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Abstract—We propose a novel least significant bit steganog-
raphy algorithm based on a Hitzl-Zele chaotic function. On the
first step a pseudorandom generator is constructed for chaotic
pixel selection for hiding the secret message. Exact study has
been provided on the novel scheme using visual inspection, peak
signal-to-noise ratio, and histogram analysis. The experimental
data show excellent performance of the novel stego technique.
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I. INTRODUCTION

TEGANOGRAPHY is art and science of hiding secret

information (message) in plain sight without being noticed
within an innocent cover data (container) so that it can be
securely broadcasted over a communications channel. First
used containers usually were hand written text, images ets.
but with technology progress one of the most used containers
these days are raster graphic files.

In recent years, with rapid development of information and
communication technologies, web-based services (tools) are
becoming increasingly favourite. Steganography, as a part of
science of securely data transmission [6], [20], is an art of
inconspicuous message sending. There is a need for new
stego algorithms, that provide the necessary security and
privacy in data communication [29]. Using chaotic maps in
steganography algorithms become more popular, because of
the resistance of increasing stego attacks.

In two fundamental papers [15], [16] F. Pichler and
J. Scharinger proposed the chaotic Baker map to securing
digital communications. J. Fridrich in [9] extended their work
by adapting nonlinear two-dimensional maps on a torus and
on a square, with aims to achieve better encryption.

Least significant bit (LSB) method based on Henon map is
presented in [14]. In [17], novel least significant bit method
based on 1D logistic map is proposed. In [12], a novel
steganographic algorithm using Baker and Logistic maps is
designed. Two-level steganographic methods based on chaotic
maps are presented in [18] and in [13]. Novel LSB hiding
algorithm, which uses chaotic rotation equations, is proposed
in [26].

In Section II we propose a novel pseudorandom bit gen-
erator based on Hitzl-Zele chaotic function. In Section III
we present a novel LSB image steganography algorithm,
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and extended performance analysis is given. Finally, the last
section concludes the paper.

II. PSEUDORANDOM BIT GENERATOR BASED ON
HITZL-ZELE CHAOTIC MAP

Pseudorandom generators are basic primitives used in cryp-
tography algorithms but in our case we apply the random prop-
erties of chaotic pseudorandom bit generator to steganography
algorithm. Pseudorandom generators are software realized
methods for extracting sequence of random values.

A. Proposed Pseudorandom Bit Generation Algorithm

The Hitzl-Zele function [10], [19], is a three-dimensional
discrete-time dynamical system given by:

w(k+1)=1+y(k) — 2(k) - 2% (k)
y(k+1) =a-x(k) (1
2(k+1) =b-2%(k) + 2(k) — 0.5,

with bifurcation parameters a = 0.25 and b = 0.87 for chaotic
behaviour. Figure 1(a), Figure 1(b) and Figure 1(c) represents
graphic plotting points of x, y and z dimensions.

We propose a new pseudorandom bit generation algorithm
with the following steps:
Step 1: The initial values x(0), y(0), and z(0) from Eq. (1),
and a bit stream limit L are determined.
The Hitzl-Zele chaotic map is iterated initially for L
times.
The iteration of the Eq. (1) continues, and as a result,
three real fractions z(¢), y(4), and z(), are calculated.
The first two numbers x(i) and y(i) are post-
processed as follows:

ho = abs(mod(integer(xz(i) x 10000000), 2)

2
h1 = abs(mod(integer(y(i) x 10000000), 2), @

Step 2:
Step 3:

Step 4:

where abs(xz) returns the absolute value of =,
integer(x) returns the the integer part of x, truncating
the value at the decimal point, mod(z,y) returns the
reminder after division.

Perform XOR operation between hgy and hy to get a
single output bit.

Step 6: Return to Step 3 until the bit stream limit is reached.

Step 5:

The presented pseudorandom bit generator is implemented
in C++, using the following initial values: x(0) = 0.9134,
y(0) = 0.6324, 2(0) = 0.0975, and L = 550.

