
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64, NO. 2, PP. 167–171
Manuscript received January 21, 2018; revised March, 2018. DOI: 10.24425/119365

Scalable Method of Searching for Full-period
Nonlinear Feedback Shift Registers with GPGPU.

New List of Maximum Period NLFSRs.
Paweł Augustynowicz and Krzysztof Kanciak

Abstract—This paper addresses the problem of efficient search-
ing for Nonlinear Feedback Shift Registers (NLFSRs) with a
guaranteed full period. The maximum possible period for an n-
bit NLFSR is 2n−1 (an all-zero state is omitted). A multi-stages
hybrid algorithm which utilizes Graphics Processor Units (GPU)
power was developed for processing data-parallel throughput
computation.

Usage of the abovementioned algorithm allows giving an
extended list of n-bit NLFSR with maximum period for 7
cryptographically applicable types of feedback functions.

Keywords—NLFSR, GPGPU, CUDA, Nonlinear Feedback Shift
Registers, de Bruijn sequences

I. INTRODUCTION

FEEDBACK shift registers (FSR) are used to generate
binary sequences which can be applied in cryptographic

systems. The first scientific studies concerning binary se-
quences started with the book of S.W. Golomb []. Especially
stream ciphers usually use FSRs to construct invertible map-
pings to prevent reduction of the entropy of the internal state
of a cipher.

The strongly desirable property is a long period of FSR.
The period of a mapping is the length of the longest cycle in
its state transition graph. For cryptographic applications, espe-
cially stream ciphers and pseudo-random numbers generators
(PRNG), it is needed to prevent FSR based mapping sequence
of generated states to be trapped in short cycle.

FSRs most important advantages are high speed and
low power consumption. They are important primitive in
lightweight cryptography [1], [2], [3]. These are crucial factors
for hardware cryptographic systems especially for growing
market of Internet of Things (IoT) use cases. Stream ciphers
built on FSRs supports very high data rates, throughput and
remains power efficient. Furthermore, there are no direct or
efficient cryptoanalitic methods to easily break stream ciphers
based on proper application of FSRs.

A state of a binary FSR is a vector of values of its state
variables (x0, x1, . . . , xn−1). At every clock cycle, the next
state of an FSR is determined from its current state by
simultaneously updating the value of each stage i to the value
of fi. The period of an FSR is the length of the longest
cyclic output sequence it produces. The maximum period is
reached when every possible state of FSR appears exactly

P. Augustynowicz and K. Kanciak are with the Faculty of Cybernetics, Mil-
itary University of Technology, Warsaw, Poland (email: {krzysztof.kanciak,
pawel.augustynowicz}@wat.edu.pl).

once. Otherwise, FSR has two or more separable cycles
which period is shorter than maximal.

Definition 1: Formally Binary Feedback Shift Register
of order n is a mapping Fn2 → Fn2 of the form
(x0, x1, ..., xn−1)→ (x1, x2, ..., xn−1, f(x0, x1, ..., xn−1)),

• where f is a boolean function of n variables - it is called
feedback function:

– FSR is called linear (LFSR) if the feedback function
f is linear

– FSR is called nonlinear (NLFSR) if the feedback
function f is nonlinear; i.e., the function f has higher
degree terms in its algebraic normal form (ANF)

• xn−1 is an output bit
• The period of an FSR is the length of the longest cyclic

output sequence it produces.

xn−1xn−2.x1x0
out

+++

Fig. 1. A structure of Feedback Shift Register.

It is believed that the theory of construction and application
of LFSRs is very mature and all crucial problems related to
LFSRs have been solved. It is known that n-bit LFSR has the
maximum period of 2n − 1 if and only if its characteristic
polynomial of degree n is primitive [4]. No such rule for
NLFSRs has been found so far. It has to be pointed that
despite many LFSRs applications (stream ciphers, pseudo-
random number generators, error detection and correction,
data compression) their pseudo-random sequences are not
cryptographically secure. Only 2n consecutive bits of LFSRs
sequence is enough to deduce n-bit LFSR structure by using
a Berlekamp-Massey algorithm.

