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 

Abstract—The paper deals with multiple soft fault diagnosis of 

linear analog circuits. A fault verification method is developed 

that allows estimating the values of a set of the parameters 

considered as potentially faulty. The method exploits the 

transmittance of the circuit and is based on a diagnostic test 

leading to output signal in discrete form. Applying Z-transform a 

diagnostic equation is written which is next reproduced. The 

obtained system of equations consisting of larger number of 

equations than the number of the parameters is solved using 

appropriate numerical approach. The method is adapted to real 

circumstances taking into account scattering of the fault–free 

parameters within their tolerance ranges and some errors 

produced by the method. In consequence, the results provided by 

the method have the form of ranges including the values of the 

tested parameters. To illustrate the method two examples of real 

electronic circuits are given. 

 
Keywords—analog circuits, fault diagnosis, linear circuits, 

multiple soft faults, verification technique 

I. INTRODUCTION 

AULT diagnosis of analog circuits plays a key role in 

electronic circuit design [9], [13]. Unlike digital circuits, 

methodology for fault diagnosis and testing of the analog ones 

remains relatively underdeveloped due to numerous 

limitations, e.g. technological variations of the parameters 

within their tolerance ranges, a limited number of nodes 

accessible for measurement, and nonlinear nature of the test 

equations. For these reasons in many cases analog testing 

relies on a black–box approach where specifications of the 

circuitry are verified without paying attention to the structure. 

In consequence, fault diagnosis of analog circuits has 

considerable interest, leading to numerous publications, during 

the last years e.g. [1], [5], [7], [10], [12], [17-18], [21], [23]. 

If a circuit parameter is drifted from its tolerance range but 

does not produce any topological changes the fault is called 

soft or parametric. If a fault is open or short it is called hard or 

catastrophic. The fault diagnosis including detecting, locating 

and estimating of the values of the faulty elements can be 

performed using different diagnostic methods. If most of the 

circuit simulations take place after any testing, the diagnostic 

method is classified as the simulation after test (SAT) 

approach, otherwise it is classified as the simulation before test 

(SBT) approach. In the case of soft fault diagnosis SAT 
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approach  is  preferred.  During  the  last  decades  a  wide 

variety of methods, concepts and techniques have been adapted 

to soft fault diagnosis, e.g. the Woodbury formula in matrix 

theory [24-25], support vector machine [15], [20], linear 

programming [26], homotopy method [27], fuzzy approach 

[3], wavelet transform [1-2], neural networks [1], [12], [16], 

frequency response function [11], [17], V-transform of 

polynomial coefficients [21], evolutionary algorithm [12], 

Volterra series [7]. Recently several papers have been focused 

on multiple soft fault diagnosis in analog integrated circuits 

designed in micrometer and submicrometer technology, e.g. 

[23], [28-29]. 

Numerous results in the diagnosis area relate to the circuits 

with single defects. Multiple fault diagnosis is more complex 

and insufficiently resolved. This paper is devoted to multiple 

soft fault diagnosis of analog linear electronic circuits. Usually 

not all parameters in the circuit can be tested whatever 

diagnostic algorithm employed. Information on how many and 

which parameters can be unambiguously diagnosed is provided 

by testability analysis, e.g. [8]. 

Many methods for fault diagnosis of analog circuits exploit 

SAT approach and a fault verification concept. The fault 

verification technique is based on the hypothesis that some 

parameters can be faulty and the others are nominal or within 

their tolerance ranges. In consequence, the number of 

unknown variables is reduced. Next the hypothesis is verified 

on the basis of performed measurements. The number of the 

measurement data points can be greater than the number of 

parameters. In such a case overdetermined set of diagnostic 

equations is produced. 

Fault verification techniques have been applied for soft and 

hard fault diagnosis of analog circuits in the last decades, e.g. 

[4], [6], [19], [22-23], [27], [29-31]. Different methods and 

computational techniques have been developed to solve the 

corresponding diagnostic equations based on measurement test 

performed in DC, AC, or transient state. Most of them exploit 

DC or AC test. In real nonlinear circuits the diagnostic 

equations cannot be presented in an explicit analytical form. 

