
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64, NO. 2, PP. 123–129
Manuscript received September 29, 2017; revised March, 2018. DOI: 10.24425/119359

Pure Infinitely Self-Modifying Code is Realizable
and Turing-complete

Gregory Morse

Abstract—Although self-modifying code has been shyed away
from due to its complexity and discouragement due to safety
issues, it nevertheless provides for a very unique obfuscation
method and a different perspective on the relationship between
data and code. The generality of the von Neumann architecture is
hardly realized by today’s processor models. A code-only model is
shown where every instruction merely modifies other instructions
yet achieves the ability to compute and Turing machine operation
is easily possible.

Keywords—x86, x86-64, Assembly language, Self-Modifying
code, Turing-completeness, Code obfuscation

I. INTRODUCTION

ALTHOUGH the mov instruction alone is enough to prove
Turing-completeness, especially in the self-modifying

code case which has been discussed in prior research, pure
infinitely self-modifying code, where not a single operation
is not in some way a modification to the code has not been
studied or clearly defined.

Part of the challenge is that to construct such a model, it
blurs the line between code and data. In fact everything in
the model is code, while code itself simply represents data
flowing through the system. To do this, a mapping of code to
data and data to code is defined, as a practical matter which
can be implemented with pure infinitely self-modifying code.
Within self-modifying code, there are several categories of
modifications which can be further useful:
Modifying instructions
Modifying arguments and operands
Overlaying and relocating code

In fact there are 2 self-modifying code aspects based on
this, one is pure self-modifying code which modifies its own
code blueprint or code skeleton and details, while the other
is merely reuse of a code region. Reuse of code regions such
as via overlays, is a classic technique often due to limited
memory, or in modern times due to limited executable space,
or for encryption and decompression. But little is practically
known of pure self-modifying code. Partly the difficulty
of factoring code requires a new binary translation and
transformation methods beyond the limitations of the control
flow graph (CFG). Pure self-modifying code can be defined
as any code which modifies itself while always maintaining
validity of its code outside contiguous modification regions.

Author is with Eötvös Loránd University, Hungary (e-mail: gre-
gory.morse@live.com)

Infinitely self-modifying code, is code which always
modifies code instructions in memory in every statement. It
is a unique and novel type of code that could be used in
subsequences of code for proof of concept and for efficiency
or obfuscation. Infinitely self-modifying code clearly requires
pure self-modifying code as such criterion is inherint in the
definition, though the opposite does not need to hold.

II. MODEL

Instructions of interest for constantly self-modifying code
are only the subset which write to memory as part of
their operation. Although in this paper, the x86 and x86-64
processor instruction sets are used for demonstration purposes,
the instructions are very general and can be translated to
other architectures relatively easily. Of course the expressivity
of the instruction set is a determining factor for whether this
is possible on a given architecture as the binary argument
encoding of instructions will be modified carefully and
precisely. This practical choice is supported by the potential
obfuscation uses of such self-modifying code.

Modern operating systems implement the processor
feature enabling data execution prevention (DEP) which
makes rendering self-modifying code and calling it in a
data segment, the heap or virtual memory impractical or
limited as an approach however operating systems still
support manual methods of flagging data as code such
as the VirtualAlloc/VirtualProtect with PAGE EXECUTE
flag/VirtualFree pattern on Windows. Thus the static code
segment area of an executable must contain the entire space
needed in one way or another. If this is a significantly large
enough area, overlay techniques can generalize it so that
code can be modified in data areas and then swapped in via
overlays.

Code segments are generally treated as read and execute
only in modern compilers especially for 64-bit code, so care
must be taken in linkers to use flags that mark it as read,
execute and write if such self-modifying code will be used
from the code segment. 64-bit code has almost no 64-bit
data in the code except for offsets which can only be loaded
into the accumulator register for practical restraints largely to
make instructions fall within a 15 byte maximum limit. A far
call instruction is the only other possible candidate. Yet this
is sufficient to make a complete model also work on 64-bit
addressed code.

124 G. MORSE

TABLE I
SELF-MODIFYING CODE INSTRUCTIONS

Type Instruction names
Memory movement movsb, movsw, movsd
Memory writing mov, xchg
Boolean and mathematical logic add, sub, adc, sbb, xor

and, or, not, neg, shl, shr
Transfer call

TABLE II
CONSTANTS

Type Name Value
single byte opcode size OPSZ1 1
double byte
instruction size OPSZ2 2
Force 32-bit constant CNSTFRC32 0x80000000
Inst. with 2 32-bit args OPDBLARGSZ OPSZ2 + PTRSZ32 * 2
Offset to 32-bit arg in
memory inst. IMMOFFS OPSZ2 + PTRSZ32
Offset to 32-bit arg in
register inst. REGIMMOFFS OPSZ2 + 1

Since code cannot be executed contained in registers, no
registers are used beyond any temporary specific purpose
for instructions which absolutely require them and they are
immediately restored to their original values. Even where
registers are used, code memory is written simultaneously.

