
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64,  NO. 2, PP. 203-207 

Manuscript received September 6, 2017; revised April, 2018.                                             DOI: 10.24425/119371 

 

Abstract—In this paper, the application of the Artificial Neural Network 

(ANN) algorithm has been used for testing selected specification 

parameters of voltage-controlled oscillator. Today, mixed electronic 

circuits specification time is an issue. An analog part of Phase Locked Loop 

is a voltage-controlled oscillator, which is very sensitive to variation of the 

technology process. Fault model for the integrated circuit voltage control 

oscillator (VCO) in ring topology is introduced and the before test stage 

classificatory is designed. In order to reduce testing time and keep the 

specification accuracy (approximation) on the high level, an artificial 

neural network has been applied. The features selection process and output 

coding for specification parameters are described.  

A number of different ANN have been designed and then compared with 

real specification of the VCO. The results obtained gives response in short 

time with high enough accuracy. 

  
Keywords—Specification driven testing, voltage-controlled oscillator, 

ring oscillator, artificial neural network. 

I. INTRODUCTION 

 

NALOG and mixed signal integrated circuit testing has 

gained wide attention of researchers in a testing area. The 

additional problem is associated with modern fabrication 

process: limited number of nodes for measurement and number 

of fault free elements scattered within their tolerance ranges[1]. 

Due to the problem, integrated circuits are tested several 

times. The first test is performed before packaging at wafer level 

to identify instabilities in the fabrication process. Finally built 

module are tests after packaging to verify the actual design 

specifications [2]. 

In order to speed up the product testing procedure to short 

time-to-market time, the simulation before test stage (SBT) is 

introduced. SBT using software for computer analysis of 

electronic circuits allows simulating most of the damage that 

may occur at the production stage and their impact to the 

specification parameters (i.e. changing the length and width of 

the transistor channel as a result of photolithographic mask 

displacement, etc.). Using all simulated damages, the damage 

dictionary is created and use at the circuit testing stage [3], [4]. 

Among the test algorithms, the most attention is focused on 

the heuristic methods, evolutionary techniques, fuzzy logic, 

support vector machines, artificial neural networks [5]–[7]. 

This paper presents the use of artificial neural networks to 

short testing time of VCO selected specification parameters. In 

the testing process (Fig. 1), the output signal of the generator is  
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analyzed and characteristic features are measured. Measured 

features become input parameters of the neural network. Based 

on the features, the learned neural network indicates (with the 

believe factor value – see sec. 3), which of the design 

specification parameters are within the tolerance limits. 

 

 
Fig 1. Testing procedure. 

II. CIRCUIT UNDER TEST 

A. Voltage-Controlled Oscillator 

A voltage-controlled oscillator (VCO) is one of the most 

important blocks in analog and digital electronics [8]. It is main 

functional block in phase-locked loops systems, or as a clock 

generator in clock generator circuits [8]. 

Voltage-controlled oscillator may be implemented by several 

solutions: ring oscillator topology, LC-oscillator topology, 

current starve topology, etc. [8], [9]. Ring oscillator is a 

cascaded combination of delay stages, connected in a close loop. 

The ring oscillator designed with a loop of delay stages has 

many advantages: It needs lower voltage to achieve oscillations, 

has low power consumptions for high frequencies and provides 

wide tuning range.  

VCO, considered as circuit under test (CUT) is based on a 

current starves topology, which is similar to ring oscillator 

topology. The two stages current-starved VCO is presented in 

Fig.2.  

 
Fig 2. Two stages current-starved VCO. 
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Transistor M1 (NMOS) with M2 (PMOS) operates as inverter, 

while M7 and M12 operate as current sources. These 4 

transistors form one structure of the oscillator. This structure is 

repeated once again by M3- M14 transistors, creating a 3-step 

ring of the oscillator [8]. 

B. Functional parameters of voltage-controlled oscillator 

VCO functional test should be directed on measurement of at 

least 3 different characteristic of output signal. Selected 

functional parameters have effect on quality of produced VCO. 

Due to the structural errors, at the testing stage, functional test 

of CUT should contain: 

• Frequency tuning characteristic (𝑓(𝑉)), expresses the 

relationship between a VCO operating frequency at the 

tuning voltage applied [9], 

• Output power (PdBm), measured into a 50Ω load [2], 

• Phase noise (𝑃𝑁 in dBc/Hz), which describe single sideband 

phase noise of the oscillator. It is composed of noise close to 

the flicker noise and noise measured at a spacing of constant 

value [2], 

• VCO gain (KVCO), measured in (Hz/V), which describes 

change in frequency value due to change in the input signal 

voltage [2], 

• Frequency tuning range (𝑓𝑅), is a difference between 

maximum and minimum output signal frequency value [2], 

• Lock time (TLock), is a time after which the output frequency 

is stabilized (at the desired level)[8]. 