For example, the transistors of modern CMOS circuits are 

characterized by BSIM 4.6 model which is described by 

several hundred equations, mostly nonlinear. In such a case no 

explicit analytical representation of the diagnostic equations 

exists, even in the case of small sized circuits, and some 

sophisticated methods are needed to perform soft fault 

diagnosis, based on verification concept, e.g. [28-29]. Linear 

circuits can be described in symbolic form in DC, AC, or 

transient state, using node method or state approach, e.g. [5-6], 

[22]. Also transmittance which characterizes linear time 

invariant circuit in the frequency domain can be exploited for 

soft fault diagnosis, e.g. [4]. Some diagnostic methods are used 
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for self–testing of analog parts of the mixed–signal systems, 

e.g. [5], [31]. 

The main achievement of this paper is a new method, 

belonging to the class of fault verification techniques, 

described in Sections II and III. The method can be applied to 

middle sized linear and time-invariant analog circuits with 

faulty parameters, which according to testability analysis can 

be unambiguously diagnosed. Usually the method requires one 

accessible input node and one accessible output node only. It 

asks for transmittance in a symbolic form. The method is 

effective, easy to implement and considers conditions 

occurring in real circumstances. 

II. THE DIAGNOSTIC METHOD 

Let us consider a linear time–invariant dynamic circuit. Let 

np,,p 1  be the parameters which according to the 

information provided by the testability analysis, can be tested. 

We want to estimate values of the parameters using the SAT 

approach and a fault verification technique. These parameters, 

whose values exceed the tolerance ranges are considered as 

faulty. The circuit parameters that are to be diagnosed 

np,,p 1  will be considered as elements of the vector 

 T
1 npp p , where T denotes transposition. Let us 

consider the circuit as a linear time invariant (LTI) two–port 

shown in Fig. 1. Assume temporarily that the circuit 

parameters, except np,,p 1 , have nominal values. We find 

the transmittance    sXsY  of this two–port in a symbolic 

form. This transmittance labeled  p,sH  depends on the 

unknown parameters np,,p 1  and the complex variable s . 

Let  tx  be a rectangular pulse signal with the height A  and 

the duration time oT . Its magnitude spectrum is labeled 

 jFX , whereas the magnitude spectrum of the 

transmittance, describing the circuit with nominal parameters 

is  nomj p,H  , where  Tnomnom
1

nom
npp p . 

 

x(t) 

Y(s) X(s) 

y(t) 
LTI 

 
Fig. 1. Linear time invariant two–port 

We find the transmittance  p,zĤ  in Z-transform scenario 

using the equation [14, p. 619] 
 

    
z

T
s

,sH,zĤ

s

ln
1


 pp , (1) 

where sT  is the sample spacing. To determine sT  we evaluate 

the highest frequencies o~  and o
~~  of the infinite amplitude 

spectra  nomj p,H   and  jFX  so that above them the 

spectra are sufficiently small. Next we find  ooo max 
~~,~ . 

The sampling frequency sf  is specified by the equation 





2

oMf s  , where 2M . Hence, the sample spacing sT  is 

equal to 
sf

1
. 

Let  nx  be the sampled signal  tx  and the measured 

discrete output signal be  ny , respectively. Their Z-

transforms will be labeled  zX  and  zY . We consider the 

truncated formula  zŶ  consisting of 1N  first terms of  zY  

    



N

k

kzkyzŶ
0

, (2) 

where the number N  is chosen as described in Section III. 

Replacing  zY  by the approximate formula (2), yields 

      zX,zĤzŶ p . (3) 

Equation 3 will be reproduced using nm  values of z . As a 

result the system of m  equations is generated 
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      ,zX,zĤzŶ

zX,zĤzŶ

zX,zĤzŶ

mmm p

p

p








222

111

 (4) 

with n  unknown variables np,,p 1 . Under the denotation 

         m,,jzX,zĤzŶf jjjj 1 pp , (5) 

the set of equations (4) can be rewritten in the compact form 

   0pf , (6) 

where       T
1 pppf mff   and  T

000 . Let us 

expand  pf  into the Taylor series about 
  nom0

pp   and 

neglect the higher order terms 

           000

d

d
ppp

p

f
pfpf 








 . (7) 