Noteworthy is that relative to instruction pointer addressing
modes are available in 64-bit mode of modern processors,
though 32-bit mode would have to use a call/pop type of
combination to retrieve the instruction pointer in code that is
relocated.

At a minimum, the processor targeted for the maximal
application of this technique would require the ability to
modify memory contents with immediate values. If full
pointer address and immediate values can be encoding in a
single instruction, then this provides for compactness and
efficiency.

The nature of self-modifying code requires some definitions
that have to do with the architecture specific encodings of the
instructions and their offsets as well, attempting to largely
abstract it through a series of definitions as shown in Tables
2 and 3.

TABLE III
32/64 BIT CONSTANTS

Type Name 32-bit 64-bit
Prefix length PFXSZ 0 1
Pointer size PTRSZ 4 8
Word size name SZW dword qword
Define raw offset MOFFS dd dq
General purpose register acmltr eax rax
Stack register gsp esp rsp
Source index gsi esi rsi
Destination index gdi edi rdi

Anything suffixed with 32, takes the 32-bit form except
where explicitly defined.

It has already been shown that only mov instructions
is required for Turing-completeness, but only 1 of the 3
addressing modes from those necessary writes to memory
and would be applicable to pure infinitely self-modifying
code. Reading from memory into a register does not modify
code, though it can be done through clever use of exchange
instructions. In fact, even control flow can be done in a
pure self-modifying manner as well as not having arbitrary
memory to clobber for comparisons. It leads to a different
model ultimately which is hereby presented.

For example, the can be represented as a data definition (in
32-bit code though generalizable as shown later to 64-bit), or
a usage as demonstrated in Listing 1.

Listing 1. Emulating Turing-complete mov instructions with self-modifying
code

mov Rdest, c
mov SZW32 ptr [Rdest + IMMOFFS], c

Rdest: mov SZW32 ptr [Rdest + IMMOFFS], 0

mov Rdest, [Rsrc + offset]
Rsrc: mov SZW32 ptr [Rsrc + IMMOFFS], 0

mov SZW32 ptr [Rsrc + OPDBLARGSZ + IMMOFFS],
0;...

xchg acmltr32, [Rsrc + IMMOFFS + offset * (
OPDBLARGSZ)]

mov [Rdest + IMMOFFS], acmltr32
xchg acmltr32, [Rsrc + IMMOFFS + offset * (

OPDBLARGSZ)]
Rdest: mov SZW32 ptr[Rdest + IMMOFFS], 0

mov [Rdest + offset], Rsrc
Rsrc: mov SZW32 ptr [Rsrc + IMMOFFS], 0

xchg acmltr32, [Rsrc + IMMOFFS]
mov [Rdest + IMMOFFS + offset * (OPDBLARGSZ)

], acmltr32
xchg acmltr32, [Rsrc + IMMOFFS]

Rdest: mov SZW32 ptr [Rdest + IMMOFFS], 0
mov SZW32 ptr [Rdest + OPDBLARGSZ + IMMOFFS

], 0

However, despite the 3 being emulatable using these
techniques, the actual data to code transformation, and flow
of the application is quite different and a different usage
which does not use pure mov instructions, but takes advantage
of several other instructions becomes optimal. Listing 2 thus
gives the basic defining tools for pure self-modifying code.

Listing 2. Pure self-modifying code definition, basic operations and assign-
ment

MOFFSMOV(labelname, addr) - move full accumulator to
memory
if (64) db 48h
db 0A3h ; mov [addr], acmltr
labelname: MOFFS OFFSET addr

DEFADDR(labelname, addr) - data placeholder instruction/-
effective no-operation
xchg acmltr, [labelname]
mov [labelname], acmltr
mov acmltr, [acmltr]
MOFFSMOV(labelname, addr)

DEFDATA32(labelname, data) - more efficient 32-bit place-
holder
labelname: mov SZW32 ptr [labelname + IMMOFFS], data

PURE INFINITELY SELF-MODIFYING CODE IS REALIZABLE AND TURING-COMPLETE 125

DATAOP(op, destptr)
- unary arithmetic operation
op SZW32 ptr [destptr]

DATAOP(op, destptr, data)
- assign data/binary arith-
metic operation
op SZW32 ptr [destptr],

data

OP64(op, destptr, sz)
DATAOP(op, destptr)
if (64) DATAOP(op,

destptr + sz)

OP64(op, destptr, sz, data)
DATAOP(op, destptr, data

)
if (64) DATAOP(op,

destptr + sz, data)

MOVEMODEOFFS(d, do, s, so) - assign relative offset

32-bit
mov SZW32 ptr [d + do],

OFFSET s + so

64-bit
mov SZW32 ptr [d + do],

($-d+do)-($-s+so)

Halt:
DOHALT()
mov [$], 0

Further operations are needed for the sake of Turing
completeness so next comparison is considered. Listing 3
gives a basic comparison example making use of typical
assembly language shortcuts which is further developed in
the appendix.