 

It is important that the frequency of the designed generator for 

applied voltage is in the desire range, therefore a circuit testing 

process starts with frequency measurement (f2, f1) for two 

different testing voltage signals (uin
1 , uin

2 ). The output 

frequencies for the input signals should be within specification 

range of the circuit, expressed as (1). Also, in fault free VCO, 

frequency changes in function of input voltage signal are 

represented by linear function. With frequency change function, 

VCO gain is related. VCO gain enumerates changes in 

frequency per unit of tuning voltage change (2). 
 (1) 

where 𝑓2 is  a frequency corresponds with 𝑢𝑖𝑛
2  and 𝑓1 is  

a frequency corresponds with 𝑢𝑖𝑛
1 . 

 
(2) 

In order to correctly determine the frequency of the output 

signal, it is necessary to determine the 𝑇𝑙𝑜𝑐𝑘 time after which the 

frequency difference of consecutive periods is less than 1%. For 

the analyzed circuit the frequency stabilization is achieved after 

9 signal periods (4.6 ms). 

This paper is focused on specification test where for each 

transistor parametric fault, four specification parameters are 

checked - 𝑓1, 𝑓2, 𝑓𝑅, 𝐾𝑉𝐶𝑂. The tested circuit pass the 

specification test if following parameters are in range:  

f(𝑢𝑖𝑛
1 ) ∈<6.9; 7.28>kHz,  f(𝑢𝑖𝑛

2 ) ∈ <7.46; 7.76>kHz, 𝑓𝑅 ∈ < 

1.04; 1.09>, KVCO ∈ < 98; 101>. 

 
Fig 3. VCO response for 𝐮𝐢𝐧 = 𝐮𝐢𝐧

𝟏 . 

C. Fault models 

Due to the Fig.2, presented voltage-controlled oscillator is 

based on NMOS and PMOS transistors. In technological 

process, transistor errors are results of i.e. photolithographic 

mask deviations or technological aspects errors. This group of 

errors has influence on parametric values of transistor structure: 

length, width or oxide thickness. Changing the values of these 

parameters has a direct influence on the parameters of the 

VCO’s design specifications. 

Using PSpice simulation software, fabrication process of used 

transistors is modeled by length (L), width (W) and oxide 

thickness (TOX). 

Nominal values of PMOS (P) and NMOS (N) transistors are 

defined as: 
 

𝑳𝑛𝑜𝑚
𝑃 ,  𝑳𝑛𝑜𝑚

𝑁 ,  𝑾𝑛𝑜𝑚
𝑃 ,  𝑾𝑛𝑜𝑚

𝑁 , 𝑻𝑶𝑿𝑛𝑜𝑚
𝑃 ,  𝑻𝑶𝑿𝑛𝑜𝑚

𝑁  

The maximum range for parameters L, W, TOX has been set to: 

𝑳𝑃/𝑁 ∈ 〈Lnom
P/N

; 𝐿𝑚𝑎𝑥
𝑃/𝑁 〉 , 𝑳𝑃/𝑁 ∈ 〈𝐿𝑚𝑖𝑛

𝑃/𝑁
; Lnom

P/N 〉 

𝑾𝑃/𝑁 ∈ 〈Wnom
P/N

; 𝑊𝑚𝑎𝑥
𝑃/𝑁〉 , 𝑾𝑃/𝑁 ∈ 〈𝑊𝑚𝑖𝑛

𝑃/𝑁
; Wnom

P/N 〉 

𝑻𝑶𝑿
𝑃/𝑁

∈ 〈TOXnom
P/N

; 𝑇𝑂𝑋𝑚𝑎𝑥
𝑃 〉 , 𝑻𝑶𝑿

𝑃/𝑁
∈ 〈𝑇𝑂𝑋𝑚𝑖𝑛

𝑃/𝑁
; TOXnom

P/N 〉 

The tolerance range for simulation has been set to: 