Similar chaos based PRG can be found in [3], [5], [7], [8],
[22], [23], [24], [25], [27].
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Fig. 1.
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(a) 2D plot of the Hitzl-Zele chaotic function using = and
y values.
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(b) 2D plot of the Hitzl-Zele chaotic function using = and
z values.
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(c) 2D plot of the Hitzl-Zele chaotic function using y and
z values.

2D plot of the Hitzl-Zele chaotic function.
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B. Key space

The key space is configured by the four numbers x (i), y(i),
and z(z), and L. With number of about 16 decimal digits
precision [30] the key space is more than 272, This is large
enough against exhaustive attack methods [1].

C. Key sensitivity

Testing key sensitivity requires comparison of result output
binary sequences using very similar secret keys. In order to do
the experiments we changed a single digit of variables from
key space of the proposed pseudorandom generator. The secret
key 1 uses the initial values described in Section II, the secret
key 2 is formed by changing 2:(0) to 0.9135, for secret key 3
2(0) is changed to 0.9324, for secret key 4 y(0) is changed to
0.6325, for secret key 5 y(0) is changed to 0.6334, and for the
last two secret keys 6 and 7, z(0) is changed to 0.0976 and
0.0985 respectively. The next figures visually show the result
sequences calculated using different but similar secret keys.

0 20 40 60 80 100 120

(g) Plot of binary sequence using secret key 7.

Fig. 2. Plot of binary sequences with similar keys.

All the figures are very different, demonstrating that even if
a single digit is changed from the initial values of x(0), y(0) or
z(0), the end result is entirely changed. The results indicates
high level of security provided by the proposed pseudorandom
generator as far as the secret key is concerned.
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D. Statistical tests

Three software test programs are used in order to measure
the behaviour of the output binary streams.

The NIST test suite [21] includes 15 statistical tests: Fre-
quency (monobit), Block-frequency, Cumulative sums (for-
ward and reverse), Runs, Longest run of ones, Rank,
Fast Fourier Transform (spectral), Non-overlapping templates,
Overlapping templates, Maurers “Universal Statistical”, Ap-
proximate entropy, Random excursion, Random-excursion
variant, Serial, and Linear complexity. The proposed pseu-
dorandom bit generator passed successfully NIST test suite,
Table 1.

TABLE I

NIST TEST SUITE RESULTS.
NIST Proposed Algorithm
statistical test P-value | Pass rate
Frequency (monobit) 0.709558 | 994/1000
Block-frequency 0.473064 | 991/1000
Cumulative sums (Forward) | 0.753844 993/1000
Cumulative sums (Reverse) | 0.624627 994/1000
Runs 0.844641 | 989/1000
Longest run of Ones 0.526105 | 994/1000
Rank 0.433590 | 990/1000
FFT 0.723804 | 990/1000
Non-overlapping templates 0.477861 990/1000
Overlapping templates 0.504219 | 986/1000
Universal 0.094285 | 987/1000
Approximate entropy 0.997698 | 988/1000
Random-excursions 0.567112 634/641
Random-excursions Variant | 0.509168 634/641
Serial 1 0.000976 | 988/1000
Serial 2 0.128874 | 987/1000
Linear complexity 0.370262 | 988/1000
The minimum pass rate for each statistical test with
the exception of the random excursion (variant) test
is approximately = 980 for a sample size = 1000
binary sequences. The minimum pass rate for the
random excursion (variant) test is approximately 627
for a sample size 641 binary sequences.

The DIEHARD package [11] is set of 19 statistical tests:
Birthday spacings, Overlapping S5-permutations, Binary rank
(31 x 31), Binary rank (32 x 32), Binary rank (6 x 8), Bit-
stream, Overlapping-Pairs-Sparse-Occupancy, Overlapping-
Quadruples-Sparse-Occupancy, DNA, Stream count-the-ones,
Byte-count-the-ones, Parking lot, Minimum distance, 3D
spheres, Squeeze, Overlapping sums, Runs (up and down), and
Craps. The tests return P — values, which should be uniform
in [0,1), if the input file contains pseudorandom numbers. The
P—walues are obtained by p = F(y), where F' is the assumed
distribution of the sample random variable y, often the normal
distribution. The proposed pseudorandom bit generator passed
successfully DIEHARD tests, Table II.