Existing methods of cryptanalysis do not provide any
efficient algorithm to deduce the structure of NLFSRs by
only generated sequences which makes NLFSRs much more
appealing for cryptographers [5]. What is more, some kinds
of NLFSRs preserves all the main advantages of LFSR such
as low power consumption, easy implementation and high
efficiency.

168 P. AUGUSTYNOWICZ, K. KANCIAK

In recent years, NLFSRs have received much attention
in designing many cryptographic algorithms such as stream
ciphers (for example GRAIN which is NIST standard [6],
Trivium [7] or Achterbahn [8]), lightweight block ciphers and
sponge-based generators [1] like KATAN/KTANTAN [9]. In
most cases, NLFSRs have much greater linear complexity than
LFSRs of the same period, which is directly connected with
the security of cryptographic algorithms [10].

Sequences generated by full period NLFSRs are also known
as de Bruijn sequences. In a de Bruijn sequence of order n all
2n different binary n-tuples appear exactly once. It was proved
by Flye Sainte-Marie in 1894 and independently by de Bruijn
in 1946 that the number of cyclically inequivalent sequences is
equal to 22

n−1−n. Therefore, the number of potential NLFSR’s
feedback functions is much greater than the number of LFSR’s
feedback functions of the same degree which is equal φ(2

n−1)
n .

Not all possible NLFSRs are directly applicable to crypto-
graphic applications. There are several properties that must be
fulfilled by these cryptographic primitives, particularly:

• the number of feedback function’s nonlinear terms should
remain as small as possible;

• the algebraic degree of feedback function should be at
most 3,

• the number of linear terms in feedback function should
not exceed 6 due to lightweight cryptography require-
ments.

II. GENERATION OF NLFSRS

An efficient method of construction cryptographically strong
and efficient NLFSRs remains unknown. The most important
NLFSR related problem is finding a systematic procedure for
constructing NLFSRs with a guaranteed long period. Available
algorithms either consider some special cases, or are applicable
to small NLFSRs only, or produce NLFSRs which are not
cryptographically applicable [11], [12], [13].

A. Previous methods of generation

There are at least several different approaches to generating
NLFSRs with desired cryptographic properties. The most
common strategy of searching is exhaustive testing of potential
nonlinear feedback functions. That strategy was employed by
Janusz Szmidt [13]. He has tested potential feedback functions
with a simple algebraic normal form for a maximum period on
54 CPU cores, which allows to testing 54 potential feedback
functions at once. As it turned out the number of cores is
insufficient for effective search due to the size of the search
space. The number of polynomials to be tested growths rapidly
with the polynomial degree. For example, for the simplest form
of NFLSR: xi⊕xj⊕xk⊕xl ·xm there are 1

6n
2 ·(n−1)2 ·(n−2)

possible feedback polynomials of degree n (see Figure 2).
Another approach is to develop an special purpose hardware

implemented on Field Programmable Gate Arrays (FPGA)
[14][13]. FPGAs circuits allow developing highly efficient and
parallel search algorithms. As it is mentioned in [14], using
FPGAs special hardware it is possible to obtain at least 150
speed-up comparing to computing power of standard Intel

Fig. 2. Growth of the number of possible feedback functions with the degree.

Core i5-3210M CPU 2,5 GHz processor and make it possible
to test about 150 NLFSRs with cryptographic applicable
form simultaneously. The above-mentioned approach results
in generating some NLFSR with special structure up to degree
29.

The above-mentioned results, in comparison with the
number of all possible feedback functions for the NLFSR
(22

n−1−n), where n is the degree of the polynomial [15]),
are insufficient. The rapid growth of the number of possible
feedback functions implies that thousands and millions of
threads should be used to test possible polynomials efficiently
and find at least few applicable ones. That was the main
reason for applying General Purpose Graphics Processor Units
(GPGPU) in the development of our search method.