𝑡𝐿
𝑃, 𝑡𝐿

𝑁, 𝑡𝑊
𝑃 , 𝑡𝑊

𝑁 , 𝑡𝑇𝑂𝑋
𝑃 , 𝑡𝑇𝑂𝑋

𝑁  

Transistor nominal behavior is represented by the following 

ranges: 

Lnom
P/N

∈ 〈Lnom
P/N

− tL
P/N

; Lnom
P/N

+ tL
P/N〉 

Wnom
P/N

∈ 〈Wnom
P/N

− tW
P/N

; Wnom
P/N

+ tW
P/N〉 

TOXnom
P/N

∈ 〈TOXnom
P/N

− tTOX

P/N
; TOXnom

P/N
+ tTOX

P/N 〉 

In order to increase of the statistical analysis, parametric 

damage of the model was divided into X number subranges. 

Assuming the X parameter as length, width or oxide thickness 

and Xnom as nominal value, the new subrange middle value Xmid 

is presented as: 

Xi
mid = Xi

nom ∙ ti 

where ti ∈ {0.7, 0.75, 0.8, 0.85, 0.9, 0.92, 0.94, 0.96, 0.98, …  

0.99, 0.992, 0.9940.996, 0.998, 1, 1.002, 1.004, 

 1.006, 1.008, 1.01, 1.02, 1.04, 1.06,1.08 … 

1.1, 1.15, 1.25, 1.30} 

12 fffR 
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Each range is defined as follows: 

Xi
mid ∈ 〈Xi

nom ∙ ti − toli; Xi
nom ∙ ti + toli〉 

where toli is tolerance parameter. 

A number of Monte Carlo analyses within predefined ranges 

have been set to S with uniform distribution (e.g. S = 50). 

 

D. Circuit under test simulation profile 

The artificial neural networks proposed in this paper are aimed 

checking specification parameters in case of parametric faults in 

NMOS and PMOS transistors. Transistor nominal parameters 

(Fig.1) was set to: 𝑳𝑛𝑜𝑚
𝑁 = 6.25𝜇m, 𝑳𝑛𝑜𝑚

𝑃 = 25𝜇m, 𝑻𝑂𝑋𝑛𝑜𝑚
𝑁 =

2𝜇m, 𝑾𝑛𝑜𝑚
𝑁 = 3 𝜇m, 𝑻𝑂𝑋𝑛𝑜𝑚

𝑃 = 2𝜇m, 𝑾𝑛𝑜𝑚
𝑃 = 6.25𝜇m. 

Tolerance for each simulation was set:  

 

 

For each simulated set, S = 150 Monte Carlo analysis was 

generated. 

At the simulation stage, two step functions has been 

considered: 𝑢𝑖𝑛
1 =  𝑢𝑖𝑛

1 ∙ 1(𝑡) and 𝑢𝑖𝑛
2 =  𝑢𝑖𝑛

2 ∙ 1(𝑡), where 

𝑢𝑖𝑛
1 = 2.5V and 𝑢𝑖𝑛

2 = 7.5V, for both rising, time was equal - 

𝑡𝑖𝑚𝑒𝑟𝑖𝑠𝑒 = 0.7ms. The exemplary response for transistor 

nominal values and 𝑢𝑖𝑛 = 𝑢𝑖𝑛
1  is presented in Fig. 3.  

 

E. Output signal feature selection 

The main goal of the presented paper is to short the test time 

with compare artificial neural networks in order to increase 

detection accuracy. For this purpose output signal was analyzed 

and for both input stimuli (𝑢𝑖𝑛
1  and 𝑢𝑖𝑛

2 ), output signal was 

decimated. The following samples were determined for each 

period:  

1. Maximum value of each period 𝑢𝑀𝑝

1/2
, 

where p is the value of the appropriate maximum. 

The maximum value of each period is determined with (3). 

𝜕𝑢𝑜𝑢𝑡
1/2

𝜕𝑡
< 0 (3) 

 

2. The first minimum 𝑢𝐿𝑝

1/2
 before 𝑢𝑀𝑝

1/2
, according to (4), 

3.  The first minimum 𝑢𝑅𝑝

1/2
 after 𝑢𝑀𝑝

1/2
, according to (4), 

𝜕𝑢𝑜𝑢𝑡
1/2

𝜕𝑡
> 0 (4) 

According to the assumptions of test time shortening for the 

CUT, the proposed testing method should analyze circuit 

response shorter than the time needed to reach the TLock 

(Ttest<TLock) 