The ENT package [28] includes 6 tests to pseudorandom
sequences: Entropy, Optimum compression, x2 distribution,
Arithmetic Mean value, Monte Carlo Value for 7, and Serial
Correlation Coefficient. The sequences of bytes are stored in
files. The suite outputs the results of those tests. We tested
output sequences of 125000000 bytes of the novel pseudo-
random bit generation algorithm. The novel pseudorandom bit
generation algorithm passed successfully ENT test, Table III.

From key space evaluation and the positive test results,
we can conclude that the novel pseudorandom bit generation
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TABLE 11
DIEHARD STATISTICAL TEST RESULTS.

DIEHARD Proposed Algorithm
statistical test P-value
Birthday spacings 0.393909
Overlapping 5-permutation 0.518083
Binary rank (31 x 31) 0.346194
Binary rank (32 x 32) 0.340976
Binary rank (6 x 8) 0.561724
Bitstream 0.499964
OPSO 0.669539
0QSO 0.578114
DNA 0.635990
Stream count-the-ones 0.047321
Byte count-the-ones 0.452763
Parking lot 0.612213
Minimum distance 0.486939
3D spheres 0.638137
Squeeze 0.057748
Overlapping sums 0.533742
Runs up 0.571370
Runs down 0.236529
Craps 0.357239

TABLE III
ENT STATISTICAL TEST RESULTS.

ENT Proposed Algorithm
statistical test results
Entropy 7.999998 bits per byte

OC would reduce the size of
this 125000000 byte file

by 0 %.

For 125000000 samples is
415.50, and randomly would
exceed this value 0.01 %

of the time.

127.5004 (127.5 = random)
3.141717554 (error 0.00 %)
0.000012

(totally uncorrelated = 0.0)

Optimum compression

x?2 distribution

Arithmetic mean value
Monte Carlo 7 estim.
Serial correl. coeff.

algorithm has good statistical properties and provide high level
of security and randomness.

III. LEAST SIGNIFICANT BIT STEGANOGRAPHY USING
HiTzL-ZELE CHAOTIC MAP

A. Proposed Least Significant Bit Steganography Algorithm

Here we design a novel LSB image steganography scheme
by using the pseudorandom bit generation algorithm based on
the Hitzl-Zele chaotic function, Section II.

We consider plain and stego images of n xm size. The bytes
of the BMP pixel’s grid are randomly passed based on Hitzl-
Zele pseudorandom bit generation. The header information bits
are directly transferred into the stego image.

The novel steganography algorithm consists of the following
steps:
Step 1:
Step 2:

Symbol for the end of the plain text is added.
Convert plain text to binary sequence using ASCII
table.

The pseudorandom generator based on Hitzl-Zele
function is iterated forty eight times to produce 24
bits for ¢-value and 24 bits for j-value. These bits
are converted modulo n and modulo m, respectively.
Integer values ¢ and j are produced.

Step 3:
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Fig. 3. Visual comparison of the 4.2.05 Airplane (F-16) plain image and the stego images: (a) original image, (b) stego image with 100 chars, (c) stego
image with 200 chars, (d) stego image with 300 chars, (e) stego image with 400 chars, and (f) stego image with 500 chars.

TABLE IV
MSE AND PSNR FOR IMAGES WITH 100 CHARS (800 BITS), 200 CHARS (1600 BITS), 300 CHARS (2400 BITS), 400 CHARS (3200 BITS), AND 500
CHARS (4000 BITS) EMBEDDED.

