o
J Manuscript received March 31, 2017; revised April, 2018.

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64, NO. 2, PP. 209-216

DOI: 10.24425/119372

A Novel Software-Defined Networking Controller:
the Distributed Active Information Model (DAIM)

Pakawat Pupatwibul, Ameen Banjar, Md. Imam Hossain, Robin Braun and Bruce Moulton

Abstract—This paper presents a new OpenFlow controller:
the Distributed Active Information Model (DAIM). The DAIM
controller was developed to explore the viability of a logically
distributed control plane. It is implemented in a distributed
way throughout a software-defined network, at the level of the
switches. The method enables local process flows, by way of
local packet switching, to be controlled by the distributed DAIM
controller (as opposed to a centralised OpenFlow controller).
The DAIM ecosystem is discussed with some sample code,
together with flowcharts of the implemented algorithms. We
present implementation details, a testing methodology, and an
experimental evaluation. A performance analysis was conducted
using the Cbench open benchmarking tool. Comparisons were
drawn with respect to throughput and latency. It is concluded
that the DAIM controller can handle a high throughput, while
keeping the latency relatively low. We believe the results to date
are potentially very interesting, especially in light of the fact that
a key feature of the DAIM controller is that it is designed to
enable the future development of autonomous local flow process
and management strategies.

Keywords—Distributed Networks, OpenFlow, DAIM Model,
Software Defined Networking, Next Generation Networks

1. INTRODUCTION

N the last few years, current needs and necessities of the

modern world drive network technologies to be improved
significantly in performance, complicatedness, functionality,
and other aspects. Presently, networking has become very
complicated to manage, control, activate, and monitor. This
heterogeneity lead infrastructure to be increased in compli-
catedness which is hard to configure, maintain, re-engineer,
recover and operate.

There is a need for an open and flexible architecture to im-
plement the autonomic computing functionalities. Thus, Open
Networking Foundation (ONF) has promoted a new network
norm called Software-Defined Networking (SDN) architecture
aiming to reduce complicatedness of management [1]. The
main idea of SDN approaches is to separate functionality of
data path from control path. The data path remains in a switch,
whereas higher level routing decisions are separated in a
commodity device called controller (a standard server) [2], [3].
The switch and controller can communicate using OpenFlow,
which is considered as the first standard communications
interface of SDN approach. OpenFlow defines messages such
as received packets and sent packets [4], [5].

As advantages of SDN, companies get the programming
ability to control the network with high scalability and flexi-

Authors are with the Centre for Real-Time Information Networks (CRIN),
University of Technology, Sydney, Australia (e-mail: {pakawat.pupatwibul,
11311103, 11469754, robin.braun, bruce.moulton} @uts.edu.au).

bility, which can adapt quickly according to ever-changing cir-
cumstances. The layers of SDN structure include application,
network operating system, and forwarding layers. Because net-
work OS layer has APIs (Application Programming Interfaces)
ability, it is possible to implement autonomic functionalities
such as self-protection and self-optimisation.

SDN is very efficient at moving the computational load
away from the forwarding plane and into a centralised con-
troller. This centralisation brings optimality, but creates addi-
tional problems of its own including single-domain restriction,
scalability, robustness, and the ability for switches to act
autonomously.

Our new distributed active information model (DAIM)
provides logical distribution of an SDN control plane, and
should aid in the development of autonomous local processing
within distributed networks. The DAIM model is a sustainable
information model, which collects, maintains, updates and syn-
chronises all the related information. DAIM offers adaptation
algorithms embedded with intelligent agents and information
objects to be applied to such complicated systems. Moreover,
adopting DAIM model can manage complex systems in any
distributed network, which is possible to be autonomous,
adaptable, and scalable.

Section II reviews existing research on distributed Open-
Flow controllers. In Section III, an overview of the DAIM
model is described. Section IV addresses the main phases
for developing DAIM. In Section V, the implementation of
the DAIM model for SDN is discussed. Section VI illustrates
the performance evaluation of the DAIM model. Section VII
provides a summary and conclusion.