Listing 3. Pure self-modifying code comparison instruction

COMPARE(val, dataptr, datamaskptr, onlygt, preserve) -
handle >, 6= cases
sub [dataptr], val
if (!onlygt) neg [dataptr]
sbb [maskptr], 0
if (preserve)

if (!onlygt) neg [dataptr]
add [dataptr], val

fi

The next consideration is reuse of code namely through
control flow constructs as minimally a basic loop construct is
needed to emulate any Turing machine. Listing 4 continues
listing patterns which give a solution to control flow via
self-modifying code whereby novel usage of instruction data
for stack storage is realized.

Listing 4. Pure self-modifying code jump instruction

DEFSTACK()

32-bit

DEFDATA32(stptr, OFFSET
stptr + IMMOFFS)

64-bit
xchg acmltr, [stptr]
mov [stptr], acmltr
MOFFSMOV(stptr, stptr)
MOFFSMOV(svptr, stptr)

JUMP(addr)

32-bit

xchg gsp, [stptr +
IMMOFFS]

call addr

64-bit
xchg gsp, [stptr]
add [svptr], PTRSZ * 2 +

PFXSZ + OPSZ1
xchg gsp, [svptr]
call addr

JUMPTARGET(addr)

32-bit
addr: xchg gsp, [stptr +

IMMOFFS]
add [stptr + IMMOFFS],

PTRSZ
xchg acmltr, [stptr +

IMMOFFS]
mov [stptr + OPSZ2],

acmltr
xchg acmltr, [stptr +

IMMOFFS]

64-bit

addr: xchg gsp, [stptr]
sub [stptr], PFXSZ +

OPSZ1 + PTRSZ
xchg acmltr, [stptr]
mov [svptr], acmltr
xchg acmltr, [stptr]

Listing 5 details data transfer of batches of instructions as
its not only convenient but useful for certain types of scalable
solutions and in this pattern speed can be gained perhaps
even with extensions via the rep[z/nz] prefix.

Listing 5. Data transfer

TRANSFERDATA(source, sourceinit, dest, destinit, size)
DEFDATA(source, sourceinit)
xchg gsi, [sourceinit]
DEFDATA(dest, destinit)
xchg gdi, [destinit]
MOVSMACRO(size)
xchg gsi, [sourceinit]
sub [sourceinit], size
xchg gdi, [destinit]
sub [destinit], size

MOVSMACRO(size)

32-bit

size / 4 DUP movsd
if ((size mod 4) & 2)

movsw
if ((size mod 4) & 1)

movsb

64-bit
size / 8 DUP movsq
if ((size mod 8) & 4)

movsd
if ((size mod 8) & 2)

movsw
if ((size mod 8) & 1)

movsb

USEWORD(USEOP, source) USEWORDOP64(op, d, do,
s, so)

xchg acmltr, [source]
USEOP
xchg acmltr, [source]

USEWORD32(DATAOP(op, d,
acmltr32), s)

if (64) USEWORD32(DATAOP
(op, d + do, acmltr32
), s + so)

Finally Fig. 6 gives some ideas of other general operations
like multiplication by a constant and transformation from the
typical data storage input domain to the data stored as code
input domain. In fact the mapping from a normal binary data
domain into a code-only data domain is critical to meeting the
definition of pure and infinite in the context previously defined.

Listing 6. Further examples presented to reinforce and strengthen the concept

NLZ(value): Binary Number of Leading Zeros
DOSIGNEDMUL(dataptr, val) - pure self-modifying code
signed multiply by constant

shl SZW32 ptr [dataptr], NLZ(val)
if ((val = (val >> (NLZ(val) + 1))) != 0)

USEWORD32((mov [dataptr&mul& + IMMOFFS],
acmltr32), dataptr)

shl SZW32 ptr [dataptr], NLZ(val)
while ((val = (val >> (NLZ(val) + 1))) != 0)

USEWORD32((add [dataptr&mul& +
IMMOFFS], acmltr32), dataptr)

shl SZW32 ptr [dataptr], NLZ(val)
loop
dataptr&mul&:
add SZW32 ptr [dataptr], CNSTFRC32

fi

DEFZERO(labelname) - clearing/zeroing instruction
labelname: xor [labelname + IMMOFFS], 0

126 G. MORSE

code to data (not self-modifying code):
USEWORD((mov [dataloc], acmltr), instruction +
IMMOFFS)...

data to code:
TRANSFERDATA(codeblueprint, codedest, codesize)
USEWORD((mov [codedest + IMMOFFS], acmltr), dataloc)...

III. DISCUSSION

To implement a Universal Turing Machine with pure
self-modifying code requires the building blocks above and
the pseudo-code for it can be done with a transition table
which is encoded in a series of 5 DEFDATA statements as
shown in Fig. 7.

