0.... 1
K

m m k k

k

y t a s t m M


  
                

(3) 

where ( ), 0.... 1m ka m M   denote the mth component of the 

steering vector ( )ka . Therefore, we can write the sampled 

signal as 

1

[ ] ( ) [ ], 0.... 1, 1....
K

m m k k

k

y n a s n m M n N


                 (4) 

The above Eq. (4) can be further written as 

1

[ ] [ ] , 0.... 1, 1....k

K
j m

m k

k

y n s n e m M n N




   
               

(5) 

where ( )kj m

m ke a
  , 2 / ( )k kd cos     and ,d  denote the 

wavelength and the space between the two adjacent array 

elements respectively. 

III. STATE SPACE REPRESENTATION FOR THE ARRAY SIGNAL 

In this section, we employ a special method to model the array 

signals by use of the state-space method and establish low rank 

Hankel data matrix using the nth snapshot received by antenna 

array. Generally, the input-output relationship for the general 

autoregressive moving average (ARMA) model is given by the 

following difference equation: 

1 0

[ ] [ ] [ ]
qK

k k

k k

u m a u m k b v m k
 

    
                        

(6) 

where [ ]v n , [ ]u n denote the input and the output respectively. In 

the absence of noise, the signal received by the mth element at 

the nth snapshots is rewritten as 

1

[ ] [ ] , 0.... 1, 1....k

K
j m

m k

k

y n s n e m M n N




   
               

(7) 

The above equation can be considered to be a sum of K  

complex exponentials at the nth snapshot. Such a signal is 

assumed to be the output of a self-generating system (zero-input 

oscillators). It means that a special ARMA model is employed 

whose poles are all on the unit circle and input powers are all 

0’s, which is expressed as

  

1

[ ] [ ]
K

k

k

u m a u m k


                                    

 

(

8) 

Substituting Eq.(7) into Eq.(8), then it can be written as 

1

[ ] [ ]
K

m k m k

k

y n a y n



                                (9) 

Here we introduce the state-space method to modeling the array 

signal. The state-space representation for the signal received by 

the mth element at the nth snapshot is defined as  

 

1[ ] [ ]

[ ] [ ]

m m

m m

n n

y n n





X = FX

hX
                                 

(10) 

 

where [ ]m nX  is a 1K  state vector at the nth snapshot and F is 

constant matrix of size K K .The literature[18],[20] has 

proved that the matrix F provide the frequencies information. 

So we can obtain the DOA of the incident signals from the 

matrix F .The special case is 
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(11) 

 

where 2 / ( )k kd cos    .This is an interesting and useful 

result, because the parameter matrix F hides the DOA 

information. According to the above analysis, the DOA 

estimation problem is then converted to solve the parameter 

matrix F . Thus our study focuses on the estimation of F from 

the incident signals received by the mth element at the nth 

snapshot. From the state-space equations Eq. (10), after some 

manipulations, we have 

0[ ] [ ]m

my n n hF X
                            

(12) 

Then the Hankel matrix directly formed from the array data 

signal at the nth snapshots is written as  
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Y =

     

(13) 

Combining Eq. (12) with Eq. (13), Eq. (13) can be further 

factorized as follows [18]-[20]: 
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where 1 2 1
T

L     h hF  hF hF   (15), in which  
T

denotes 

the matrix transpose. Since the parameter F contains the DOA 

information of the incident signals, here we consider the 

estimation of the parameter F from the factor . 

First, 
1 2,  are defined respectively as following: 

1 2 2

1

1 2 1

2

T
L

T
L




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    

 h hF  hF hF

hF  hF hF
                         

(16

)
 

where  
T

denotes the matrix transpose. From Eq. (16), we can 

easily obtain the following equation: 

1 2 F = , that is †

1 2 F =
                                   

(17) 

where
†(.)

denotes the Moore-Penrose pseudo-inverse of matrix.