100 chars 200 chars 300 chars 400 chars 500 chars

Images [MSE PSNR MSE PSNR MSE PSNR MSE PSNR MSE PSNR
4.1.01 0.0021 | 74.9390 | 0.0041 | 71.9873 | 0.0061 | 70.2714 | 0.0079 | 69.1384 | 0.0101 | 68.0761
4.1.02 | 0.0021 | 74.9923 | 0.0041 | 71.9927 | 0.0061 | 70.2569 | 0.0082 | 68.9986 | 0.0101 | 68.0717
4.1.03 0.0021 | 74.9390 | 0.0041 | 72.0089 | 0.0061 | 70.2569 | 0.0082 | 69.0175 | 0.0102 | 68.0241
4.1.04 | 0.0021 | 749816 | 0.0041 | 72.0413 | 0.0062 | 70.2175 | 0.0081 | 69.0229 | 0.0102 | 68.0500
4.1.05 0.0020 | 75.0680 | 0.0040 | 72.1292 | 0.0061 | 70.2569 | 0.0082 | 68.9770 | 0.0103 | 67.9876
4.1.06 | 0.0020 | 75.0680 | 0.0041 | 71.9981 | 0.0061 | 70.2569 | 0.0082 | 68.9959 | 0.0103 | 68.0047
4.1.07 | 0.0020 | 75.2009 | 0.0040 | 72.0905 | 0.0059 | 70.3887 | 0.0081 | 69.0610 | 0.0101 | 68.0739
4.1.08 | 0.0020 | 75.1008 | 0.0041 | 72.0089 | 0.0061 | 70.2642 | 0.0082 | 69.0094 | 0.0102 | 68.0565
4.2.01 0.0005 | 80.7933 | 0.0011 | 77.8654 | 0.0016 | 76.2132 | 0.0021 | 74.9629 | 0.0026 | 73.9805
4.2.02 | 0.0005 | 80.9490 | 0.0011 | 77.7983 | 0.0016 | 76.1010 | 0.0021 | 74.9126 | 0.0026 | 73.9403
4.2.03 0.0006 | 80.7225 | 0.0011 | 77.8086 | 0.0016 | 76.1010 | 0.0021 | 74.9047 | 0.0026 | 73.9235
4.2.04 | 0.0005 | 81.0129 | 0.0010 | 78.1002 | 0.0015 | 76.3247 | 0.0020 | 75.0435 | 0.0025 | 74.0858
4.2.05 0.0005 | 81.0668 | 0.0010 | 78.0026 | 0.0015 | 76.3466 | 0.0020 | 75.0844 | 0.0025 | 74.1405
42.06 | 0.0006 | 80.6826 | 0.0010 | 77.9334 | 0.0016 | 76.2061 | 0.0021 | 74.9073 | 0.0026 | 73.9996
4.2.07 | 0.0005 | 80.9702 | 0.0010 | 78.0619 | 0.0015 | 76.2956 | 0.0020 | 75.0219 | 0.0026 | 74.0125
house 0.0005 | 81.2215 | 0.0010 | 78.1609 | 0.0015 | 76.3797 | 0.0020 | 75.0734 | 0.0025 | 74.0728

Step 4: Repeat Step 3 until unused pixel position (i,7) is Decoding algorithm consists of the following steps:
detected.

Step 5: Embed three bits from the input sequence into the
last bit of the RED, GREEN and BLUE values of the
selected pixel position (i, ).

Step 6: Repeat Steps 3—-5 until stego image is produced.

Step 1: The pseudorandom generator based on Hitzl-Zele
function is iterated forty eight times to produce 24
bits for i-value and 24 bits for j-value. These bits
are converted modulo n and modulo m, respectively.
Integer values ¢ and j are produced.
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TABLE V
PSNR (DB) OF THE PROPOSED ALGORITHM AND SOME OTHER ALGORITHMS.
Images Ref. [2] | Ref. [4] | Ref. [17] | Ref. [18] | Proposed
4.2.03 51.11 44.26 44.54 44.16 73.92
4.2.04 51.12 41.62 44.53 44.19 74.09
4.2.05 51.14 44.24 44.42 - 74.14
I 00 | I 020 ] I 00 |
0 255 0 255 0 255
Count: 262144 Min: 31 Count: 262144 Min: 31 Count: 262144 Min: 31
Mean: 181.882 Max: 229 Mean: 181.882 Max: 229 Mean: 181.882 Max: 229

StdDev: 41.501 Mode: 208 (8659) StdDev: 41.501

Mode: 209 (8658) StdDev: 41.501 Mode: 208 (8660)
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Fig. 4.