The input tape would be a series of DEFDATA statements
for each slot on the tape. The tape would assumed to have
an adequate amount of blank DEFDATA before and after it.
A double stack linked list structure could be used or even a
double-linked list structure with 2 DEFDATA or 3 DEFDATA
statements for each input respectively if such generality is
prefered as given in Fig. 1.

itape, ttape must be initialized through relocation either via
compilation (such as with preprocessor macros in assembly
or C boost library) or at runtime. Instruction pointer relative
address makes far less relocations in 64-bit code, however 32-
bit optimizations in the way the instruction encoding works
can significantly enhance the 32-bit versions.

Listing 7. Transition and input tape constants and definitions

TSZ EQU ((PFXSZ + IMMOFFS) * 2 + PFXSZ * 2 +
MOVSZ32 + OPSZ1 + PTRSZ) * 2 + (OPDBLARGSZ) * 3
DEFTRANSITION(Index, nextptrval, cursymval, newsymval,
directionval, newptrval)
DEFADDR(nextptr&Index&, nextptrval)
DEFDATA32(cursym&Index&, cursymval)
DEFDATA32(newsym&Index&, newsymval)
DEFDATA32(direction&Index&, directionval)
DEFADDR(newptr&Index&, newptrval)

DEFINPUT(Index, tapeval)
DEFDATA32(itape&Index&, tapeval)

32-bit optimization: DEFADDR → DEFDATA32
DEFTRANSITION → DEFTRANSITION32

TSZ32 EQU (OPDBLARGSZ) * 5

Thus the natural flow of a Universal Turing Machine is
outlined but the self-modifying code beyond having some
formal extra facilitation steps for initialization, finalization and
copying, is largely traditional as Fig. 2 shows. Fig. 8 thus gives
a full implementation to complete the informal proof.

Input Tape Pivot

Back pointer

Forward pointer

Forward From Pivot
Back pointer

Forward pointer

Reverse From Pivot
Back pointer

Forward pointer

Next Forward...

Next Reverse...

Fig. 1. Generalized Input Tape

Define Stack

Copy/fix up Input/Transition Tape Code

Compare Symbol

Update Input on Input Tape

Update Input Tape Pointer

Update Transition Tape Pointer

Check for Accept/Reject State

Transition Tape Code

Finalization Code

Input Tape Code

Fig. 2. General algorithm flow

PURE INFINITELY SELF-MODIFYING CODE IS REALIZABLE AND TURING-COMPLETE 127

Listing 8. An example implementation

DEFSTACK()
JUMP(begin)
JUMPTARGET(begin)
TRANSFERDATA(curitapeinit, OFFSET itape, curitapeptr

, OFFSET curitape, OPDBLARGSZ)
TRANSFERDATA(curttapeinit, OFFSET ttape, curttapeptr

, OFFSET curtape, TSZ)
MOVEMODEOFFS(curitape, OPSZ2, curinputval, IMMOFFS)
MOVEMODEOFFS(usesymval, OPSZ2, curtinputval, IMMOFFS

)
MOVEMODEOFFS(usenewsymval, OPSZ2, newinputval,

IMMOFFS)
MOVEMODEOFFS(usedirval, OPSZ2, inpdir, IMMOFFS)
DEFDATA32(curitape, 0)
DEFADDR(curitapebptr, 0)
DEFADDR(curitapefptr, 0)
DEFADDR(curttape, 0)
DEFDATA32(usesymval, 0)
DEFDATA32(usenewsymval, 0)
DEFDATA32(usedirval, 0)
DEFADDR(usettapeval, 0)
USEWORD((mov [curttapeinit], acmltr), curttape)
USEWORDOP64(mov, newttapeval + IMMOFFS, OPDBLARGSZ,

usettapeval, PTRSZ32)
USEWORDOP64(mov, itapebptr + IMMOFFS, OPDBLARGSZ,

curitapebptr, PTRSZ32)
USEWORDOP64(mov, itapefptr + IMMOFFS, OPDBLARGSZ,

curitapefptr, PTRSZ32)
DATAOP(mov, inputvalmask + IMMOFFS, 0)
USEWORD32((mov [inputupdate + REGIMMOFFS], acmltr32)

, curinputval)
DEFDATA(0, curtinputval)
curinputval:
COMPARE32(CNSTFRC32, curtinputval + IMMOFFS,

inputvalmask + IMMOFFS, false, false)
DATAOP(not, inputvalmask + IMMOFFS)
USEWORDOP64(mov, ttapevalmask + IMMOFFS, OPDBLARGSZ,

inputvalmask, IMMOFFS)
USEWORDOP64(mov, inpdirmask + IMMOFFS, OPDBLARGSZ,

inputvalmask, IMMOFFS)
newinputval: DATAOP(xor, inputupdate + REGIMMOFFS,

CNSTFRC32)
inputvalmask: DATAOP(and, inputupdate + REGIMMOFFS,

CNSTFRC32)
xchg acmltr, [curitapeinit]
inputupdate: DATAOP(xor, acmltr + IMMOFFS, CNSTFRC32