 Once the matrix F is computed, the parameter , 1...kj
e k K


  

 corresponding to the DOA of the incident signals can be obtai

ned by solving the following eigenvalue decomposition. 
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F U U u u            (18)  

where  1 2 K U = u u u .Then the DOA can be computed as 

follows: 

1 [ ( )]
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2
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k

ln e
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d

 




  
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 
                          

(19

) 

where  denotes the imaginary part. It's worth noting that the 

methods for estimating the number of incident signals K are 

well documented in the literature[23], and will not be discussed 

here. In this paper we assume that the number of signals K is 

given. 

IV. MULTIPLE SNAPSHOTS FORWARD-BACKWARD DATA 

MATRIX STRUCTURE 

In order to further improve the DOA estimate accuracy, the 

multiple snapshots are used in this paper. In the case of multiple 

snapshots, the data matrix is constructed using each snapshot. It 

is assumed that there are N snapshots. For a single snapshot, the 

Hankel data matrix [ ]iY is constructed at the ith snapshot as 

follows: 
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(20) 

Then [1] [2] [ ]N . . .Y Y Y are appended side by side to construct 

multiple snapshots forward data matrix, which is written as 

 [1] [2] [ ]f N Y = Y Y Y
                                     

(21

) 

Eq.(13) is a special case of the matrix f
Y with i n . According 

to the same method as mentioned above, the multiple snapshots 

backward structure is expressed as 

         
 [1] [2] [ ]b N . . .Y = Z Z Z

                                
(22) 

Where 
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(23) 

where *(.) denotes the complex conjugation. Hence the multiple 

snapshots forward-backward data matrix is written as 
fb f b  Y = Y   Y

                                
(24) 

It can be seen that the data processing approach presented in 

section 2 and 3 is also applicable to the multiple snapshots 

forward-backward data matrix.  

V. EXTRACTING THE DOA FROM THE FORWARD-BACKWARD 

DATA MATRIX IN THE PRESENCE OF NOISE 

The above analysis is based on the fact that the received array 

signals are free-noise. If the received array signals are perturbed 

by the noise, the forward-backward data matrix fb
Y  can be 

expressed as ˆ +fb fbY Y n , which loses the low-rank property, 

where n  denotes the noise matrix and ˆ fb
Y  denotes the 

forward-backward data matrix without noise. So approximate 

factorization method must be employed, here we use singular 

value decomposition (SVD). The idea is to decompose the 

forward-backward data matrix fb
Y into the signal and noise 

subspaces, and keep the signal subspace. Note that we keep the 

signal subspace and not the noise subspace, which gets used in 

MUSIC subspace methods. Therefore ˆ +fb fbY Y n  can be 

decomposed as  

              

  1 1
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      =
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nY

V
Y Y n U U

V

U V U V             

(25) 

where
1 denotes the diagonal matrix composed of the 

dominant singular values,
1 1,U V denote the left and right 

singular vector respectively corresponding to the dominant 

singular values, and
2 denotes the diagonal matrix composed 

of the non-dominant singular values,
2 2,U V denote the left and 

right singular vector respectively corresponding to the 

non-dominant singular values. 

Thus the pre-filtered noisy forward-backward data matrix 

processed by SVD is shown as [18] 
1/2 1/2

1 1 1 1 1 1 1
ˆ ˆ ˆ= = =fb H H   Y U V U V

                       
(26) 
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where (.)H denotes the complex conjugate transpose. Then

1/ 2

1 1
ˆ = U , combining Eq. (15), Eq. (16) with Eq. (17) to obtain 

1̂ and 2̂ , thus the estimate of the parameter matrix F̂ as 

follows: 
†

1 2
ˆ ˆ ˆ F =

                                                   
(27)

where †(.) denotes the Moore-Penrose pseudo-inverse of the ma

trix.Thus the DOA estimates are obtained using eigenvalue dec

omposition for the parameter matrix F̂ , i.e. 

1

ˆ k

K
jH

k k

k

e




F = u u

                                          

(28) 

        then 1 [ ( )]ˆ , 1...
2
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k

ln e
cos k K

d

 




  
  

 
                   (29) 

where  denotes the imaginary part. It is clearly seen from the 

above analysis that by use of SVD, the parameter F̂ is robust to 

perturbation, so the DOA estimate ˆk is also insensitive to the 

noise. 