II. RELATED WORKS

This section reviews relevant prior research concerning SDN
control planes. A distributed controller in this context is that
SDN architecture uses more than one controller to control the
data plane. The following approaches have employed different
techniques to administrate data plane and manage the entire
network state in distributed manner with scalability, simplicity,
and global view. However, some of them have issues, and they
may fail in arbitrary scenarios.

A. Kandoo

Scalability issues of the centralised model in SDN infras-
tructures motivate researchers to present Kandoo approach
where it divided the control plane to tow levels [6]. One is
a root controller with global applications, which are capable

210

of accessing global network state. And the other level of con-
troller remains close to the data plane called (local controller)
which is capable of processing packets if the global view is
not required. The idea was to bringing some of the control
functionality to the data plane for better performance. Each
controller is responsible for managing the network, for exam-
ple, the root controller is responsible for the normal operation
and the local controller can decide to redirect specific events
to the root controller for processing or process events locally.

B. HyperFlow

HyperFlow is another approach to sorting the lack of
scalability in a centralised domain of management. The authors
enhanced SDN architecture by distributing the controllers into
two components, one is controller’s application to intercept
events, and the other one is a middleware which is connected
controllers together [7]. The motivation behind enhancement
is to process event locally in the actual switch and configure
commands for some other events that must be distributed.
HyperFlow uses middleware for all communication between
controllers which is able to Publish/Subscribe, publishers as
senders of messages and subscribers as the receivers of mes-
sages. The controller’s applications are useful in this approach
where the idea here is not to sacrifice the simplicity of existed
applications.

C. Onix

Onix enhanced the NOX controller with multiple contri-
butions. It contains Network Information Base (NIB) which
is an in-memory network graph for entities (network state),
and there are two duplicated data stores, for exchanging
information with NIB [8]. Onix provides a useful common pro-
gramming API to build network applications. The controller is
able to reflect the southbound API circumstances changes with
northbound API, presented in NIB as management applications
for network graph. Onix uses the OpenFlow protocol where the
data plane indirectly modifies the NIB (through the controller).
The controller has to guarantee that changes in the data plane
are reflected in the NIB, and thus the NIB can change the data
plane configurations.

All these approaches propose a different architecture and
layer of SDN. Multiple controllers managing a network can
bring many benefits such as enabling backup controllers to
take over in the case of a failure, simplifying central view of
the network, and reducing the look-up overhead by allowing
communication with local controllers. However, distributing
the control platform in Kandoo, HyperFlow, and Onix are not
adapted to large data centres with several Autonomous Sys-
tems (AS), and they need extensive traffic among controllers
to maintain a global network view. Moreover, there is also
a potential downside related to trade-offs between staleness
and consistency when distributing network state among the
controllers. This may cause applications that believe they have
an accurate view of the network to operate incorrectly.

P. PUPATWIBUL, A. BANJAR, MD. I. HOSSAIN, R. BRAUN, B. MOULTON

DAIM Ecosystem |

System Memaory (heap)

Local Storage
Meodule

Communication Controller Module

Module

(Table lookup,
matching, create flows)

(Socket Programming) (Linked Lists, object)

Fig. 1. DAIM Model Ecosystem

III. DAIM MODEL OVERVIEW

A new information model named: Distributed Active Infor-
mation Model (DAIM) is presented to allow the local decision-
making processes, which will essentially contribute to com-
plex distributed network environments. An implementation of
DAIM model is expected to introduce the requirements of the
autonomic components of the distribution systems. The DAIM
model can provide distributed systems with a sustainable
information model, which collects, maintains updates and
synchronises all the related information [9].

The DAIM model is implemented as an application on
top of the OpenVswitch running in Mininet. DAIM uses the
OpenFlow protocol to update forwarding tables in the local
memory and switches. In the current design of DAIM, the
control application executes as a thread on top of the Linux
sockets. DAIM model uses a separate control channel to
invoke commands between the controllers and switches. It is
developed to support a cross-platform architecture, which has
improved the variable types of running on both 32 and 64 bit
CPU [10].