)
xchg acmltr, [curitapeinit]
if (64) USEWORD32((mov [inpdir + OPDBLARGSZ +

IMMOFFS], acmltr32), inpdir+IMMOFFS)
USEWORDOP64(mov, inpdircmb + IMMOFFS, OPDBLARGSZ,

inpdir + IMMOFFS, OPDBLARGSZ)
itapebptr: OP64(and, inpdircmb + IMMOFFS, OPDBLARGSZ

, CNSTFRC32)
OP64(not, inpdir + IMMOFFS, OPDBLARGSZ)
itapefptr: OP64(and, inpdir + IMMOFFS, OPDBLARGSZ,

CNSTFRC32)
inpdircmb: OP64(or, inpdir + IMMOFFS, OPDBLARGSZ,

CNSTFRC32)
USEWORDOP64(xor, inpdir + IMMOFS, OPDBLARGSZ,

curitapeinit, PTRSZ32)
inpdirmask: OP64(and, inpdir + IMMOFFS, OPDBLARGSZ,

CNSTFRC32)
inpdir: OP64(xor, curitapeinit, PTRSZ32, CNSTFRC32)
USEWORDOP64(mov, ttapeupdate, PTRSZ32, curttapeinit,

PTRSZ32)
newttapeval: OP64(xor, ttapeupdate + IMMOFFS,

OPDBLARGSZ, CNSTFRC32)
ttapevalmask: OP64(and, ttapeupdate + IMMOFFS,

OPDBLARGSZ, CNSTFRC32)
ttapeupdate: OP64(xor, curttapeinit + IMMOFFS,

OPDBLARGSZ, CNSTFRC32)
DATAOP(mov, ttapefail + IMMOFFS, 0)
DEFDATA(itapeptr, OFFSET itape)
USEWORD(COMPARE(acmltr, curttapeinit, ttapefail +

IMMOFFS, false, true), itapeptr)
DATAOP(not, ttapefail + IMMOFFS)
DATAOP(mov, andfail + IMMOFFS, ($ - fail) - ($ -

begin))
andfail: DATAOP(and, ttapefail + IMMOFFS, CNSTFRC32)
ttapefail: DATAOP(xor, exitcall + OPSZ1, CNSTFRC32)
JUMP(begin, exitcall)
JUMPTARGET(fail)
ttape:
DEFTRANSITION(...)
DATAOP(mov, exitcall + OPSZ1, ($ - fail) - ($ -

begin))
USEWORD((mov [curitapeinit], acmltr), itapeptr)
DEFDATA(ttapeptrinit, OFFSET ttape)
USEWORD((mov [curttapeinit], acmltr), ttapeptrinit)
DOHALT()
itape:
DEFINPUT(...)

The machine executes every single instruction at least once,
remains in an able to execute state after its halting, and it
clobbers no registers with an exception of having to make
use of the accumulator register which is essential for the 64-

bit code. This can be preserved with the prologue/epilogue
sequence of Listing 9.

Listing 9. Saving the accumulator for data addressing pattern

mov [acmltrsave], acmltr;...
xchg acmltr, [acmltrptrsave]
mov [acmltrptrsave], acmltr
xchg acmltr, [acmltrsave]
DEFDATA(acmltrsave, 0)
DEFDATA(acmltrptrsave, OFFSET acmltrsave)

Some 32-bit only optimizations are available, if the
DEFDATA is changed to DEFDATA32 in all places including
the transition tape code.

Many other building blocks could be constructed including
data transfer for variable amounts of data using the repeating
prefix “rep” and the counter register for example or arbitrary
multiplication using shift left.

Based on the result here, its complexity and difficulty
of implementation on current processor architectures, we
introduce a concept termed a code blueprint, whereby the
skeleton of the code only specifies how the data flows through
the system, without concerning the specific instructions or
arguments. There is a clear motivation for a new processor
design and computer architecture which has RAM memory
tightly bound to the NAND-gates which are interconnected in
a complex tangled web but the RAM allows the NAND-gates
to take on any functional units flowing the data in any manner
concievable while the gates themselves allow that data to be
manipulated or left intact. The NAND-gates connect back to
the memory and allow the code blueprint to change, so that
arithmetic units could be specified anywhere on this type of
memory/processor integrated environment. This allows the
von Neumann architecture to be properly and fully realized
where current limits in efficiency of transistor and memory
technology have not allowed for a full utilization yet. It leads
to a higher order programming language which no longer
concerns itself with byte and word sizes and looks at factoring
in terms of data flows rather than strictly control flow which
functions and loops largely define as reusable chunks currently.