The DOA estimation procedure using the SSM is organized in 

the following steps:  

Step 1: Employing the received array signal [ ], 1...my n n N to 

form the forward-backward data matrix 
fb f b  Y = Y   Y  

Step2: Performing SVD for fb
Y to suppress noise perturbation 

  1 1

1 2
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1 1 1

=
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V
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V
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Step3: Factorizing the pre-processed ˆ
fb

Y to obtain ̂ , i.e.: 
1/ 2

1 1
ˆ = U  

Step4: Computing the model parameter F using Eq. (15), Eq. 

(16) and Eq. (17) 
†

1 2
ˆ ˆ ˆ F =  

Step5: Performing eigenvalue decomposition for the model 

parameter F to obtain kj
e

 , i.e. 

1

ˆ k

K
j H

k k

k

e




F u u  

Step6: The DOA ˆk  corresponding to the kth signal can be  

computed as following: 

1 [ ( )]ˆ , 1...
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k

ln e
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d

 




  
  

 
 

where  denotes the imaginary part . 

VI. PERFORMANCE VIA COMPUTER SIMULATION 

To examine the performance of SSM method in comparison to 

root-MUSIC and SR method, as well as the the Cramer-Rao 

lower bound (CRLB), we perform three numerical experiments. 

The simulations are performed using MATLAB8 running on an 

Intel Core i5, 3.2 GHz processor with 4 GB of memory, under 

Window7. In our study, the uniform linear array (ULA) 

composed of the omni-directional isotropic point sensors is 

employed. The distance of adjacent sensor of the ULA is half a 

wavelength. The performance of the DOA estimation are 

measured by the root mean square error (RMSE) which is 

defined as  

2

1

1 ˆ( )
N

kn k

n

RMSE
N

 


 
                           

 

where
k  is the desired DOA of the kth incident signal and ˆkn is 

its estimate at the nth trial. 

In estimation theory and statistics, the CRLB expresses a 

lower bound on the variance of estimators. So comparison to 

the performance of DOA corresponding to the CRLB should be 

of interest. The bound states that the variance of estimator is at 

least as high as the inverse of the Fisher information. Defining 

the Fisher Information Matrix ( )I   whose elements are given 

as[25][26] 
2

,

ln ( ; )
( ) , 1,2...i j

i j

f X
I i j K

 

  
   

   

E


 

Therefore, the CRLB on the variance of ̂  is given by 

                           
1

ˆ [ ( )]CRLB I 


  

where E denotes the expectation operator, ̂ is the estimate of

 , and ( , )f X  is the probability density function conditioned 

to an unknown parameter . 

Then the CRLB for the DOA of the kth incident signal can be 

written as 

ˆ
ˆ( )

kk
kvar CRLB


   

where
k  is the desired DOA of the kth incident signal. In the 

following examples, the variance of the DOA estimate with 

SSM, Root-MUSIC and SR based methods and the 

corresponding CRLB versus signal-to-noise ratio (SNR) will be 

shown. 

Experiment 1: In this experiment, the noisy signal model is 

formulated from Eq. (1). Noise is treated as Gaussian white 

noise which is assumed to be zero mean, complex Gaussian 

random processes that are statistically independent of each 

other. It is assumed that the two uncorrelated equal-power 

signals are impinging on the array which are coming from84o

and 98o
respectively. L is chosen to be floor(2 / 3)M . The 

CRLB of the DOA is calculated simultaneously to provide a 

benchmark of estimation performance[25],[26]. In our 

simulations, the potential DOAs grid division which is 

employed as the over-complete representation ranges from 0 to 

180 with 0.1 spacing for the sparse representation(SR) based 

method, and the Orthogonal Matching Pursuit (OMP) 

[27]algorithm is used to perform the signal reconstruction and 

DOA estimations. The performances of the state space-based 

Method (SSM), the Root-MUSIC algorithm, sparse 

representation (SR) based DOA method and the CRLB are 

compared under the following five scenarios. 