GPGPUs are valued for their efficiency, high throughput
and a possibility of using thousands of threads at once. They
were designed to perform simple, independent task in parallel
and efficient manner. That was the underlying reason for
applying them in our search for NLFSRs. Furthermore, the
peak efficiency of modern GPU is growing increasingly and
that growth is much faster than for CPU (see figure 3).

Fig. 3. Comparison of CPU and GPU performance over past 10 years.

SCALABLE METHOD OF SEARCHING FOR FULL-PERIOD NONLINEAR FEEDBACK SHIFT REGISTERS... 169

B. Outline of our method

The main assumption of our methodology was the fact that
modern GPUs like NVIDIA GeForce GTX 1080 are equipped
with up to 2560 cores. Furthermore, the frequency of cores,
especially in boost mode is very high. It results in very good
general performance of GPUs in comparison to CPUs and
most of FPGAs.

Our method like other methods presented [11], [14], [13]
consists of two main phases:

1) Generation of possible feedback polynomials.
2) Verification of their period.

For the purpose of systematic search the generation of
possible feedback functions is conducted on CPU and the
memory is asynchronously transferred to the global memory
of GPU. If we are interested not in the systematic search,
but in finding any feedback polynomial of given degree,
generation phase could be easily performed on GPU with a
usage of a random number generation library, for example,
cuRAND [16]. The global memory of GPU can be very large
in modern graphics cards but its main drawback is the long
average access time. Every possible function is represented by
two integer variables: one for linear part of the function and
the second one for nonlinear. Then every thread is reading
his own feedback function and stores it in its local memory
that has very short access time. An additional local variable
is created to maintain the state of the NLFSR.

The first stage of designed process gathers a set of
polynomials to be tested. The whole process is designed to
make testing polynomials (for being maximal period NLFSR)
so-called embarrassingly parallel task which means it is easy
to divide a huge set of suspected polynomials into chunks
that can be processed on single GPU separately.

Next step is verification of the period of candidate feedback
function which is performed in a simple loop. After the
2n − 1 iteration of the loop, the state of the register is
checked. We do not store any intermediate register states for
this moment (low memory complexity). If the starting and
ending point are the same the function is expected to be the
feedback function of maximum period NLFSR. Therefore
it is transferred to CPU for an additional test in which we
check if register generates full cycle with all possible states.
This stage works like a sieve which rejects the vast majority
of suspected polynomials which give shorter than full periods
and runs entirely on GPUs. This stage is computationally
hard, but designed to run in parallel (no ’if’ statements). It is
worth mentioning that optimization techniques were applied
like CUDA integer intrinsics utilization (popc and popcll
functions for counting the number of bits that are set to 1
in integer) and using decimal arithmetic when creating a
new state of the register. GPU task granularity depends on
a degree of tested polynomials, but for degrees bigger than
20 the granulation is big enough to hide overhead of copying
memory between host and GPU device.

The last stage of the process confirms if polynomials
tested in the second stage give full period. In trivial approach,
last stage stores all intermediate register states, but some
optimization techniques were applied to relax the memory
complexity of this stage. It runs on CPUs, but very few of
polynomials have to be fully checked during the last stage
of the process. In the worst case, CPU stage takes about 10
times less than the GPU stage, therefore this computations
have no effect on the efficiency of GPU search. All mentioned
above make the algorithm data-parallel that scales out very
well in multicore heterogenous architecture.

Fig. 4. Presentation of GPU verification method.

The above-mentioned approach has several advantages over
other methods:

• it is easily scalable,
• the same code can be applied on any GPU despite the

model,
• it can be used to search for any kind of linear or nonlinear

feedback function (FPGA methods are developed for a
fixed form of feedback function),

• in this particular task GPU has better efficiency than
CPU-based or FPGA-based solutions.

III. GPU-BASED NLFSR PERFORMANCE ANALYSIS

In [14] hardware performance was defined as a number of
tested NLFSRs per time unit, denoted as #NLFSR. Another
hardware performance indicator discussed here is the time of
one cycle (denoted as tGPUcycle). The cycle is defined as a going
through the all possible states of NLFSR and returning to
initial state. The third vital characteristic mentioned in [14]
(the number of simultaneously tested NLFSRs per cycle) for
GPUs is constant and dependent on the type of used graphic
card. Our method was applied on NVIDIA GeForce 1080GTX
which is equipped with 2560 CUDA cores.