A code blueprint is thus merely a data flow layout and
can be viewed as a data flow graph. The actual operations
performed on the data would be part of the data flowing
through the system. This is a topic for exploration in future
research.

IV. PERFORMANCE

Several performance issues come up due to the lack of
optimization for this type of code on modern processors. The
way the caches optimize performance largely assumes lack
of self-modifying code. The performance time for several
universal turing machines are presented over a simple addition
Turing machine and 100000 repeated operations in Table 4.

It is thus from 30% to 100% slower than the mov-only
equivalent, which are all much slower than just general
assembly or C implementations. The algorithm however

128 G. MORSE

TABLE IV
PERFORMANCE PROFILING RESULTS

Type Time for 100,000
executions

x86 self-modifying 1.53 seconds
x86 self-modifying using x64 technique 1.73 seconds
x64 self-modifying 2.51 seconds
x86 non-self modifying C equivalent 0.55 seconds
x64 non-self modifying C equivalent 0.54 seconds
x86 non-self modifying assembly equivalent 0.45 seconds
x64 non-self modifying assembly equivalent 0.46 seconds
x86 non-self modifying
mov-only assembly equivalent 0.75 seconds
x64 non-self modifying
mov-only assembly equivalent 0.80 seconds

could be optimized even further and is representing a clear
proof-of-concept and rough estimate of performance as
opposed to an aggressively optimized version which would
make it more competitive.

The slowness especially seen on native x64 versions
where significant speed increase would be expected as
opposed to minor is due to a variety of reasons including
the implementation details of the processor: the define data
instructions are expensive taking 4 instructions and many
more bytes, there are more instructions to execute where
64-bit operands must be operated on via 2 32-bit operations,
the code could spill outside the cache pages of the processor,
uneven alignment boundaries could be more common, more
modifications to the code including more that actually cause
temporaral illegal code which breaks certain look-ahead
and prediction capabilities and lastly the 32-bit instructions
operate slowly in 64-bit mode. The modern processor pipeline
optimizations are very complex and a full discussion of self-
modifying code is worthy but outside the scope. Needless
to say, from an obfuscation perspective, there are still many
places where this loss in performance could be acceptable.
Optimized 32-bit code is not far from the mov-only UTM.

Whereas there are generally more predictable and lim-
ited options in a mov-only environment, pure infinitely self-
modifying code provides a whole variety of different optimiza-
tions and options for doing the same operations and is much
more difficult to disassemble or reverse engineer. A tool to
undo the obfuscation would be very difficult if optimization
and option variety are used in the process especially if the
analysis were based on clock cycles or input dependent.

V. CONCLUSION

Code obfuscation using the techniques outlined would
be significantly harder to undo while the movfuscator
project now has parallel demovfuscator deobfuscation tools
developed, this technique allows one to use several methods
to do the same task, along with maintaining symbols
and pointer offsets to make the code specific to each
situation as the interlinks between the instructions make the
possibility for arbitrary or unique optimizations and strategies.

The code obfuscation techniques will prevent state of the
art tools such as IDA Pro and its accompanying Hex-Rays
Decompiler from having anything but compounded false
assumptions and confusion while trying to analyze and display
such code. Manual review of such code is so laborious that
automated refactoring tools would be necessary to understand
the code unless of course a known algorithm is implemented
which can have its parts extracted using black box or grey box
techniques as this type of code obfuscation is only effective
against white box attacks. Attempts to deploy this via an
emulator in the CHES 2017 Capture the Flag Challenge,
WhibOx seeking to hide an AES key were thus uneffective
as software tracing and differential computational and tracing
analysis make this obfuscation a mere ineffective wrapper
layer without directly dealing with these issues and research
on improvement in these scenarios is ongoing.

More interesting is the future of self-modifying code in
the context of a processor and memory architecture whose
pipeline is optimized for it. The von Neumann architecture
could be realized in its proper generality and more efficient,
more parallel, more specialized computing could be done on
a very generalized hardware.

APPENDIX

Example compiler assembly emitter algorithm not com-
pletely done with previous macros for generality to allow the
reader to see and go through that process as an exercise is
hereby provided. There are 3 examples, namely for general
forms of 32-bit condition branching is contained in Listing
10, long multiplication (not most efficient algorithm for 32 or
64-bit while Karatsuba combined with table look up among
others are known) is found in Listing 11 and long division
where complexity of general implementation can be gleaned is
provided in Listing 12. Of course multiplication by a constant
algorithm previously is far more efficient when possible, and
division by a constant could be done using precomputed
multiplication magic numbers for efficiency though algorith-
mic optimizations in terms of processor implementation and
compiler optimizations are largely beyond the scope of this
paper but something to consider when making real world im-
plementations. Floating point emulation units can be compiled
using the above techniques to handle all FPU arithmetic and
has been done in the assembly emitter of an actual compiler
LCC but these details are not enumerated here for sake of
brevity though the project will be available as open source
in the future. The complexity of debugging, troubleshooting,
writing and maintaining such code can thus be considered
and appreciated, and the necessity of using a compiler or
obfuscation tool is made apparent.