As can be seen in Figure 1, the DAIM ecosystem consists of
three core modules namely communication module, controller
module and local storage module working independently to
achieve one single goal. The controller module is responsible
for managing all the other modules so that the management
and control can be traced to the controller module. Also, the
controller module can actively support useful services for the
other two modules. For example, the communication module
provides routines for creating OpenFlow messages, and the
local storage module provides storage information as well as
the retrieval routines. Since all of the modules reside in a
single process, the communication between each module is
extremely fast.

The DAIM ecosystem uses OpenFlow protocol based on
the OpenFlow switch specification version 1.0.0 (Wire Pro-
tocol 0x01). For the implementation of DAIM controller, the
openflow.h is included in the header file to model the protocol
and its defined messages as closely as possible. It is important

A NOVEL SOFTWARE-DEFINED NETWORKING CONTROLLER: THE DISTRIBUTED ACTIVE INFORMATION MODEL (DAIM) 211

Openflow.h

OFPT_Hello

OFPT_Set_Config
OFPT_Echo_Request

OFPT_Flow_Mod

OFPT_Echo_Reply

R}

HAE

OFPT_Packet_Qut

o
o
El
=
2
)
o)
e
&
=
=
a8
5

Fig. 2. Implemented OpenFlow Messages

to note that not all OpenFlow messages are implemented in
the current state [11].

Inside the communication module, there are various routines
for creating different types of OpenFlow messages. Figure 2
shows the implemented messages of the OpenFlow protocol in
the DAIM model. The OFPT_Hello, OFPT_Features_Request,
and OFPT_Features_Reply messages are implemented for the
initialisation of the OpenFlow connection between DAIM
controller and the switches. Echo request/reply messages are
sent from either controller or switch and must return an
echo reply. These messages are used to indicate the liveliness
of a controller-switch connection and are repeated every 15
seconds. The controller uses an OFPT_Set_Config message
to set the configuration parameters in the switch, whereas the
OFPT_Packet_In message is used by an OpenFlow switch to
notify DAIM of an unknown packet or to forward a packet
to DAIM in the case of an associated action of a match. This
message contains either the entire encapsulated packet or just
the buffer ID of the buffered packet. The OFPT_Packet_Out
message is a controller-to-switch message used by DAIM to
forward a packet out of a specified port at the switch. Finally,
DAIM can manage the flow table of a switch through the
OFPT_Flow_Mod message type, which comprises the header
match fields as well as the corresponding actions.

1V. DAIM DEVELOPMENT PHASES

This section describes the three phases of developing the
DAIM model as follows [12], [13]:

A. Phase 1: Basic Carrier Functionality

In the first phase, DAIM model has been initially inte-
grated to the SDN architecture by applying the implemented
communication channel between the NOX controller and an
OpenFlow switch. The DAIM model is developed in C++
using an open source NetBeans IDE and NetBeans Platform.
In addition, DAIM model is created in different classes to

Contraller

CpenFlow Switch OpenFlow Switch OgenFlow Switch

Fig. 3. DAIM Implementation Phase 1

represent each type of OpenFlow messages such as Packet-
In, Packet-Out, Set-Config and Flow-Modification. The open-
flow.h is included in the header file to facilitate the implemen-
tation of such messages.

At this phase, DAIM is defined as a basic application chan-
nel used for message transmission in an OpenFlow network.
No control functions have been implemented. Essentially, this
phase describes a simple communication channel based on a
client-server model (see Figure 3). DAIM is developed using
UNIX BSD socket programming API where the server socket
connects to OpenFlow switch and the client socket connects
to the NOX controller. The DAIM application listens on a
particular port (default 6633) for messages from the NOX
controller. The network architecture of OpenFlow is still the
same, which has all of the high-level routing decisions made
by the NOX controller, but will have the DAIM application
processing and forwarding all OpenFlow messages (without
any modification) from controller to switch and vice versa
instead of the original secure OpenFlow channel.