Samples of the 𝑢𝑜𝑢𝑡
1/2

 from 𝑢𝑖𝑛
1  and 𝑢𝑖𝑛

2  of the CUT are 

forming into an input vector Nimp, which is applied to the input 

of each artificial neural network. The length of the Nimp 

depends on the number of analyzed periods, i.e. for 2 periods, 

the input vector Nimp: 

Nimp = [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10] = 

= [𝑢𝐿1
1 , 𝑢𝑀1

1 , 𝑢𝑅1
1  , 𝑢𝑀2

1 , 𝑢𝑅2
1 ,𝑢𝐿1

2 , 𝑢𝑀1
2 , 𝑢𝑅1

2  , 𝑢𝑀2
2 , 𝑢𝑅2

2 ] 

 

III. ARTIFICIAL NEURAL NETWORKS 

Development of a good artificial neural network model 

depends on several coefficients. The first coefficient is related 

with used data, the second describes model structure or network 

architecture, next factor is a model complexity and size. Finally 

quality of the network is strongly depended on training. 

Training an artificial neural network contains updating the 

weights to minimize the error between the outputs and the actual 

response [10]. 

 

A. Artificial Neural Network structure 

In the presented research an artificial neural networks (ANN) 

have been used with CUT output signal samples to check 

selected specification parameters of VCO (f(uin
1 ), f(uin

2 ), 

KVCO, fR). Following ANN is described as: 

 
 (5) 

 
where in is the number of ANN inputs, out is the number of 

ANN outputs and: 
 

 (6) 

 

where 𝑙𝑎 is the number of neurons in an a-th layer. 

The number of ANN inputs (in) depends on the number of  𝑢𝑜𝑢𝑡
1/2 

samples (see 2.5) and is equal Nimp. Following neural networks 

have 1 hidden layer and number of neurons (𝑙1) belongs to: 

 
 (7) 

 

Introducing a limit on the number of neurons occurring per 

one input of 3. The maximum number of neurons in the hidden 

layer is equal nn =  𝑁𝑖𝑚𝑝
3.  

According to assumptions, the constructed neural network 

should indicate on the basis of the inputs, which of the selected 

CUT design specifications is fulfilled. For voltage-controlled 

oscillator, each specification can be described with 0 and 1, 

where 0 encodes missing of the selected specification and 1 

represents fulfillment the selected specification. Dividing all 

measured specifications into 0 and 1 groups. Taking into 

account the measured specification parameters of the CUT, the 

output of the neural network is a binary function 1 from N, 

where N is the number of all possible combinations (N = 16). 
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The first bit corresponds with specification of  

a f(uin
1 ), the second corresponds with specification of  

a f(uin
2 ), the third bit corresponds with specification of  

a fR parameter and the last bit corresponds with   

a specification of a KVCO parameter. 

Each neuron in the hidden layer is described by the activation 

function for calculating the output of each neuron [11]. In the 

learning process Broyden-Fletcher-Goldfarb-Shanno algorithm 

were used [10]. 

B. Artificial Neural Networks testing stage 

In the learning process for each Nimp, artificial neural networks 

with different number of neurons (from set of l1) in the hidden 

layer and different activating functions of neurons in hidden and 

output layer, were generate to the research problem. 

To estimate the accuracy of the obtained model, artificial 

neural network has been trained on a measured set of inputs and 

corresponding outputs (Fig.4). Training algorithm provides 

minimization of difference between measured output values 

designated outputs. On a predefined training data set �̂�𝑖 

 
�̂�𝑖 → 𝑦𝑖 , 𝑓𝑜𝑟 𝑖 = 1 … 𝑁𝑇 

 

where 𝑁𝑇 is the size of training set. 

To calculate the accuracy of build neural networks two 

functions: cross entropy - 𝐸𝐶𝐸  (8) and sum of squares - 𝐸𝑆𝑂𝑆 (9) 

were used:  
 

 (8) 

 

 
(9) 

 
Fig 4. Learning diagram. 

In the validation process, all generated artificial neural 

networks have been compared in terms of the classification  

efficiency and the one with the highest efficiency was chosen. 

Table I presents efficiencies for all periods of outputs signal. 

Comparing the efficiency of classification in the validation 

process, it can be seen that the most effective is use of  4 periods 

of output signal. The time needed to extract samples from 4 

periods is 𝑡𝑝 = 2.2 ms and is 2 times shorter than the time 

necessary to reach TLock of CUT. This case was chosen as the 

best one for analyzed problem and is discussed in the following. 