Substituting (7) into (6) and performing simple rearrangements 

yields 

 
   11

bpF  , (8) 

where 
    01

d

d
p

p

f
F   is nm  Jacoby matrix and 

        0011
pfpFb   is an m-vector. We solve equation (8) 

using the method of normal equation [32] 

 
         1T11T1

bFpFF  , (9) 

where 
    1T1

FF  is an nn  matrix and 
    1T1

bF  is an n-

vector. Let us denote 
      1T11

FFD   and 
      1T11

bFc  , 

then the solution vector p , labeled 
 1

p , meets the equation 

 
     111

cpD  . (10) 

Equation (10) is a compact representation of n  individual 

equations with n  unknown variables 
   11
1 np,,p  . To 
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determine  1
p  the Gaussian elimination procedure can be 

used. Next we replace 
 0

p  with  1
p  and repeat the above 

described procedure, finding 
 2

p  that meets the equation 

 
     222

cpD  , (11) 

where       2T22
FFD  ,       2T22

bFc  ,     12

d

d
p

p

f
F  , 

        1122
pfpFb  . This iteration process is continued 

generating the sequence 
      ,,, 321

ppp  , until 

          1

1

21

2

1  



n

j

l
j

l
j

ll pppp , (12) 

and 

 
         2

22
1

2
 l

m
ll ff pppf  , (13) 

where 1  and 2  are accepted errors. Then, 
 l

p  is considered 

as a solution of equation (6). 

 

Note 

Creating nm  equations (4) in order to find n  unknown 

parameters needs an explanation. If n  equations (4) had been 

formed then  pf  would have been an n-vector function and 

 1
F  an nn  matrix. In such a case the equation (8) could be 

directly solved to find 
 1

p . Unfortunately, if the rank of the 

matrix 
 1

F  is smaller than n , this equation does not have a 

unique solution. Even if the matrix is nearly full rank the 

solution is unstable and the iteration method fails. However, if 

we create nm  equations (4) there is much more probable 

that there are n  among m  rows of matrix 
 1

F  that are 

linearly independent and the rank of this matrix is equal to n . 

In such a case matrix 
      1T11

FFD   is nonsingular and the 

equation (10) has a unique solution. The same discussion 

relates to matrices 
    ,, 32

FF  . In consequence, the 

possibility of failure of the iteration method is considerably 

reduced and its efficiency increases. Many numerical 

experiments, performed with nm 2 , fully support this 

statement. 

III. IMPROVEMENT OF THE METHOD 

The above developed diagnosis method works in idealized 

frameworks and omits some conditions occurring in real 

circumstances. The main of them are listed below. 

(i) The parameters considered as fault–free do not have 

nominal values but are scattered within their tolerance 

ranges. 

(ii) A truncation error occurs due to replacing  zY  by  zŶ  

consisting of finite number of terms. 

(iii) An error is produced by the measurement equipment 

leading to distortion of  ny . 

To adapt the method to a realistic framework M
~

 sets of the 

values of the parameters considered as fault–free are created 

by random selection from their tolerance ranges, assuming 

uniform distribution. For each of the sets the diagnosis method 

is performed. As a result any of the diagnosed parameters is 

specified by range  
jj p,p , n,,j 1 , of its possible 

values rather than by a single value. To estimate jp  the 

average value 
av
jp  over the range  

jj p,p  can be used. 

To minimize the truncation error in equation (2) a proper 

number N  must be chosen together with the values of the 

variable mz,,zz 1: . They are picked at the preliminary stage 

of the method. For this purpose the circuit with nominal 

parameters is considered and the following procedure is 

applied. 

1. In the circuit with nominal parameters, driven by the input 

signal, find the output signal  ty  and estimate the duration 

time T
~

 of this signal. 

2. Pick minimum value 1z  and maximum value z  of z . 

3. Find the preliminary number N , labeled oN , of the terms 

in equation (2), 















sT

T
~

N roundo . 

4. Form the sequence  jN,zŶ 
 for ,,j 21 , where 

10o jNN j  , and choose  jmin  for which 

    Njj N,zŶN,zŶ  


1 , where N  is a small 

positive number. 