B. Phase 2: Semi-Distributed Functionality

The structure of phase 2 is similar to the previous phase but
includes some level of distributed event-based control plane
for OpenFlow by distributing the DAIM controller to each
connected OpenFlow switch to perform its functions locally
(see Figure 4). A major distinction from the first phase is
that the NOX controller gets replaced by each distributed
DAIM controller. Now the DAIM controller will not only be
a basic carrier for OpenFlow messages between switches and
controller but also can gather information from the network
and propagate its local MAC address table to act as an
intelligent Layer 2 learning Ethernet switch. For example, it
can store network information when connected nodes perform
an ARP or ICMP session, and hence it is possible to forward
flows directly from the switch according to the flow entries
that are pre-defined by the DAIM controller. The algorithm
for building an intelligent Layer 2 learning switch functionality
consists of the following steps:

212

Algorithm 1 Ethernet Learning Switch

For each packet from the switch,

(1) Use MAC source and incoming port
number to update the data structure
(2) if Ethernet frame type is LLDP(0X88cc)

(3) Drop the packet // Do not forward the
link—local traffic

(4) else if MAC destination is multicast

(5) Flood the packet

(6) else if the output port is same as the input
port

(7) Drop the packets

(8) else if the data structure contains a port
for the MAC destination

(9) Forward the packet to the destination address

(10) else if the data structure does not contain
MAC destination port

(11) Flood the packet

(12) else install the flow entry in
flow table

the switch

Hust A OnenFlow Sich OpenFiow Swich Openflow Switch HostB

Fig. 4. DAIM Implementation Phase 2

At this stage, the DAIM controllers do not have a separate
communication channel to exchange information between one
another. The OpenFlow switches listen to its own connected
DAIM controller on a specific port (e.g. 2000) for control
messages. Another significant control function of DAIM in
this phase is performing a certain process for querying network
statistics (READ STATE protocol message). In addition, the
DAIM controller is able to identify if a network problem
happens, and also sends the corresponding message to the
switch to update the ports and flow tables. In all cases, the
connection is established per the TCP followed by, hello,
and feature request/reply messages. This connection has to
be developed in advance in order to process those functions.

C. Phase 3: Fully Distributed Functionality

Phase three aims to migrate all computational power to the
DAIM model, which can manage each connected switch to
produce some level of distributed computing network system.
In addition, the implementation of this phase focuses on
distributing the high-level decision making of traffic control
to the DAIM controllers. Each distributed DAIM controller
can actively share all information regarding its portion of

P. PUPATWIBUL, A. BANJAR, MD. I. HOSSAIN, R. BRAUN, B. MOULTON

the network to ensure fine-grained network wide consistency.
For coordination purposes, DAIM controllers can also publish
events as well as actively synchronise its local information
with other associated controllers in order to construct the
global network view. This distributed traffic management
allows multiple levels of redundancy as each site has the ability
to perform wide area system functions. Thus, each DAIM
controller manages its affected switch and distributes useful
information to other instances and if necessary communicates
with the neighbouring domain.

V. DAIM MODEL IMPLEMENTATION

This section describes the software specification of the
DAIM model, the implemented OpenFlow messages and
modules. The implemented modules are comprised of the
Communication module, the local Storage module, and the
Controller module as well as the most significant messages
that are needed for the communication between the switch
and the DAIM controller. More details are presented in the
following subsections.

A. Communication Module

The communication module is responsible for providing the
communication mechanism and creating sockets of a two-
way communication link between the controller and switch.
In more details, it creates two processes for handling the
communication between the switch to DAIM as well as
DAIM to OpenFlow controller. The main purpose of these
two processes is to forward messages both ways among the
controller and switch and create signal handlers for notification
of errors to the processes as well as the exiting of processes
upon user’s request. Sockets facilitate TCP/IP communication
between two separate systems. Initially, sockets are created
and then transferred over to the respective processes.

The client-server model is one of the most used commu-
nication paradigms in networking systems. Clients normally
communicate with one server at a time. From a server’s
perspective and at any point in time, it is not unusual for a
server to be communicating with multiple clients. A client
needs to know the existence of the address of the server,
but the server does not need to know the address of (or
even the existence of) the client before the connection being
established. Clients and servers communicate using multiple
layers of network protocols in which this context will focus
on the TCP/IP protocol suite.

