Ky
J Manuscript received September 29, 2017; revised March, 2018.

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64, NO. 2, PP. 147-150

DOI: 10.24425/119362

Finding Differential Paths in ARX Ciphers
through Nested Monte-Carlo Search

Ashutosh Dhar Dwivedi, Pawet Morawiecki, and Sebastian Wjtowicz

Abstract—We propose the adaptation of Nested Monte-Carlo
Search algorithm for finding differential trails in the class
of ARX ciphers. The practical application of the algorithm
is demonstrated on round-reduced variants of block ciphers
from the SPECK family. More specifically, we report the best
differential trails,up to 9 rounds, for SPECK32.

Keywords —ARX ciphers, SPECK Cipher, Nested Monte-Carlo
Search, Differential Cryptanalysis

I. INTRODUCTION

VER the last few years the ARX ciphers have gained

more attention and interest both in industry and
academia. ARX stands for Addition/Rotation/XOR and it
refers to a class of algorithms, which use only three basic
operations: modular addition, bitwise rotation and eXclusive-
OR. There are a few reasons why ARX designs are getting
momentum. First, a lack of look-up tables, associated with
S-box based designs, increases the resilience against side-
channel attacks. Second, ARX algorithms exhibit excellent
performance, especially for software platforms. Last but not
least, a compact description of such algorithms is particularly
appealing for all the environments where memory constraints
are really harsh.

In our analysis we focus on a recent design called SPECK
[1]. It is a family of block ciphers proposed by researchers
from the National Security Agency (NSA) of the USA in June
2013. SPECK aspires to be a flexible, secure, and analysable
lightweight block cipher. Its design bears strong similarity
to Threefish — the block cipher used in the hash function
Skein [2]. SPECK has been designed to provide excellent
performance both in software and hardware but have been
optimized for performance on micro-controllers. SPECK is a
pure ARX cipher with a Feistel-like structure in which both
branches are modified at every round. There are five variants
of the algorithm with the block size ranges from 32 to 128
bits.

Undoubtedly, ARX designs such as SPECK have many ad-
vantages, yet their rigorous cryptanalysis is more difficult. For
S-box based algorithms (such as AES), it is relatively easy to
evaluate differential properties of the underlying S-box and the
whole algorithm. However, in ARX designs the only source of
non-linearity is modular addition and its complete differential
properties (differential distribution tables) are infeasible to
calculate, even for 32-bit word size. Therefore, we need some

Project was financed by Polish National Science Centre, project DEC-
2013/09/D/ST6/03918.

Authors are with the Institute of Computer Science, Polish
Academy of Sciences, Poland (e-mail: ashudhar7@gmail.com,
pawel.morawiecki @gmail.com, sebastian.woojtowicz@gmail.com).

clever heuristics to circumvent this limitation. Recently, this
challenge has been addressed in [3], [4].

In our paper we propose a framework for finding good
differential paths in ARX ciphers. Finding good (with rela-
tively high probability) differential paths is a kind of problem,
where we face a huge state space and there is no clear and
obvious way how we should make a next ‘step’. Certainly, we
find this kind of a problem in many different areas and we
were inspired how it is solved in single-player games such as
Sudoku, SameGame, and Morpion solitaire. It turns out that
the heuristics called Nested Monte-Carlo Search works very
well for these games [5]. It is a randomized heuristic, where
a search is organized hierarchically. Our point is that we can
treat a search for good differential paths also as a single-player
game and we argue that this approach could be a base for more
sophisticated heuristics.

II. DESCRIPTION OF SPECK

SPECK is a family of lightweight block ciphers. The
designers specify five variants SPECK32, SPECK4S,
SPECK64, SPECK96 and SPECK128, where a number in the
name denotes a block size in bits. SPECK is the Fiestel-like
structure in which each block is divided in two branches and
both branches are modified at every round.

Round function: For each round, SPECK encryption uses 3
operations on n-bit words:

¢ bitwise XOR, &,

o addition modulo 2", H

« left and right circular shifts by ro and 7 bits, respectively.