5. Set jNN  . 

6. Pick a positive value z  and find m  values of z  so that 

zzz kk 1 , 11  m,,k  , where 
 zz1 , 

 zzm  

and 
     

   
z

kk

kkk

zX,zĤ

zX,zĤzŶ




nom

nom

p

p
, m,,k 1 , where 

z  is a small positive number. To satisfy these constraints 

several trials of selecting z  and 1z  may be necessary. 

IV. NUMERICAL EXAMPLES 

To illustrate the method described in Sections II and III we 

consider two numerical examples. The diagnosed circuits are 

shown in Figures 2, and 3, where nominal values of the 

parameters are indicated. All the operational amplifiers 

included in the circuits are characterized by the ideal model. 

The computations were executed on a PC with the processor 

Intel (R) Xeon (R) E 3-1230 using MATLAB R2012a with 

Symbolic Toolbox. 

Example 1 

Let  us  consider  the  Sallen-Key  bandpass  filter  shown  in 

Fig. 2. We take into account ten sets of 3n  parameters: 

 521 R,R,R ,  253 C,R,R ,  532 R,R,R ,  432 R,R,R , 

 121 C,R,R ,  531 R,R,R ,  131 C,R,R ,  141 C,R,R , 

 151 C,R,R ,  243 C,R,R , which according to the testability 

analysis [8] can be unambiguously diagnosed. For each of the 

sets three combinations of the parameter values are assumed. 

Thus, the total number of the diagnoses is 30. 
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Fig. 2. The Sallen-Key bandpass filter. 

At the preliminary stage the transmittance 
 
 sV

sV

in

o  in symbolic 

form is determined. In any case the rectangular pulse input 

voltage is set with the hight V1  and the duration time 

ms20o .T  . The tolerance   of the parameters is %1  for 

resistors and %3  for capacitors. 

All the above defined 30 cases were laboratory tested using the 

measurement system consisting of Tektronix DPO4032 digital 

oscilloscope with P2100 passive probes and Tektronix 

AFG3022 function generator. To estimate the parameter values 

the method proposed in this paper is used with the constants: 

62  nm , 
7103 N , 

3103 z , Hz105
s f . In each 

of the cases 100M
~

 sets of the values of the parameters 

considered as fault-free are created by random selection from 

their tolerance ranges, assuming uniform distribution. Every 

time the diagnosis method is applied leading to the ranges 

 
jj p,p of the three parameters included in the diagnosed set. 

Next the average value 
av
jp  of the values belonging to 

 
jj p,p  is calculated and the relative error 

%
p

pp

j

jj

j 100
actual

avactual 
  

is determined. 

For statistical analysis all the above defined sets of the 

parameters were considered, each one with three combinations 

of the parameter values. Thus, the total number of the 

diagnoses is 30, leading to 90 values of the diagnosed 

parameters. The method gives the following results. In 73.3% 

of the cases the relative error j  does not exceed 6%, in 20% 

it is greater than 6% but smaller than 10%. In 6.7% the error 

exceeds 10%. The maximum error is 14.1%. To shed more 

light on the obtained results we consider in detail the diagnosis 

of the set of parameters  141 C,R,R  with three combinations 

of the parameter values. One of the combinations is very close 

to the nominal, whereas the parameters of the others are 

deviated from the nominal values up to 42%. The parameters 

of  the  fault–free  elements  are  as  follows:  R2 = 19.9 k,   

R3 = 10.01 k, R5 = 10.13 k, C2 = 144 nF. The results are 

summarized in Tables I-III. 

 

 

 

The total error is produced by the proposed method and by 

the measurement system. To estimate the error produced by 

the method, the same diagnoses were performed using 

numerical tests. In such a case  ny  is found numerically 

assuming the reading error mV1 . Similarly as in the 

laboratory experiments the diagnosis method is applied 

100M
~

 times in each of the 30 diagnoses and the average 

value av
jp  as well as the relative error j  are calculated. The 

statistical results are as follows. In 82.2% of the cases the error 

j  does not exceed 2%, in 13.3% it is greater than 2% but 

smaller than 4%. The maximum error is 5.4%. The 

numerically obtained results, relating to the same set 

 141 C,R,R  are summarized in Tables IV-VI, which 

correspond to the Tables I-III. The above results show that the 

error produced by the measurement system dominates the error 

of the method. 