Listing 10. 32-bit Conditional branching

DoBranch(x, y, not, gt, sign) - <, <=, =, !=, >, >=

mov [lbl2+OPSZ1], 0
mov [lbl1+IMMOFFS], 0
if (sign) xor [x], 0x80000000
xchg [x], acmltr32
if (sign) xor [y], 0x80000000
sub [y], acmltr32
if (!gt) neg [y]

PURE INFINITELY SELF-MODIFYING CODE IS REALIZABLE AND TURING-COMPLETE 129

sbb [lbl1+IMMOFFS], 0
if (!gt) neg [y]
add [y], acmltr32
if (sign) xor [y], 0x80000000
xchg [x], acmltr32
if (sign) xor [x], 0x80000000
if (!not) not [lbl1+IMMOFFS]
mov [lbl0+IMMOFFS], x-lbl2-OPSZ1-PTRSZ
lbl0: and [lbl1+IMMOFFS], 0x80000000
lbl1: xor [lbl2+OPSZ1], 0x80000000
xchg [stptr + IMMOFFS], gsp
lbl2: call [lbl2+OPSZ1+PTRSZ]

Listing 11. 32-bit Long Multiplication

DoMult(x, y, result) - 32-bit * 32-bit -> 32-bit needs no
sign considerations
mov [lbl10+IMMOFFS], 0
xchg [x], acmltr
mov [lbl7+IMMOFFS], acmltr
xchg [x], acmltr
xchg [y], acmltr
mov [lbl8+IMMOFFS], acmltr
xchg [y], acmltr
xchg [stptr+IMMOFFS], gsp
call [lbl0]
JUMPTARGET(lbl0)
mov [lbl2+IMMOFFS], 0
neg [lbl8+IMMOFFS]
sbb [lbl2+IMMOFFS], 0
neg [lbl8+IMMOFFS]
not [lbl2+IMMOFFS]
mov [lbl1], ($-lbl9)-($-lbl3-OPSZ1-PTRSZ)
lbl1: and [lbl2+IMMOFFS], 0x80000000
lbl2: xor [lbl3+OPSZ1], 0x80000000
xchg [stptr+IMMOFFS], gsp
lbl3: call [lbl3+OPSZ1+PTRSZ]
JUMPTARGET()
mov [lbl4+IMMOFFS], 1
xchg [lbl8+IMMOFFS], acmltr
and [lbl4+IMMOFFS], acmltr
xchg [lbl8+IMMOFFS], acmltr
xchg [lbl7+IMMOFFS], acmltr
mov [lbl6+IMMOFFS], acmltr
xchg [lbl7+IMMOFFS], acmltr
mov [lbl5+IMMOFFS], 0
lbl4: mov [lbl4+IMMOFFS], 0x80000000
neg [lbl4+IMMOFFS]
sbb [lbl5+IMMOFFS], 0
lbl5: and [lbl6+IMMOFFS], 0x80000000
lbl6: add [lbl10+IMMOFFS], 0x80000000
lbl7: mov [lbl7+IMMOFFS], 0x80000000
shl [lbl7+IMMOFFS], 1
lbl8: mov [lbl8+IMMOFFS], 0x80000000
shr [lbl8+IMMOFFS], 1
xchg [stptr+IMMOFFS], gsp
call [lbl0]
JUMPTARGET()
mov [lbl3+OPSZ1], 0
lbl10: mov [result], 0x80000000

Listing 12. 32-bit Long Division

DoDivision(x, y, result, mod, sign)
if (sign)

mov [lbl0+IMMOFFS], 0x80000000
xchg [x], acmltr
and [lbl0+IMMOFFS], acmltr
xchg [x], acmltr
if (!mod)

mov [lbl1+IMMOFFS], 0x80000000
xchg [y], acmltr
and [lbl1+IMMOFFS], acmltr
xchg [y], acmltr
lbl0: xor [lbl1+IMMOFFS], 0x80000000

shr [(mod ? lbl0 : lbl1)+IMMOFFS], 31
neg [(mod ? lbl0 : lbl1)+IMMOFFS]
(mod ? lbl0 : lbl1): mov [lbl22+IMMOFFS], 0

x80000000
xchg [x], acmltr
mov [lbl20+IMMOFFS], acmltr
mov [lbl3+IMMOFFS], acmltr
shl [lbl3+IMMOFFS], 1
xchg [x], acmltr
mov [lbl2+IMMOFFS], 0
sub [lbl20+IMMOFFS], 0x80000000
sbb [lbl2+IMMOFFS], 0
add [lbl20+IMMOFFS], 0x80000000
not [lbl2+IMMOFFS]
lbl2: and [lbl3+IMMOFFS], 0x80000000
lbl3: sub [lbl20+IMMOFFS], 0x80000000
xchg [y], acmltr
mov [lbl11+IMMOFFS], acmltr
mov [lbl5+IMMOFFS], acmltr
shl [lbl5+IMMOFFS], 1
xchg [y], acmltr