Let X, _1,;, and X,._1 g denote the left and right n-bit input
words to the r-th round and let k, denotes the n-bit round key
applied in the r-th round. Then, X, ;, and X,. r denotes output
words from round r, which are computed as follows:

Xrrp=((Xpo1>>m)BX, 1) Dk, (1)

Xrr=((Xro1,r K r2) ® X, 1) 2

Every instance of the SPECK family supports several key
sizes and a total number of rounds depends on the key size.
The value of rotation constant r; and ro are specified as:
ri = 7, ro = 2 for SPECK32 and 7y = 8, ro = 3 for all
other variants. A summary of parameters (block size, key size,
rounds) of all variants are mentioned in the below table.

III. DIFFERENTIAL CRYPTANALYSIS IN ARX CIPHERS

Differential cryptanalysis is one of the most powerful tech-
nique to analyse the security of symmetric-key cryptographic

148
Xr1,L Xr-1, R
+ je
v
<< Ip
1)
l i +
Xr, L Xr, R
Fig. 1. The round function of SPECK
TABLE I
SPECK PARAMETERS
Variant | Block Size (2n) | Word Size (n) | Key Size | Rounds
SPECK32 32 16 64 22
SPECK48 48 24 72 22
96 23
SPECK64 64 32 96 26
144 29
SPECK96 96 48 96 28
144 29
SPECK128 128 64 128 32
192 33
256 34

primitives. ARX cipher designers have previously attempted to
argue the security against differential cryptanalysis by using
various techniques to search for differential characteristics of
high-probability and explaining that such characteristics could
not be found for sufficient number of rounds .

In case of AES-like algorithms, where we typically use 8-
or 4-bit S-box, differential properties can be easily computed
by creating the difference distribution table (DDT) for the S-
box. But ARX algorithms use modular addition as a source
of non-linearity rather than S-boxes, and typical word size
in ARX ciphers is 32- or 64-bit. Constructing the DDT for
n-bit words modular addition would require 23" x 4 bytes of
memory and would clearly be infeasible for a word size of 32-
bit. Therefore, we need some clever heuristics to circumvent
this limitation.

Calculating Differential Probabilities: In [6], Moriai and
Lipmaa studied the differential properties of addition. Let
xdpt(a,8 —) be the XOR-differential probability of
addition modulo 2™, with input differences o and /3 and output
difference . Moriai and Lipmaa proved that the differential
(o, B — =) is valid if and only if:

egla< 1,y < DA (a®dBDy®(B<K1))=0 (3)

where
eq(z,y,2) == (~z @ y) A (- @ 2) “4)

A. D. DWIVEDI, P. MORAWIECKI, S. WOJTOWICZ

For every valid differential (o, 5 — <), we define the
weight w(a, 8 — 7y) of the differential as follows:

w(a, B —) = —logy(zdp™ (a, B — 7)))

The weight of a valid differential can then be calculated as:

w(a, B —) = h*(=eq(a, B — 7)), (6)

where h*(x) denotes the number of non-zero bits in z, not
counting z[n — 1].

A differential characteristic defines not only the input and
output differences, but also the internal differences after every
round of the iterated cipher. In our analysis, we follow a
common assumption that the probability of a valid differential
characteristic is equal to the multiplication of the probabilities
of each addition operation. The XOR operation and bit rotation
are linear in GF(2), therefore for these two operations for every
input difference there is only one valid output difference.

In the paper we always refer to the XOR differences but
our analysis could be easily extended to differences defined
as the addition operation.

IV. NESTED MONTE CARLO SEARCH

The Monte Carlo method — the heuristic based on random
sampling — dates back to the 1940s. In 2008, Remi Coulom
proposed what is now known as Monte Carlo Tree Search
(MCTS), that is the application of the Monte Carlo method
to game-tree search. The algorithm is particularly useful for
games where it is hard to formulate an evaluation function,
such as the game of Go. A very recent success of AlphaGo is
partly due to the efficient MCTS algorithm (combined with a
deep neural network) [7]. For single-player games, a variant
called the Nested Monte-Carlo Search has been proposed [5].