The scenario of establishing connections between the server
socket to receive the connection from the switch and the client
socket to communicate with the controller is shown in Figure
5. Socket creation follows client and server model, where
DAIM is the server socket for the switch and also is acting as
the client socket to the OpenFlow controller.

The socket API and support for TCP and UDP communica-
tions between end hosts are described. Socket programming is
the key API for programming distributed applications on the
Internet.

A NOVEL SOFTWARE-DEFINED NETWORKING CONTROLLER: THE DISTRIBUTED ACTIVE INFORMATION MODEL (DAIM) 213

read () T
—————————— | =@

! S

|

|

accept () |

Establish the Connection to Application

Create a server socket to receive a connection
from OF-Switch

socket ()

!

bind ()

i i

|
|
|
|
|
|
|
|
|
|
| listen ()
|
|
|
|
w
|
|
|
|

well-known
port

!

accept ()

|

-way handshake) |

(as a server) block until

read () connection from the switch

Create a client socket for connection
to controller

write ()

'

|
|
|
|
| socket ()
|
close () |
|

| connect ()

LS

Fig. 5. Unix Socket Connection Setup

y—_———a 5 N\
| ‘*Prev‘ *p |*next‘ |
|

:Address Payload Address)

Block of memory (object)

Fig. 6. DAIM Storage Block of Memory (Object)

B. Local Storage Module

The DAIM local storage module requires two main com-
ponents including the Hosts and the Ports table. The informa-
tion of network devices is stored in these tables, which are
implemented using Linked list based storage. Linked list is
a way to store data with structures so that the programmer
can automatically create a new place to store data whenever
necessary. Specifically, the programmer writes a struct or class
definition that contains variables holding information about
something, and then has a pointer to a struct of its type. Each
of these individual structs or classes in the list is commonly
known as a node.

To store network information into the storage table, we
created a list of objects and cached information using blocks
of memories (objects). Memory for the objects is then allo-
cated by using C++ dynamic memory allocation methods. In
linked list based storage, each object keeps the address of its
preceding and subsequent objects. Therefore, each object can
refer to its next and previous objects. The system’s block of
memory (object) is depicted in Figure 6.

The * prefix represents a pointer that holds the address of a
memory block. Hence, the payload *p can point to any block
of memory storing single or a combination of information such
as host MAC address, switch data path ID, switch port, and
IP address. The structure for the block of memory is defined
by:

onnection

tablishment (TCP 3 -way {

(as a client) block until
connection to the controller

]

struct object

{

void *p;

struct object *next;

struct object *prev;

},.

To store objects, we have created the object_lists (tables)
structure in the storage module. The object_list is a represen-
tation of a table, and each of them includes the host entries
object_list and the port entries object_list. Each object_list
structure stores information such as the object size, address
of the first object, address of the current object and address of
the last object. Each object_list has a number of functions to
manipulate the object_list itself. These functions can be used
to add a new object, remove an object, free the memories used
by the objects and retrieve an object from the list.

C. Controller Module

The controller module is responsible for maintaining the
connectivity between the switches as well as allowing the
switches to decide what actions to apply when a particular
combination of network request is queued to the switch.

Firstly, the controller module establishes the connection
to the switch using TCP/IP protocol stacks. To be able to
receive the connection from an arbitrary OpenFlow switch,
the controller module creates a server socket that listens for
any incoming connections from the switch.

Upon successful connection to the switch, the controller
module goes in a sequential mode of operations by using
the “communicate_with_switch” method, which performs the
two functions in order, read a message from the switch and
send a respective reply message to the switch. The meth-
ods that reside within the “communicate_with_switch” are
read_from_switch and send_information. Depending on the

214

nature of the messages received from the switch, the controller
then decides and directs the switch to perform the follow-up
actions.

When the switch receives a flow’s first packet, it will be
sent to DAIM application because there is no flow entry in the
switch’s flow table to match this flow. The DAIM controller
module determines the action of switch packet forwarding
upon receiving the OpenFlow OFPT_Packet_In message from
the switch (see Figure 7). From the Packet_In OpenFlow
message, the controller module first checks whether the packet
is an ARP type by analysing the encapsulated Ethernet II frame
type.