IV. SELECTED ARTIFICIAL NEURAL NETWORK 

According to above, the best classification efficiency was 

reached for 4 periods of  𝑢𝑜𝑢𝑡
1/2

 with artificial neural network 

constructed as multilayer perceptron with 228 neurons in 

hidden layer. Neurons in hidden layer are active with tanh 

function and output neurons are activate with softmax function 

[11]. The highest classification efficiency was reached after 352 

epochs. 

A. Trust coefficient 

Lean on the value of activation function of neurons in the 

output layer, the studied CUT based on the input vector Nimp is 

assigned to one of the classes. The neurons in output layer based 

on the activation function can take different values. Information 

of the value of activation function can be used to introduce the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

classification trust coefficient-𝑇𝑐  (10). This coefficient informs 

at the testing stage, how credible is the CUT classification.  

 

 (10) 
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TABLE I 

 COMPARISON OF ARTIFICIAL NEURAL NETWORKS FOR 8 PERIODS OF CUT OUTPUT SIGNAL 

Number 

of 

Periods 

Learning 

efficiency 

(%) 

Validation 

efficiency 

(%) 

Overall 

efficiency 

(%) 

Epoch

s 

AFIHLb AFIOLc Error 

function 

1 period 73.46 73.75 73.39 186 Tanh Softmax Entropy 

2 periods 87.64 85.83 86.35 292 Logistic Softmax Entropy 

3 periods 88.83 85.59 86.65 326 Tanh Softmax Entropy 

4 periods 90.98 85.77 87.74 352 Tanh Softmax Entropy 

5 periods 88.35 85.29 86.19 202 Logistic Softmax Entropy 

6 periods 87.89 84.70 85.80 206 Logistic Softmax Entropy 

7 periods 87.28 84.64 85.78 503 Exponential Tanh SOS 

8 periods 87.52 84.82 86.21 504 Tanh Tanh SOS 

b AFIHL – activation function of neurons in hidden layer; 
c AFIOL – activation function of neurons in output layer. 
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where 𝑓(𝑥) is a value of activation function of output layer. 

Although the CUT is classified into one of the classes, the 

tester has the ability to check how good the classification result 

is.  

Adapting to the binary response structure of the artificial 

neural network, the value of 𝑇𝑐 is also represented in binary 

form. Binary representation of the artificial neural network 

output allows implementation of ANN in microcontroller 

structure where the total response takes only 2, 8-bit registers 

of the µC. 

Taking into account the classification process and the value 

of the 𝑇𝑐 coefficient, the final structure of the constructed 

artificial neural network is as on Fig. 5. 

 

 
Fig 5. Artificial neural network structure with binary output of CUT 

classification and classification trust coefficient. 

B. Comparison with Support Vector Machine 

The selected artificial neural network was compared with 

another widely used data classification technique- Support 

Vector Machine[12]. Similarly to artificial neural network, 

input vector Nimp was used and assignation is to 16 classes. 

Support Vector Machine used for comparison has radial kernel 

function (11). 

 (11) 

where 𝛾 = 0.056, 𝑐𝑖 and 𝑐𝑗 are variables. 

 

Additional comparison SVM with ANN is presented in 

Table II. 
TABLE II 

 EFFICIENCY OF SVM AND ANN 

Classification method Efficiency 

(%) 

Support Vector Machine 74.42 

Artificial Neural Network 18-228-161 87.74 

 1 Artificial Neural Network a-b-c: a- inputs, b- number of neurons in a hidden 

layer, c-output possibilities. 

 

 

V. CONCLUSION 

The paper presents application of artificial neural network to 

shorten test time (maintaining high classification efficiency) of 

a design specification of a voltage-controlled oscillator 

associated with damage occurring at a production stage that 

affects the technological parameters of the applied transistors. 

To perform a design test, the CUT response was decimated. 

Based on the selected samples, the neural network determines 

the correctness of the chosen parameters of the design 

specification of the studied circuit. The proposed diagnostic 

method also informs the tester about the neural network’s 

accuracy with proposed 𝑇𝑐 coefficient. 

A constructed artificial neural network classifier was 

compared with support vector machine with radial kernel 

function classifier. As it can be seen, constructed artificial 

neural network has much higher classification efficiency than 

support vector machine. The short time (𝑡𝑝) of output signal 

feature extraction, simplicity of generating the features as well 

as the easy construction of artificial neural network makes the 

proposed method successfully adapted for other IC. 
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