Before we give a more formal description of Nested Monte-
Carlo Search, let us explain this algorithm with a simple
example. Our task is to find (possibly) shortest way from one
city to another. We represent all possible paths as a tree, where
aroot is our starting point and leaves are ending points reached
by different paths. Each edge between intermediate nodes is
associated with a number, which is simply a distance between
two nodes. Two lists CurrentPath and BestPath represent
the random path currently under investigation and the best
available path from previous searches, respectively. The last
element in both list shows a total distance travelled. Initially
both the lists are empty.

Current Path: {}

Best Path: {}

Fig. 2.
nodes)

Different paths from the root (base node) to the destination (leaf

FINDING DIFFERENTIAL PATHS IN ARX CIPHERS THROUGH NESTED MONTE-CARLO SEARCH 149

Nested Monte-Carlo Search uses random playouts. Let us
take random moves from the base node to the leaf node
and save the path in Current Path list. Our random path is
{a,b,d, i} which has a distance score 18. Since there has not
been a better path (BestPath is empty), then we save the
current path and its distance as BestPath, as shown in Figure
3.

Fig. 3.

Current Path: {a,b,d,i, 18}

Best Path:

3N

Random path from the base node to the leaf node.

{a,b,d,i 18}

Next, we go one level down in BestPath and start a
random walk from the new node. In our example, starting
from the node b, we randomly find a new path {b,e, k}. The
score for the new path (including the distance above b) is 10,
which is better than the previous best path score. So we update
BestPath by CurrentPath {a,b, e, k} and update the score
also. (See Figure 4.)

o}
Best Path:

Fig. 4. A random path from the b node to the leaf node.

Current Path: {ab,ek 10}

{a,b,e k 10}

Then, we again go one step down in BestPath and repeat
the process. This time we play a random move from e and
find that new path is {e,j}. (See Figure 5.) The score for
CurrentPath is 15, which is not better than the previous
best path score. Thus we do not update BestPath.

a
5
b

Fig. 5.

Current Path: {a,b,ej 15}

Best Path: {a,b,e k 10}

Random path from node e to leaf node.

Once we reach the leaf node we repeat the whole process
again from the base node. Yet this time Bestpath would not
be empty, as there would be some result from the previous
search.

In this kind of problems like in our example, we often
face the exploration vs. exploitation dilemma when searching
for a new path. In Nested Monte Carlo Search by letting
investigate a completely new paths (starting randomly from
the base node), the algorithm ‘cares’ about exploration. On
the other hand, by investigating BestPath on the subsequent
levels of the tree, we exploit BestPath and hope to improve
it.

Formal description of Nested Monte Carlo Search

To formally describe the NMCS algorithm, let us first
define two functions, which are main building blocks of the
algorithm. The first function RandomPath(node_position)
is the function, which for a given node walks a random path
in the search tree until it reaches the leaf node. The function
RandomPath returns a list of nodes (from the base node to
the leaf) and the cost corresponding to the path.

Algorithm 1 A basic function to generate a random path
1: function RANDOMPATH(node_position)
2 while node_position # leaf do
3: go randomly to the next node

4: end while

5

6

: return path, cost
- end function

The second function Nested(node_position) is a recursive
function, which calls itself on every level of the tree search
until it reaches the leaf node. The pseudo-code of the function
is given in Algorithm 2. In the given pseudo-code we use two
global variables, which keep a list of nodes in the best path
(best_path) and its corresponding cost (best_cost). Initially,
best_path is empty and best_cost is initialized with some
big value. (Here we assume that a lower cost means better
solution.)

Algorithm 2 The recursive function Nested

function NESTED(node_position)
while node_position # leaf do

path, cost = RandomPath(node_position)
if (cost < best_cost) then

best_cost = cost

best_path = path
end if

update node_position
by going a level below in best_path

if node_position # leaf then
Nested (node_position)
end if
end while

end function

150

The Nested function can be called iteratively in a loop until
we meet our criterion. The criterion could be, for example, a
number of iterations, time limit or the maximum cost of the
best path. The Nested Monte Carlo Search could be also easily
run in parallel. Either with completely independent instances
or with a small overhead to communicate best solutions
between instances.