From the Ethernet II frame, the controller module then
parses the MAC address of the source host as well as its IP
address and adds this information into the respective tables
if they are not already stored in the tables. After the MAC
addresses are learned, if the destination MAC address in the
Ethernet II frame is a broadcast type, then the controller
module sends a packet_out message to the switch with the
forwarding action of flooding the packet to all switch ports
except the ingress port. If the destination MAC address is not
broadcast, the controller module then looks up for the host
MAC address in the table, and if found it will send an ARP
flow modification message with an action to create a new flow
entry in the switch flow table. This flow entry will regulate
the forwarding of all future packets by matching the incoming
packet’s source and destination addresses.

Furthermore, if the packet_in message of Ethernet II frame
is an IPv4 type, the controller module parses the protocol type
from the IP header frame and then follows the same procedure
as ARP Ethernet type. For TCP and UDP protocol types,
the controller module creates flow modification messages
incorporating the TCP and UDP source and destination ports.

VI. DAIM MODEL PERFORMANCE EVALUATION

A performance analysis of the DAIM controller was con-
ducted using the Cbench open benchmarking tool. A built-in
utility was used as a generic software framework to allow the
development of tests for the DAIM controller.

A. Test Bed Description

The goal was to enable side by side comparisons of pre-
existing OpenFlow controllers with the DAIM controller. The
three pre-existing controllers used in the tests were NOX, POX
and NOX-MT. For all experiments, each controller implements
a normal L2 learning switch application provided by the
controller. For every switch on the chosen path, the switch ap-
plication performs MAC address learning. The packets get sent
out of the last port where the traffic from the destination MAC
address has arrived. Packets with an unspecific destination are
flooded. All setups were run on an Intel® Core(TM)2 Duo
CPU E8400 running at 3 GHz with 4 GB of RAM. Mininet
was installed with Ubuntu 12.04.5 LTS x86_64 and a Linux
3.5.0-54-generic kernel.

P. PUPATWIBUL, A. BANJAR, MD. I. HOSSAIN, R. BRAUN, B. MOULTON

B. DAIM Communication Channel Results

Throughput: This test shows the measurements of the
throughput of each controller. The default Cbench configura-
tions of test loops and duration are used under this test. Also,
the mappings of destination MAC addresses are learned before
the test.

Figure 8 shows the Cbench throughput results of the ex-
tended OpenFlow controllers with a single thread, in which
an OpenFlow switch is contacting the controller in response
to a new Packet_In (new packet arrival) event. The number of
Flow_Mod responses per second for 16 tests are plotted.

Each test was run with a 1,000 ms duration and 100,000
unique-source MAC addresses. DAIM channel running with
NOX is able to handle the highest throughput on average
23,196 Flow_Mod responses per second, followed by NOX
with average 20,540 responses per second. In comparison,
the Python-based controller ran slower. The throughput per-
formance of a DAIM channel running with POX could serve
on average 6,438 responses per second. In comparison, POX
achieved 5,952 responses per second on average. These results
suggest that connecting the DAIM channel to either NOX or
the POX controller enabled higher throughput than the original
controller.

Latency: This test looked at the average latency intro-
duced by different controllers, and compared the latency
when running with the DAIM channel. The results should be
understood in light of the fact that there are differences in the
implementation of the switch in the POX and NOX controllers.

The Cbench tool was used to perform the latency test, in
which an OpenFlow switch forwards a packet to the controller
and waits for a reply, then repeats this process as quickly as
possible. The total number of responses received within a fixed
period was used to calculate the average time the controller
took to process each event. The results are shown in Figure
9. First, it can be seen that the (Python) POX controller runs
slower than the (C++) NOX controller. It can also be seen that
the DAIM channel running with NOX has the lowest average
latency at 56.79 us. The average response time for the DAIM
channel running with POX is 149.98 us. The POX controller
when run alone had the greatest latency: 179.03 us on average.
These results suggested that adding the DAIM channel reduced
the latency of both the NOX and the POX controllers.

