High-Performance Ternary (4:2) Compressor Based on Capacitive Threshold Logic
Abstract
This paper presents a ternary (4:2) compressor, which is an important component in multiplication. However, the structure differs from the binary counterpart since the ternary model does not require carry signals. The method of capacitive threshold logic (CTL) is used to achieve the output signals directly. Unlike the previously presented similar structure, the entire capacitor network is divided into two parts. This segregation results in higher reliability and robustness against unwanted process, voltage, and temperature (PVT) variations. Simulations are performed by HSPICE and 32nm CNFET technology. Simulation results demonstrate about 94% higher performance in terms of power-delay product (PDP) for the new design over the previous one.References
G. Jaberipur and M. Ghodsi, “High radix signed digit number systems: representation paradigms”, Scientia Iranica, vol. 10, no. 4, pp. 383-391, 2003.
E. Dubrova, “Multiple-valued logic in VLSI: challenges and opportunities”, Proceedings of NORCHIP’99, pp. 340-350, 1999.
S.L. Hurst, “Multiple-valued logic, its status and its future”, IEEE Transactions on Computers, vol. C-33, no. 12, pp. 1160-1179, 1984, DOI: 10.1109/TC.1984.1676392.
S.K. Hsu, S.K. Mathew, M.A. Anders, B.R. Zeydel, V.G. Oklobdzija, R.K. Krishnamurthy, and S.Y. Borkar, “A 110 GOPS/W 16-bit multiplier and reconfigurable PLA loop in 90-nm CMOS”, IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 256-264, 2006, DOI: 10.1109/JSSC.2005.859893.
M.E. Kaihara and N. Takagi, (2008). “Bipartite modular multiplication method”, IEEE Transactions on Computers, vol. 57, no. 2, pp. 157-164, 2008, DOI: 10.1109/TC.2007.70793.
J. Gu, and C.-H. Chang, “Ultra low voltage, low power 4-2 compressor for high speed multiplications”, Proceedings of the International Symposium on Circuits and Systems, 5, pp. 321-324, 2003, DOI: 10.1109/ISCAS.2003.1206267.
A. Pishvaie, G. Jaberipur, and A. Jahanian, “Improved CMOS (4; 2) compressor designs for parallel multipliers”, Computers and Electrical Engineering, vol. 38, no. 6, pp. 1703-1716, 2012, DOI: 10.1016/j.compeleceng.2012.07.015.
H. Ozdemir, A. KepKep, B. Pamir, Y. Leblebici, and U. Cilingiroglu, “A capacitive threshold-logic gate”, IEEE Journal of Solid-State Circuits, vol. 31, no. 8, pp. 1141-1150, 1996, DOI: 10.1109/4.508261.
V. Beiu, J.M. Quintana, and M.J. Avedillo, “VLSI implementations of threshold logic-a comprehensive survey”, IEEE Transactions on Neural Networks, vol. 14, no. 5, pp. 1217-1243, 2003, DOI: 10.1109/TNN.2003.816365.
A. Stokman, “Implementation of threshold logic”, M.Sc. Thesis, Delft University of Technology, 1998.
R. Faghih Mirzaee, M.H. Moaiyeri, M. Maleknejad, K. Navi, and O. Hashemipour, “Dramatically low-transistor-count high-speed ternary adders”, IEEE 43rd International Symposium on Multiple-Valued Logic, pp. 170-175, 2013, DOI: 10.1109/ISMVL.2013.24.
R. Faghih Mirzaee and K. Navi, “Optimized adder cells for ternary ripple-carry addition”, IEICE Transactions on Information and systems, vol. E97-D, no. 9, pp. 2312-2319, 2014, DOI: 10.1587/transinf.2013LOP0007.
S. Tabrizchi, H. Sharifi, F. Sharifi, and K. Navi, “A novel design approach for ternary compressor cells based on CNTFETs”, Circuits, Systems, and Signal Processing, vol. 35, no. 9, pp. 3310-3322, 2016, DOI: 10.1007/s00034-015-0197-z.
A. Raychowdhury and K. Roy, “Carbon nanotube electronics: design of high-performance and low-power digital circuits”, IEEE Transactions on Circuits and Systems I, vol. 54, no. 11, pp. 2391-2401, 2007, DOI: 10.1109/TCSI.2007.907799.
J. Appenzeller, “Carbon nanotube for high-performance electronics-progress and prospect”, Proceedings of IEEE, vol. 96, no. 2, pp. 201-211, 2008, DOI: 10.1109/JPROC.2007.911051.
A. Rahman, I. Guo, S. Datta, and M.S. Lundstrom, “Theory of ballistic nanotransistors”, IEEE Transactions on Electron Devices, vol. 50, no. 9, pp. 1853-1864, 2003, DOI: 10.1109/TED.2003.815366.
S. Mehrabi, R. Faghih Mirzaee, S. Zamanzadeh, and A. Jamalian, “A new 16-bit×16-bit multiplier architecture by m:2 and m:3 compressors”, International Journal of Information and Electronics Engineering, vol. 6, no. 2, pp. 79-83, 2016, DOI: 10.18178/IJIEE.2016.6.2.599.
R. Faghih Mirzaee, K. Navi, and N. Bagherzadeh, “High-efficient circuits for ternary addition”, VLSI Design, vol. 2014, article ID 534587, pp. 1-15, 2014, DOI: 10.1155/2014/534587.
D.R. Haring, “Multi-threshold threshold elements”, IEEE Transactions on Electronic Computers, vol. EC-15, no. 1, pp. 45-65, 1966, DOI: 10.1109/PGEC.1966.264375.
J. Deng, “Device modeling and circuit performance evaluation for nanoscale devices: Silicon technology beyond 45 nm node and carbon nanotube field effect transistors”, Ph.D. Thesis, Stanford University, 2007.
N. Maleknejad, R. Faghih Mirzaee, K. Navi, and A. Dargahi, “A systematic approach to design Boolean functions using CNFETs and an array of CNFET capacitors”, Journal of Circuits, Systems, and Computers, vol. 23, no. 3, pp. 1-35, 2014, DOI: 10.1142/S0218126614500352.
Y.B. Kim and Y.-B. Kim, “High speed and low-power transceiver design with CNFET and CNT bundle interconnect”, IEEE International SOC Conference, pp. 152-157, 2010, DOI: 10.1109/SOCC.2010.5784733.
J.L. Garcia, J.F. Ramos, and A.G. Bohorquez, “A balanced capacitive threshold logic gate”, Analog Integrated Circuits and Signal Processing, vol. 40, no. 1, pp. 61-69, 2004, DOI: 10.1023/B:ALOG.0000031434.48142.a3.
Stanford University CNFET Model website, 2008, Available at: https://nano.stanford.edu/model.php.
S. Director, and G. Hachtel, “The simplicial approximation approach to design centering”, IEEE Transactions on Circuits and Systems, vol. 24, no. 7, pp. 363-372, 1977, DOI: 10.1109/TCS.1977.1084353.
K. El Shabrawy, K. Maharatna, D. Bagnall, and B.M. Al-Hashimi, “Modeling SWCNT bandgap and effective mass variation using a Monte Carlo approach”, IEEE Transactions on Nanotechnology, vol. 9, no. 2, pp. 184-193, 2010, DOI: 10.1109/TNANO.2009.2028343.
H. Shahidipour, A. Ahmadi, and K. Maharatna, “Effect of variability in SWCNT-based logic gates”, Proceedings of 12th International Symposium on Integrated Circuits, pp. 252-255, 2009.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.