Algorithm 3 Iterative calls to the function Nested

1: best-score = 9999999, node_position = base node
2: while ¢ < number_of_iterations do

3: Nested (node_position)
4
5

i=1i+1
: end while

V. FINDING DIFFERENTIAL PATHS THROUGH NESTED
MONTE-CARLO SEARCH

Finding differential paths in cryptographic algorithms could
be seen as a single-player game. We start from some input
difference and at each round of a cipher a decision is to be
taken. The decision here means what input-output transition to
choose through the non-linear part of the round. Specifically,
in ARX primitives, it is a transition through the modular
addition — a source of non-linearity in these algorithms.
Typically, for given input differences there are many possi-
ble output differences. (Exact formulas which transitions are
valid were given in the subsection ‘Calculating Differential
Probabilities’.) Each transition through the modular addition
is probabilistic. Transition with a very low probability has
a very high cost and vice-versa. The total cost of a path
is calculated by multiplying probabilities associated with all
transitions through modular addition. The aim of the game is
to find a differential path for a given number of rounds with
possibly highest probability.

Results for SPECK32: We adapted the Nested Monte-Carlo
Search algorithm for finding differential trails in SPECK. We
particularly focus on the variant with 32-bit state, namely
SPECK32. For the 32-bit state of the cipher, it only makes
sense to analyse the differential paths with probability higher
than 2732, It is because a path with lower probability would
not lead to any meaningful attack, which would be faster than
exhaustive search in the 32-bit state. The best path we found
for SPECK32 covers 9 rounds (out of 22) with probability
2731 It matches the state-of-the-art results reported in [3],
yet within simpler framework. In Table II we show a full 9-
round differential path. Left and right part of the state are
denoted by A, and Apg, respectively. Differences are encoded
as hexadecimal numbers. The last column shows weights for
each round. (Probability for a given weight is 2v¢?9ht)

A. D. DWIVEDI, P. MORAWIECKI, S. WOJTOWICZ

TABLE 11
9-ROUND DIFFERENTIAL TRAILS FOR SPECK32

Round | Ajp Ar | logyp
0 A60 | 4205 -0
1 211 A04 -5
2 2800 10 -4
3 40 0 -2
4 8000 | 8000 -0
5 8100 | 8102 -1
6 8000 | 840A -2
7 850A | 9520 -4
8 802A | D4AS -6
9 A8 520B -7
Erpr -31

VI. CONCLUSION AND FUTURE WORK

By applying Nested Monte-Carlo Search on SPECK32 we
found the same result as the one obtained by Biryukov and
Velichkov in [3]. This makes our approach promising as it has
potential to provide state-of-the-art results but within a simpler
framework. To apply the method to ciphers with a bigger state,
we need to enhance a random decision process and reduce the
search space by some other heuristics. This constitutes our
next research goal.

REFERENCES

[1] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, “The SIMON and SPECK families of lightweight block
ciphers,” IACR Cryptology ePrint Archive, vol. 2013, p. 404, 2013.

[2] N. Ferguson, B. S. S. Lucks, D. Whiting, M. Bellare, T. Kohno, J. Callas,
and J. Walker., “The Skein Hash Function Family,” submission to the
NIST SHA-3 Competition (Round 2), 2009.

[3] A. Biryukov and V. Velichkov, “Automatic search for differential trails
in ARX ciphers,” in Topics in Cryptology - CT-RSA 2014 - The Cryptog-
rapher’s Track at the RSA Conference 2014, San Francisco, CA, USA,
February 25-28, 2014. Proceedings, 2014, pp. 227-250.

[4] A. Biryukov, V. Velichkov, and Y. L. Corre, “Automatic search for
the best trails in ARX: application to block cipher speck,” in Fast
Software Encryption - 23rd International Conference, FSE 2016, Bochum,
Germany, March 20-23, 2016, Revised Selected Papers, 2016, pp. 289—
310.

[S] T. Cazenave, “Nested monte-carlo search,” in IJCAI 2009, Proceedings
of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, 2009, pp. 456—461.

[6] M. Matsui, Ed., Fast Software Encryption, 8th International Workshop,
FSE 2001 Yokohama, Japan, April 2-4, 2001, Revised Papers, ser.
Lecture Notes in Computer Science, vol. 2355. Springer, 2002.
[Online]. Available: https://doi.org/10.1007/3-540-45473-X

[7] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484-489, 2016.