C. Layer 2 Learning Switch Application Results

Throughput: This test looked at the average maximum
throughput of three pre-existing controllers, and compared
them with DAIM.

Figure 10 shows Cbench throughput results. In this test,
DAIM, NOX and POX were used to process flows in a
single threaded manner. These controllers and Cbench are each
bound to a distinct physical core of a processor. NOX-MT,
however, is a highly optimised multi-threaded implementa-
tion of NOX, and hence, not surprisingly, NOX-MT shows
the best throughput (292,612 responses per second). Of the
non-multithreaded controllers, DAIM produced the highest
throughput, at 162,519 responses per second, followed by

A NOVEL SOFTWARE-DEFINED NETWORKING CONTROLLER: THE DISTRIBUTED ACTIVE INFORMATION MODEL (DAIM) 215

action_packet_in () i N

-lllemel destination =
- Broadeast (Ox 0T

T T Yes T T
" OFPT_PACKET_IN L No
__ Ethernct Il ==ARP
T Yes - T i}

- Does source
. InDAIM table? -

Packet out (63531)

_ |
Yes Flood to all ports except Ingress port

Does destination

— Yes Set out port = destination ingress port ‘

_ In DAIM table? (port of switch to host)
R -
No
t "

—

Flow Mod (ARP) ‘

“TOFPT_PACKET IN
_ Ethernet 11 == 1Pv4 -

No No

OF IPv4
_ protocol =="TCP

FPT_PACKET IN

_ Ethernet I1 = = IPvo

OF_IPv4

" Does destination
. InDAIM table?

Set out port = destination ingress port

T e ;
T Yes (port of switch to host)

[.

Flow Mod (ICMP) ‘

" Does destination
In DAIM table?

Set out port = destination ingress port

— Yes (port of switch to host)

e
No

'

Setout port =0

Flow Mod (TCP) ‘

"l

" Does destination .
o= Yes ——

Set out port = destination ingress port ‘

__ protocol==1UDP In DAIM table? (port of switch to host)
No o
¥ ¥
packet_out () Exit() Set out port = 0 }—— Flow Mod (UDP) ‘
Fig. 7. Packet Flow in an OpenFlow Switch Controlled by DAIM
190
g 210% -
170
160
251 150
g o~ 140
2 Z
8 5 5 130
.g_ 2 E 120
I
g E 110
c EDAIM+POX
8 £ 1w
2 1.5+ a EPOX
r & NOX g & EDAIMNOX
E —e— POX g oo mxox
= L DAIM+NOX g
2 —s— DAINM+POX § 50
ﬁ { 50
40
30
20
) L L 10
2 4 6 8 10 12 14 16 0
Time (second) DAIVHPOX POX DAIVHNOX NOX

Fig. 8. Number of Flow Requests Handled per Second

NOX with 22,357 responses per second. The lowest through-
put was seen in the Python-based POX controller, which
served 6,096 responses per second. Although DAIM runs
slower than NOX-MT, it can be seen that the performance
of DAIM outperforms the next best non-multi-threaded con-
troller, NOX, by more than 7 times.

Fig. 9. Delay to Respond to Flow Requests

It can also be seen that the number of connected hosts in
the network had an effect for two of the controllers, NOX-MT
and DAIM. For example, NOX-MT’s maximum throughput
reduces from 292K to 239K responses per second where there
are 107 hosts. Further, the performance of DAIM is seen
to decrease when more than 10° hosts are connected. It is

216

5
3.5 .
—&— NOX
—&— POX
3 DAIM
—3e— NOX-MT
g
G 2.5
(5]
a
3
7
&
c 2r
2
2
4]
o
=15
=]
a
IS
S
3 1t
=
=
0.5F
& N N N "
oL@ & & = o |
10° 104 10° 108 107

MNumber of Unique MACs

Fig. 10. Average Maximum Throughput Achieved with Different Numbers
of MACs

0.16

0.14

0.12

0.1

.
=
g{ W NOX
2008 wPOX
5 NOE-MT
E " DAIM
= 0.06
0.04 —
0.0z ——
0 l
NOX POX NOX-MT DAIM
Fig. 11. Flow Setup Latency Comparison

thought that these effects are due to the implementation of the
learning switch application, especially the implementation of
the lookup table.