 
 TABLE I  

DIAGNOSIS OF THE SET OF PARAMETERS  141 C,R,R  USING LABORATORY 

TEST 

Parameters 

jp  

Actual 

value ac
jp  

Lower 

limit 
jp  

Upper 

limit 
jp  

Average 

value av
jp  

Relative 

error j  

 Ω11 Rp   9910.00 9365.67 10133.63 9742.59 1.69 

 Ω42 Rp   10080.00 9745.91 10421.07 10038.44 0.41 

 nF13 Cp   156.00 153.73 170.37 161.87 3.77 

 

 TABLE II 

DIAGNOSIS OF THE SET OF PARAMETERS  141 C,R,R  USING LABORATORY 

TEST 

Parameters 

jp  

Actual 

value 
ac
jp  

Lower 

limit 

jp  

Upper 

limit 

jp  

Average 

value 
av
jp  

Relative 

error j  

 Ω11 Rp   7470.00 6494.78 7184.18 6819.17 8.71 

 Ω42 Rp   12930.00 11947.15 12970.71 12477.57 3.50 

 nF13 Cp   220.00 216.45 248.97 232.78 5.81 

 
 TABLE III 

DIAGNOSIS OF THE SET OF PARAMETERS  141 C,R,R  USING LABORATORY 

TEST 

Parameters 

jp  

Actual 

value 
ac
jp  

Lower 

limit 

jp  

Upper 

limit 

jp  

Average 

value 
av
jp  

Relative 

error j  

 Ω11 Rp   7470.00 6695.22 7331.45 7032.95 5.85 

 Ω42 Rp   10080.00 9336.91 10119.51 9657.01 4.20 

 nF13 Cp   220.00 212.06 238.71 224.21 1.91 

 
 TABLE IV 

DIAGNOSIS OF THE SET OF THREE PARAMETERS  141 C,R,R  USING 

NUMERICAL TEST 

Parameters 

jp  

Actual 

value 
ac
jp  

Lower 

limit 

jp  

Upper 

limit 

jp  

Average 

value 
av
jp  

Relative 

error j  

 Ω11 Rp   9910.00 9572.22 10384.71 10000.08 0.91 

 Ω42 Rp   10080.00 9608.03 10340.09 9971.20 1.08 

 nF13 Cp   156.00 146.34 163.13 154.06 1.25 
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The average computation time consumed by the method for 

finding the values of the three parameters considered as 

potentially faulty, for given values of the parameters 

considered as fault–free is 1.5s. The time of the preliminary 

calculations, including mainly finding of the symbolic 

transmittance, is 2.1 s. 

Example 2 

In the low pass filter shown in Fig. 3 we consider two sets of 

the parameters  31874 C,C,R,R,R , and  43184 C,C,C,R,R . 

According to the testability analysis [8], they can be 

unambiguously diagnosed. For this purpose the method 

developed in this paper is applied using numerical tests. We 

assume the reading error mV10. , %.10  for the resistors 

and capacitors, 25M
~

, 102  nm , Hz105
s f . The other 

constants are similar as in Example 1. The results are presented 

in Tables VII-VIII. 

 

 

 

 TABLE V 

DIAGNOSIS OF THE SET OF THREE PARAMETERS  141 C,R,R  USING 

NUMERICAL TEST 

Parameters 

jp  

Actual 

value ac
jp  

Lower 

limit 
jp  

Upper 

limit 
jp  

Average 

value av
jp  

Relative 

error j  

 Ω11 Rp   7470.00 7208.82 7865.65 7546.89 1.03 

 Ω42 Rp   12930.00 12354.11 13416.31 12784.79 1.12 

 nF13 Cp   220.00 204.66 231.65 216.82 1.45 

 

 TABLE VI  

DIAGNOSIS OF THE SET OF THREE PARAMETERS  141 C,R,R  USING 

NUMERICAL TEST 

Parameters 

jp  

Actual 

value ac
jp  

Lower 

limit 
jp  

Upper 

limit 
jp  

Average 

value av
jp  

Relative 

error j  

 Ω11 Rp   7470.00 7245.94 7884.28 7523.51 0.72 

 Ω42 Rp   10080.00 9662.31 10382.29 9975.82 1.03 

 nF13 Cp   220.00 205.32 229.60 217.88 0.96 
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Fig. 3 A low–pass filter 



88 M. TADEUSIEWICZ, M. OSSOWSKI 

 

 

 

In this case %.10 , because at less restrictive tolerance the 

large number of the parameters included in the circuit masks 

the faults of the diagnosed elements. 