Comparing our method to the previous ones it can be
seen that GPU computation method is the most efficient and
scalable one. For example, on GPU we are able to test on
average 311 NLFSRs of degree 29 on time unit whereas on
FPGA the result is about two times worse [14].

In conclusion, our GPU method of searching NLFSR is
the most efficient and scalable one. Nevertheless, from the
cryptographic point of view, the NLFSR with degree 30 is
not sufficient for cryptographic applications due to security
reasons [17]. Therefore, the efficiency and applicability of
searching methods should still be developed and improved.

170 P. AUGUSTYNOWICZ, K. KANCIAK

TABLE I
NUMBER OF TESTED NLFSR PER TIME UNIT AND TIME OF ONE CYCLE

FOR NVIDIA GEFORCE 1080GTX.

degree #NLFSR tGPU
cycle

20 233524 1, 67 · 10−9

21 122597 3, 18 · 10−9

22 63226 6, 17 · 10−9

23 32874 1, 19 · 10−8

24 16590 2, 35 · 10−8

25 8207 4, 76 · 10−8

26 4176 9, 35 · 10−8

27 1763 2, 21 · 10−7

28 877 4, 40 · 10−7

29 311 1, 19 · 10−6

30 170 2, 30 · 10−6

Fig. 5. The decrease of number of tested NLFSRs per time unit with the
degree of NLFSR.

IV. SEARCH FOR NLFSRS OF SPECIAL FORMS

In [18] only some special forms of NLFSR were searched.
They all characterized a small number of terms and very
elegant form. As a result, it was possible to find all maximum
period NLFSRs of that form due to reasonable for CPU search
space. We have applied the similar methodology of searching
for NLFSR. Usage of GPU allows expanding reasonable
search space for new forms of possible feedback functions. As
a result of our research following types of feedback functions
polynomials were tested:

• xa ⊕ xb ⊕ xc ⊕ xd · xe : (3:2),
• xa ⊕ xb ⊕ xc ⊕ xd · xe · xf : (3:3),
• xa ⊕ xb ⊕ xc ⊕ xd ⊕ xe ⊕ xf · xg : (5:2),
• xa ⊕ xb ⊕ xc ⊕ xd ⊕ xe ⊕ xf · xg · xh : (5:3),
• xa ⊕ xb ⊕ xc · xd ⊕ xe · xf : (2:2:2),
• xa ⊕ xb ⊕ xc ⊕ xd ⊕ xe · xf ⊕ xg · xh : (4:2:2),
• xa ⊕ xb ⊕ xc ⊕ xd ⊕ xe · xf · xg ⊕ xh · xi : (4:3:2),
• xa⊕ xb⊕ xc⊕ xd⊕ xe⊕ xf ⊕ xg · xh⊕ xi · xj : (6:2:2).

Numbers of NLFSRs with polynomial of given structure are
presented in the table below.

As it can be seen from table II the number of the NLFSRs
with given form has a strong tendency to decrease with the
degree. Furthermore, it can be seen that in general there is a
correlation between the number of terms of polynomial and the
number of found NLFSR of given degree. What is more, it can
be seen that there are no full period NLFSR with high degree

Fig. 6. The increase of average time of one cycle with the degree of NLFSR.

TABLE II
NUMBER OF FOUND NLFSR OF GIVEN DEGREE AND FORM.

form 12 14 16 18 20 22 24 26
(3:2) 3 1 1 0 0 0 0 0
(3:3) 17 11 3 1 2 1 0 0
(5:2) 36 28 16 10 4 6 2 0
(5:3) 58 58 104 20 8 0 0 0
(2:2:2) 30 20 12 4 0 4 0 0
(4:2:2) 1368 1116 812 512 252 172 60 28
(4:3:2) 26 2 2 2 0 0 0 0

and very nice form like (3:2) or (5:2). It can be concluded
that searching for maximum period NLFSR will always be
a trade-off between its form applicability and length of the
period.