Latency: This test looked at the average latency seen
in the different controllers when running a learning switch
application. It should be noted that there are differences in the
implementation of the learning switch in each of the different
controllers.

To evaluate the latency of the controllers, the delay of
processing flow requests was analysed with one switch, and
10° hosts. The results are shown in Figure 11. The lowest
average latency was achieved by the NOX-MT and DAIM
controllers, with 0.011 ms and 0.018 ms respectively. The
average time it took the NOX controller to process each
response was 0.057 ms, while the greatest average latency was
seen in the POX controller: 0.145 ms. If the network has a high
latency, packets take longer to be delivered, the probability of
packet loss is increased, and overall network performance is

P. PUPATWIBUL, A. BANJAR, MD. I. HOSSAIN, R. BRAUN, B. MOULTON

reduced. As a result, POX is more suitable for prototyping
than for enterprise deployment.

These results suggest that the DAIM controller can handle
a high throughput, while keeping the latency relatively low.

VII. CONCLUSION

The DAIM controller was primarily developed to inves-
tigate the viability of a logically distributed control plane,
achieved by integrating the DAIM controller in a distributed
way throughout the network at the level of the switches.
A performance analysis was conducted using the Cbench
open benchmarking tool. Performance comparisons with pre-
existing controllers were suggest that the DAIM controller can
handle a high throughput, while keeping the latency relatively
low. These findings are especially interesting given that a key
feature of DAIM is that it is designed to enable the future
development of autonomous local process flow management
strategies.

VIII. ACKNOWLEDGMENT

This work is sponsored by the Centre for Real-Time In-
formation Networks (CRIN) in the Faculty of Engineering
& Information Technology at the University of Technology,
Sydney (UTS), Australia

REFERENCES

[1] O. N. Foundation, “Software-defined networking: The new norm for
networks,” ONF White Paper, vol. 2, pp. 2-6, 2012.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

[3] D. Jankowski and M. Amanowicz, “On efficiency of selected machine
learning algorithms for intrusion detection in software defined net-
works,” International Journal of Electronics and Telecommunications,
vol. 62, no. 3, pp. 247-252, 2016.

[4] 1. Guis, “Enterprise data center networks,” Open Networking Summit
2012, 2012.

[5] L. R. Bays and D. S. Marcon, “Flow based load balancing: Optimiz-

ing web servers resource utilization,” Journal of Applied Computing

Research, vol. 1, no. 2, pp. 76-83, 2011.

S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient

and scalable offloading of control applications,” in Proceedings of the

first workshop on Hot topics in software defined networks. ACM, 2012,

pp. 19-24.

[7]1 A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proceedings of the 2010 internet network management
conference on Research on enterprise networking, 2010, pp. 3-3.

[8] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed
control platform for large-scale production networks.” in OSDI, vol. 10,
2010, pp. 1-6.

[91 A. Banjar, P. Pupatwibul, and R. Braun, “Daim: a mechanism to
distribute control functions within openflow switches.” JNW, vol. 9,
no. 1, pp. 1-9, 2014.

[10] P. Pupatwibul, A. Banjar, and R. Braun, “Using daim as a reactive
interpreter for openflow networks to enable autonomic functionality,”
ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp.
523-524, 2013.

[11] P. Pupatwibul, A. Banjar, A. Al Sabbagh, and R. Braun, “A comparative
review: Accurate openflow simulation tools for prototyping.” JNW,
vol. 10, no. 5, pp. 322-327, 2015.

[12] P. Pupatwibul, A. Banjar, A. A. Sabbagh, and R. Braun, “An intelligent
model for distributed systems in next generation networks,” in Advanced
Methods and Applications in Computational Intelligence. Springer,
2014, pp. 315-334.

[13] P. Pupatwibul, A. Banjar, A. Al Sabbagh, and R. Braun, “Developing
an application based on openflow to enhance mobile ip networks,” in
IEEE Conference on Local Computer Networks. IEEE, 2013.

[6

—_