(e)

®

Hystogram analysis of the 4.2.05 Airplane (F-16) plain image and the stego images: (a) original image, (b) stego image with 100 chars, (c) stego

image with 200 chars, (d) stego image with 300 chars, (e) stego image with 400 chars, and (f) stego image with 500 chars.

Step 2: Repeat Step 1 until unused pixel position (4,7) is
detected.

Retrieve three bits to the output binary sequence of
the last bit of the RED, GREEN and BLUE values of
the selected pixel position (3, 7).

Every 8 bits are converted into char symbol and added
to extracted text.

Repeat Steps 1-4 until the end symbol is detected.

Step 3:

Step 4:

Step 5:

The designed LSB algorithm is implemented in C++ pro-
gramming language and the color images are selected from
USC-SIPI image database (sipi.usc.edu/database/).

B. Visual Inspection Analysis

As an example, Figure 3 shows the image 4.2.05 Airplane
(F16), Figure 3(a), and its stego images, Figure 3(b)-3(f). The
visual inspection does not find differences between the plain
image and the stego images. The images are identical optically
with no indication of hidden messages.

C. Peak Signal-to-Noise Ratio Analysis

Peak Signal-to-Noise Ratio (PSNR) is the ratio between the
maximum possible power of a signal and the power of noise

contained in the signal. It is defined as follows:
(2!~ 1)?
MSE

where d is the bit depth of the pixel and MSE is the mean
square error between the plain and stego images. MSE is
defined as:

PSNR = 10log;, (dB), 3)

MSE =330l 4] - i),

i=1 j=1

“4)

where pli, j], p'[i, j] is the ith-row jth-column pixel in the
plain and stego images, respectively.

In Table IV, we provide the computed values for MSE
and PSNR for the proposed stego algorithm, where MSE and
PSNR are calculated for images with 100 chars (800 bits), 200
chars (1600 bits), 300 chars (2400 bits), 400 chars (3200 bits),
and 500 chars (4000 bits) embedded, are presented.

From the obtained results, Table IV, it is clear that the PSNR
values are very high, above 68 dB, which is an indication that
the new LSB chaos-based steganography algorithm has a good
level of security.

In Table V, we have compare the PSNR of our embedding
scheme with similar references [2], [4], [17], and [18].
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Compared to other LSB steganography schemes, we can see
that proposed scheme has higher PSNR values.

D. Histogram Analysis

Image histograms are graphical representation of the tonal
distribution in digital images. This test compares histograms
of plain and stego images. In addition, histogram analysis was
performed using ImageJ (https://imagej.nih.gov/ij/) histogram
analysis of the distribution of gray values in the cover and the
stego image 4.2.05 Airplane (F16), see Figure 4. It is examined
that the histograms of the stego images are very similar to that
of the plain image with no indication of hidden messages in
stego images.

IV. FUTURE WORK

In the future steps, we intend to experiment with hiding
messages not only in least significant bit in order to increase
container capacity without any sign of steganography. We
also intend to use Bent boolean functions to increase chaos
behaviour and pseudorandomness of PRG. Hardware imple-
mentation of the proposed algorithm is one of our goals.

V. CONCLUSION

Novel least significant bit steganography algorithm based on
a Hitzl-Zele chaotic function, is designed. Empirical experi-
ments are provided for testing the security of the proposed
scheme. Our stego analysis, visual inspection, peak signal-
to-noise ratio, and histogram analysis, show that the novel
algorithm has enough key size, high key sensitivity and
excellent performance.
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