From the cryptographic point of view, the forms
xa ⊕ xb ⊕ xc ⊕ xd ⊕ xe ⊕ xf ⊕ xg · xh ⊕ xi · xj (6:2:2)
and xa ⊕ xb ⊕ xc ⊕ xd ⊕ xe · xf ⊕ xg · xh (4:2:2) are the
most appealing ones. They can be implemented in FPGA in
a efficient manner and we found all feedback functions of
this form up to degree 28.

Examples of NLFSRs of structure (6:2:2) with degrees
25, 26 and 28 can be found below:

(6:2:2) — degree 25
x24 ⊕ x22 ⊕ x8 ⊕ x2 ⊕ x1 ⊕ x0 ⊕ x4 · x9 ⊕ x4 · x13

x24⊕x15⊕x12⊕x2⊕x1⊕x0⊕x5 ·x22⊕x12 ·x16

x24 ⊕ x14 ⊕ x4 ⊕ x3 ⊕ x1 ⊕ x0 ⊕ x2 · x0 ⊕ x9 · x8

x24 ⊕ x22 ⊕ x6 ⊕ x3 ⊕ x1 ⊕ x0 ⊕ x12 · x0 ⊕ x13 · x6

x24 ⊕ x12 ⊕ x6 ⊕ x4 ⊕ x1 ⊕ x0 ⊕ x12 · x4 ⊕ x16 · x4

x24⊕ x18⊕ x11⊕ x4⊕ x1⊕ x0⊕ x15 · x7⊕ x16 · x8

x24⊕x23⊕x21⊕x4⊕x1⊕x0⊕x19 ·x13⊕x22 ·x15

x24 ⊕ x10 ⊕ x7 ⊕ x5 ⊕ x1 ⊕ x0 ⊕ x5 · x4 ⊕ x17 · x7

x24⊕ x19⊕ x7⊕ x5⊕ x1⊕ x0⊕ x14 · x5⊕ x21 · x19

x24⊕x16⊕x14⊕x5⊕x1⊕x0⊕x14 ·x5⊕x16 ·x12

(6:2:2) — degree 26
x25⊕x22⊕x11⊕x3⊕x1⊕x0⊕x11 ·x0⊕x21 ·x14

x25⊕x20⊕x14⊕x3⊕x1⊕x0⊕x24 ·x1⊕x18 ·x17

x25 ⊕ x11 ⊕ x5 ⊕ x4 ⊕ x1 ⊕ x0 ⊕ x7 · x2 ⊕ x16 · x10

SCALABLE METHOD OF SEARCHING FOR FULL-PERIOD NONLINEAR FEEDBACK SHIFT REGISTERS... 171

x25 ⊕ x13 ⊕ x7 ⊕ x4 ⊕ x1 ⊕ x0 ⊕ x9 · x3 ⊕ x23 · x11

x25⊕ x12⊕ x8⊕ x4⊕ x1⊕ x0⊕ x8 · x20⊕ x17 · x23

x25⊕ x17⊕ x13⊕ x4⊕ x1⊕ x0⊕ x15 · x3⊕ x18 · x8

x25⊕x15⊕x13⊕x5⊕x1⊕x0⊕x15 ·x7⊕x24 ·x21

x25⊕x21⊕x13⊕x5⊕x1⊕x0⊕x15 ·x10⊕x19 ·x24

x25⊕ x22⊕ x10⊕ x6⊕ x1⊕ x0⊕ x24 · x4⊕ x13 · x7

x25⊕ x18⊕ x17⊕ x9⊕ x1⊕ x0⊕ x0 · x17⊕ x16 · x3

(6:2:2) — degree 28
x27⊕ x24⊕ x14⊕ x2⊕ x1⊕ x0⊕ x12 · x4⊕ x4 · x16

x27 ⊕ x22 ⊕ x13 ⊕ x5 ⊕ x1 ⊕ x0 ⊕ x1 · x1 ⊕ x17 · x5

x27 ⊕ x20 ⊕ x14 ⊕ x5 ⊕ x1 ⊕ x0 ⊕ x1 · x0 ⊕ x5 · x17

x27⊕x20⊕x18⊕x6⊕x1⊕x0⊕x24 ·x8⊕x25 ·x21

x27 ⊕ x17 ⊕ x9 ⊕ x8 ⊕ x1 ⊕ x0 ⊕ x7 · x2 ⊕ x11 · x25