In the first scenario, the performance of the SSM is compared 

with that of Root-MUSIC and the CRLB. There are 7 antenna 

elements, the SNR changes from 0dB to 20dB for a single 

snapshot, 5 snapshots, 10 snapshots and 30 snapshots 

respectively. In the second scenario, there are also 7 antenna 

elements, 30 snapshots are used for the SSM and 100,800 

snapshots are used for Root-MUSIC respectively, and the SNR 

changes from 0dB to 20dB. In the third scenario, we compare 

the performance of the SSM with that of the SR based method 

http://dict.youdao.com/w/eigenvalue/
http://dict.youdao.com/w/decomposition/
http://dict.youdao.com/w/decomposition/
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and the CRLB. There are 7 antenna elements, and the SNR 

changes from 0dB to 20dB for a single snapshot, 20 snapshots 

and 30 snapshots respectively. In the forth scenario, the 

performance of the SSM is compared with that of SR based 

method and the Root-MUSIC. The number of snapshots 

increases from 1 to 100, there are also 7 antenna elements, the 

SNR is fixed at 15dB. In the fifth scenario, the SNR is chosen to 

be 15dB, 20 snapshots are used and the number of antenna 

elements ranges from 7 to 20. 1000 independent simulations are 

conducted each simulation, the results are plotted in Figure 1, 

Figure 2, Figure 3, Figure 4. 

 

 
(a) 

 
(b) 

 
Fig.1.The RMSE of the DOA versus SNR 

 

As can be seen from Fig. 1(a), the SSM method has a lower 

RMSE than the Root-MUSIC algorithm under the same number 

of snapshots, and it follows the CRLB more closely than the 

Root-MUSIC. Although the estimate accuracy of the 

Root-MUSIC is improved as the number of snapshots increase, 

its performance with 100 and 800snapshots is much worse than 

that of the SSM with 30 snapshots(as shown in Fig.1(b)). Figure 

1(a) also shows that the SSM has the same performance at a 

single snapshot as the Root-MUSIC at 30 snapshots after 20dB 

SNR, and the SSM has a similar performance when using 5, 10 

and 30 snapshots after 20dB SNR. The simulation results 

demonstrate that for the SSM, using small snapshots can obtain 

a very good estimate, and its estimate accuracy outperforms the 

Root-MUSIC. 

 
 

Fig. 2.The RMSE of the DOA versus SNR 

 

Fig.2 shows that the SSM perform better than the SR based 

method, and it also follows the CRLB more closely than the SR 

based method. The simulation results show the 

effectivity of the SSM under the case of the small number of 

snapshots compared with the SR based method. The reason is 

that the forward-backward matrix is employed for the SSM, so 

under the condition of the same number of snapshots, the SSM 

method has larger amount of information than SR based 

method. 

 
 

Fig.3. The RMSE of the DOA versus the number of snapshots 

 

Fig.3 shows that the estimate accuracy of the SSM is the 

best among all with the fewer number of snapshots when SNR is 

15dB and 7 antenna elements are used, and the estimation 

performance of the SR based method lies between the SSM and 

the Root-MUSIC. Although the SR based method has much 

lower RMSE than the Root-MUSIC, it is still worse than the 

SSM. Simulation results validate the effectiveness of the SSM 

method and illustrate that it has higher estimation precision with 

the fewer number of snapshots. 
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Fig.4. The RMSE of the DOA versus the number of antenna elements 

 

 

Fig.4 plots curves of RMSE versus the number of antenna 

elements. As shown in Figure 4, the SSM can obtain better 

performance than the other two methods with fewer antenna 

elements under the same condition, so the SSM can save the 

number of antenna elements and need a smaller aperture than 

the Root-MUSIC and SR based method. 

Experiment 2: In this experiment, we examine the performance 

of the SSM in comparison to the Root-MUSIC, SR based 

method and CRLB under the case of the two equal-power 

correlated signals with a correlation coefficient of 0.99. This 

example has the same parameters setting as the example 1 in the 

first, the second scenario and the third scenario except that the 

two signals impinging into the array are correlated. The 

simulation results are shown in Figure 5, Figure 6 and Figure 7. 