The average computation time consumed by the method for 

finding the values of the five parameters considered as 

potentially faulty, for given values of the parameters 

considered as fault–free is 12.3s. The time of the preliminary 

calculations, including mainly finding of the symbolic 

transmittance, is 17.7 s. 

V. COMPARISON RESULTS 

From among numerous works devoted to multiple soft fault 

diagnosis reference [6] brings a sound fault verification 

approach based on the test in transient state, similarly as the 

method developed in this paper. For convenience the method 

proposed in this paper will be named method A whereas the 

method of reference [6] will be named method B. To compare 

the methods, method B has been implemented and tested using 

the circuit shown in Fig. 2. Based on the performed 

comparison the following conclusions can be drawn. 

Method A requires transmittance in symbolic form and 

sampled input voltage and output voltage measured during the 

test phase. Usually it requires access to one input node and one 

output node only. The diagnostic equations are created using 

more data points than the number of unknown parameters. For 

this purpose an idea is proposed leading to overdetermined 

system of nonlinear algebraic equations. The developed 

method for solving this system of equations requires 

derivatives of some functions. Because they are in symbolic 

form it is a very simple task. The system of equations is 

reduced using a transformation called the method of normal 

equation. Thus, the method A is easy to implement and allows 

diagnosing different faults in the circuit automatically, without 

any user’s intervention. It asks for standard performance 

measurement equipment. Moreover, the method takes into 

account the tolerances of the parameters considered as fault–

free. 

Method B requires transient analysis and sensitivity analysis 

in the time domain, performed numerically, at each iteration. 

This is time consuming process which needs careful selection 

of the time step size and error control. On the basis of the 

sensitivity analysis the parameters and the data points are 

selected using QR factorization of the sensitivity matrix. The 

values of the selected parameters are up to dated in each 

iteration. Method B has been illustrated via a simple 

exemplary circuit. Unfortunately, for some sets of the 

parameters which can be unambiguously diagnosed using 

method A the sensitivity matrix exploited by method B is 

nearly singular and the convergence problem arises. More 

complicated circuits may ask for several output signals what 

complicates the implementation of the method. It does not take 

into account the tolerances of the parameters considered as 

fault–free. 

Summarizing, the advantages of the method A are as 

follows. The method offers a new fault verification technique. 

It does not require sensitivity analyses in the time domain and 

is easy to implement. The method avoids the matrix singularity 

and takes into account the perturbations of the fault–free 

parameters within their tolerance ranges. The effectiveness of 

the method has been verified using several exemplary circuits. 

VI. CONCLUSION 

The method developed in this paper is focused on a multiple 

soft fault diagnosis of linear analog circuits. It allows 

estimating of the values of a set of several parameters 

considered as potentially faulty in real circumstances, taking 

into account the variations of the fault–free parameters within 

the tolerance ranges. The method is simple and easy to 

implement. The results provided by the method have the form 

of ranges including the values of the tested parameters. In 

small and middle sized circuits the accuracy of the obtained 

results is satisfactory. The evaluated ranges effectively frame 

the actual values of the parameters and the average values are 

close to the actual ones. The comparison of laboratory and 

numerically experiments show that the main error is due to 

uncertainty in the measurement. 

Computational cost of the method’s preliminary stage, 

which consists mainly of the circuit transmittance calculation, 

is approximately 40% greater than computation cost of the 

main algorithm. The size of investigated circuits seems to be 

the main limitation of the proposed method because the 

available symbolic computation tools, used to find the 

transmittance, are not effective for larger sized circuits and 

some estimation algorithms are needed. 
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