x27⊕x12⊕x10⊕x8⊕x1⊕x0⊕x25 ·x0⊕x17 ·x24

x27⊕x24⊕x22⊕x10⊕x1⊕x0⊕x19 ·x4⊕x12 ·x20

x27⊕x22⊕x15⊕x11⊕x1⊕x0⊕x6 ·x2⊕x10 ·x20

x27⊕x21⊕x16⊕x10⊕x1⊕x0⊕x14 ·x4⊕x16 ·x24

x27⊕x25⊕x21⊕x16⊕x1⊕x0⊕x10 ·x24⊕x22 ·x25

Examples of NLFSRs of structure (4:2:2) with degrees 25, 26,
27 and 28 are presented below:

(4:2:2) — degree 25
x24 ⊕ x9 ⊕ x2 ⊕ x1 ⊕ x12 · x8 ⊕ x17 · x14

x24 ⊕ x10 ⊕ x3 ⊕ x1 ⊕ x9 · x21 ⊕ x10 · x16

x24 ⊕ x13 ⊕ x4 ⊕ x1 ⊕ x13 · x8 ⊕ x14 · x21

x24 ⊕ x12 ⊕ x7 ⊕ x1 ⊕ x10 · x20 ⊕ x15 · x18

x24 ⊕ x19 ⊕ x18 ⊕ x1 ⊕ x10 · x8 ⊕ x17 · x16

(4:2:2) — degree 26
x25 ⊕ x17 ⊕ x3 ⊕ x2 ⊕ x1 · x5 ⊕ x4 · x21

x25 ⊕ x24 ⊕ x3 ⊕ x2 ⊕ x2 · x12 ⊕ x14 · x24

x25 ⊕ x7 ⊕ x4 ⊕ x2 ⊕ x6 · x4 ⊕ x14 · x12

x25 ⊕ x11 ⊕ x10 ⊕ x4 ⊕ x3 · x14 ⊕ x9 · x8

x25 ⊕ x17 ⊕ x6 ⊕ x5 ⊕ x8 · x17 ⊕ x17 · x18

(4:2:2) — degree 27
x26 ⊕ x16 ⊕ x10 ⊕ x1 ⊕ x6 · x14 ⊕ x6 · x21

x26 ⊕ x16 ⊕ x5 ⊕ x3 ⊕ x2 · x0 ⊕ x1 · x21

x26 ⊕ x22 ⊕ x18 ⊕ x2 ⊕ x1 · x10 ⊕ x4 · x12

x26 ⊕ x15 ⊕ x6 ⊕ x3 ⊕ x10 · x12 ⊕ x22 · x23

x26 ⊕ x13 ⊕ x9 ⊕ x5 ⊕ x8 · x15 ⊕ x19 · x17

(4:2:2) — degree 28
x27 ⊕ x22 ⊕ x3 ⊕ x1 ⊕ x3 · x4 ⊕ x7 · x21

x27 ⊕ x25 ⊕ x23 ⊕ x4 ⊕ x5 · x19 ⊕ x23 · x22

x27 ⊕ x19 ⊕ x10 ⊕ x5 ⊕ x0 · x19 ⊕ x5 · x14

x27 ⊕ x15 ⊕ x6 ⊕ x3 ⊕ x10 · x12 ⊕ x22 · x23

x27 ⊕ x26 ⊕ x17 ⊕ x15 ⊕ x3 · x20 ⊕ x3 · x24

V. CONCLUSION

In the paper, we have proposed a scalable method of search-
ing for NLFSRs that runs well in multicore heterogenous

architecture. It achieves better performance results than previ-
ously known approaches. More precisely method of efficient
period checking has been developed. Many tests have been
performed for chosen polynomials tests. Ongoing work is
focused on methods of identifying polynomials and its forms
that give better chance for a full period generation.