 
 

Fig.5. The RMSE of the DOA versus SNR 

 

 

As shown in Fig. 5, the Root-MUSIC algorithm failed totally, 

but the SSM demonstrates the perfect performance even at a 

single snapshot after 20dB SNR. The simulation result shows 

that the SSM has a superior ability to the Root-MUSIC 

algorithm using the small number of snapshots under the 

correlated signal case. For the reason that the covariance matrix 

of the Root-MUSIC loses the full rank property, it needs some 

additional spatial smoothing techniques so that it can work for 

the correlated signal case. 

 
 
Fig.6. The RMSE of the DOA versus the number of snapshots 

 

 

Fig. 6 plots curves of RMSE versus the number of snapshots 

and shows that the Root-MUSIC doesn’t work anyway even at 

100 snapshots, but the SSM algorithm still work well even at a 

single snapshot, and no accuracy improvement is observed by 

further increasing the number of snapshots. The simulation 

result demonstrates that increasing the number of the snapshots 

doesn’t improve the performance of the Root-MUSIC when the 

two incident signals are correlated, whereas the SSM 

performs perfect in the conditions of small snapshots without 

additional spatial smoothing techniques. 

 
 

Fig. 7. The RMSE of the DOA versus SNR 

 
 

Fig. 7 shows that in contrast with Root-MUSIC (as shown in 

Fig. 5), the SR based method can obtain better estimation 

performance without any decorrelation preprocessing under the 

condition of the correlated signals, and the estimation accuracy 

can be improved by further increasing the number of snapshots, 

but the RMSE of SR based method is still higher than that of 

SSM. Also, the SSM follows the CRLB more closely than the 

SR based method. 

Experiment 3: In this experiment, the computational load is 

examined. The CPU processing time is used as the evaluative 

criteria. The parameter setting is similar to the example 1(the 

computation time is similar when sources are correlated). The 

computational load of the SSM, the Root-MUSIC and SR based 
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algorithm is compared under the two scenarios. In the first case, 

20 snapshots is used, the SNR is fixed at 20dB, the number of 

array elements changes from 7 to 20. In the second case, 7 

elements array are employed, SNR is still 20dB, the number of 

snapshots increases from 10 to 100. 500 independent 

simulations are conducted. The simulation results are plotted in 

Figure.8 and Figure 9, which plot curves of CPU processing 

time versus the number of elements and the number of 

snapshots, respectively. 

 
Fig.8. The processing time versus the number of elements 

 

 

As can be seen from Fig. 8, the SSM is fastest among all and 

the CPU processing time of the SSM and SR based method 

keeps unchangeable nearly as the number of array elements 

increases, however the processing time of the Root-MUSIC 

increases greatly. The result shows that the increase of the array 

elements accelerates the computational load of the 

Root-MUSIC, but the SSM is barely affected by the number of 

array elements. 

 
Fig. 9. The processing time versus the number of snapshots 

 
 

Fig.9 shows the CPU processing time of the three methods at 

different number of snapshots. The result demonstrates that the 

SSM is fastest among all, and SR based method turns out to be 

the slowest. It also show that the computational load of the SR 

based method grows linearly with the number of snapshots and 

the computational load of the Root-MUSIC is at least 80 times 

than that of the SSM. Although the processing time of the SSM 

increases slightly as the number of snapshots increases, 

compared with the Root-MUSIC and SR based method, the 

processing time of the SSM still greatly less than that of the two 

algorithms. 

VII. CONCLUSION 

A novel DOA estimation algorithm, the state space-based 

method (SSM), is investigated in this paper. The performance of 

the SSM is compared with Root-MUSIC and SR (sparse 

representation) based algorithm as well as the CRLB under 

different SNRs, different number of snapshots and different 

number of array elements. The SSM outperforms the two 

method and works well under the case of small 

snapshots and evenly coherent signal as demonstrated in the 

numerical experiments. Also, the proposed method is 

computationally efficient. Although the processing time of the 

SSM increases as the number of snapshots increases, the 

processing time increment of the SSM is still very little, 

comparing with the Root-MUSIC and SR based algorithm, it is 

negligible. Therefore the proposed method is particularly suited 

for real time applications over other algorithms. 

Finally, it is worth noting that the SSM can be 

straightforwardly extended to perform the time delay estimation 

using a finite number of samples. It is also very promising for 

many other applications such as signal reconstruction, image 

restoration using small samples. 
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