mov [lbl4+IMMOFFS], 0
sub [lbl13+IMMOFFS], 0x80000000
sbb [lbl4+IMMOFFS], 0
add [lbl13+IMMOFFS], 0x80000000
not [lbl4+IMMOFFS]
lbl4: and [lbl5+IMMOFFS], 0x80000000
lbl5: sub [lbl13+IMMOFFS], 0x80000000
xchg [lbl13+IMMOFFS], acmltr
mov [lbl14+IMMOFFS], acmltr
xchg [lbl13+IMMOFFS], acmltr

else
xchg [x], acmltr
mov [lbl20+IMMOFFS], acmltr
xchg [x], acmltr
xchg [y], acmltr
mov [lbl13+IMMOFFS], acmltr
mov [lbl14+IMMOFFS], acmltr
xchg [y], acmltr

mov [lbl21+IMMOFFS], 0
mov [lbl6+IMMOFSS], 32
lbl6: mov [lbl6+IMMOFFS], 0x80000000
xchg [stptr+IMMOFFS], gsp
call [lbl7]
JUMPTARGET(lbl7)
mov [lbl9+IMMOFFS], 0
neg [lbl6+IMMOFFS]
sbb [lbl9+IMMOFFS], 0
neg [lbl6+IMMOFFS]
not [lbl9+IMMOFFS]
mov [lbl8+IMMOFFS], ($-lbl19)-($-lbl10-OPSZ1-PTRSZ)
lbl8: and [lbl9+IMMOFFS], 0x80000000
lbl9: xor [lbl10+OPSZ1], 0x80000000
xchg [stptr+IMMOFFS], gsp
lbl10: call [lbl10+OPSZ1+PTRSZ]
JUMPTARGET(lbl10)
xchg [lbl20+IMMOFFS], acmltr
mov [lbl11+IMMOFFS], acmltr
mov [lbl12+IMMOFFS], acmltr
xchg [lbl20+IMMOFFS], acmltr
shl [lbl20+IMMOFFS], 1
shl [lbl21+IMMOFFS], 1
mov [lbl18+IMMOFFS], 1
lbl11: sub [lbl20+IMMOFFS], 0x80000000
adc [lbl21+IMMOFFS], 0
lbl12: add [lbl20+IMMOFFS], 0x80000000
lbl13: mov [lbl17+IMMOFFS], 0x80000000
mov [lbl15+IMMOFFS], 0
lbl14: sub [lbl21+IMMOFFS], 0x80000000
sbb [lbl15+IMMOFFS], 0
lbl15: and [lbl17+IMMOFFS], 0x80000000
xchg [lbl15+IMMOFFS], acmltr
mov [lbl16+IMMOFFS], acmltr
xchg [lbl15+IMMOFFS], acmltr
not [lbl16+IMMOFFS]
lbl16: and [lbl18+IMMOFFS], 0x80000000
lbl17: add [lbl21+IMMOFFS], 0x80000000
lbl18: add [lbl20+IMMOFFS], 0x80000000
dec [lbl6+IMMOFFS]
xchg [stptr+IMMOFFS], gsp
call [lbl7]
JUMPTARGET(lbl19)
mov [lbl10+IMMOFFS], 0
if (mod)

lbl20: mov [lbl20+IMMOFFS], 0x80000000
lbl21: mov [result], 0x80000000

else
lbl20: mov [result], 0x80000000
lbl21: mov [lbl21+IMMOFFS], 0x80000000

if (sign)
xchg [result], acmltr
mov [lbl23+IMMOFFS], acmltr
shl [lbl23+IMMOFFS], 1
xchg [result], acmltr
lbl22: and [lbl23+IMMOFFS], 0x80000000
lbl23: sub [result], 0x80000000

ACKNOWLEDGMENT

The author would like to thank Norbert Tihanyi for inter-
esting presentations which lead to the idea explored in this
paper.

REFERENCES

[1] Dolan, S. mov is Turing-complete. Computer Laboratory, University of
Cambridge. Technical report (2013)

[2] The M/O/Vfuscator (2015). https://github.com/xoreaxeaxeax/movfuscator
[3] Anckaert B., Madou M., De Bosschere K. (2007) A Model for Self-

Modifying Code. In: Camenisch J.L., Collberg C.S., Johnson N.F., Sallee
P. (eds) Information Hiding. IH 2006. Lecture Notes in Computer
Science, vol 4437. Springer, Berlin, Heidelberg

[4] Hongxu Cai , Zhong Shao , Alexander Vaynberg, Certified self-
modifying code, ACM SIGPLAN Notices, v.42 n.6, June 2007