We performed the full search for NLFSRs of special forms.
We have found NLFSRs that make up the list of known full-
period NLFSRs. However, our list of full-period NLFSRs is
still not sufficient for cryptographic applications [17], [10] and
the search should be continued for higher degrees.

REFERENCES

[1] J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia,
“Quark: A lightweight hash,” in Proceedings of the 12th International
Conference on Cryptographic Hardware and Embedded Systems,
ser. CHES’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 1–15.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1881511.1881513

[2] M. Hell, T. Johansson, and W. Meier, “Grain: a stream cipher for
constrained environments,” Int. J. Wire. Mob. Comput., vol. 2, no. 1,
pp. 86–93, may 2007. [Online]. Available: http://dx.doi.org/10.1504/
IJWMC.2007.013798

[3] H. H. Vahid Amin Ghafari and Y. Chen, “Fruit-v2: Ultra-lightweight
stream cipher with shorter internal state,” 2016. [Online]. Available:
http://eprint.iacr.org/2016/355

[4] S. Golomb, Shift Register Sequences, 1967, portions co-authored with
Lloyd R. Welch, Richard M. Goldstein, and Alfred W. Hales.

[5] A. Canteaut, “Open problems related to algebraic attacks on stream
ciphers,” in Proceedings of the 2005 International Conference on
Coding and Cryptography, ser. WCC’05. Berlin, Heidelberg: Springer-
Verlag, 2006, pp. 120–134. [Online]. Available: http://dx.doi.org/10.
1007/11779360 10

[6] H. Zhang and X. Wang, “Cryptanalysis of stream cipher Grain family,”
2009. [Online]. Available: http://eprint.iacr.org/2009/109

[7] C. D. Canniere and B. Preneel, “Trivium specifications,” eSTREAM,
ECRYPT Stream Cipher Project, vol. 2006.

[8] B. M. Gammel, R. Gottfert, and O. Kniffler, “The achterbahn stream
cipher,” 2005.

[9] C. De Cannière, O. Dunkelman, and M. Knežević, KATAN and KTAN-
TAN — A Family of Small and Efficient Hardware-Oriented Block
Ciphers. Springer Berlin, 2009.

[10] N. T. Courtois and W. Meier, Algebraic Attacks on Stream Ciphers with
Linear Feedback. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 345–359.

[11] P. Dabrowski, G. Labuzek, T. Rachwalik, and J. Szmidt, “Searching for
nonlinear feedback shift registers with parallel computing,” 2013.

[12] E. Dubrova, “A scalable method for constructing galois NLFSRs
with period 2n − 1 using cross-join pairs,” 2011. [Online]. Available:
http://eprint.iacr.org/2011/632

[13] T. Rachwalik, J. Szmidt, R. Wicik, and J. Zablocki, “Generation
of nonlinear feedback shift registers with special-purpose hardware,”
2012. [Online]. Available: http://eprint.iacr.org/2012/314

[14] N. Poluyanenko, “Development of the search method for non-linear
shift registers using hardware implemented on field programmable gate
arrays,” 2017.

[15] E. Dubrova, “Generation of full cycles by a composition of nlfsrs,”
Des. Codes Cryptography, vol. 73, no. 2, pp. 469–486, nov 2014.
[Online]. Available: http://dx.doi.org/10.1007/s10623-014-9947-3

[16] CURAND Library: Programming Guide, Version 7.0, NVIDIA, 2015.
[Online]. Available: http://docs.nvidia.com/cuda/curand

[17] M. Afzal and A. Masood, “Algebraic cryptanalysis of a nlfsr based
stream cipher,” in 2008 3rd International Conference on Information and
Communication Technologies: From Theory to Applications, 4 2008, pp.
1–6.

[18] E. Dubrova, “A list of maximum period NLFSRs,” 2012.

