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 

Abstract—The convolution operation used in deterministic 

network calculus differs from its counterpart known from the 

classic systems theory. A reason for this lies in the fact that the 

former is defined in terms of the so-called min-plus algebra. 

Therefore, it is oft difficult to realize how it really works. In these 

cases, its graphical interpretation can be very helpful. This paper 

is devoted to a topic of construction of the min-plus convolution 

curve. This is done here in a systematic way to avoid arriving at 

non-transparent figures that are presented in publications. 

Contrary to this, our procedure is very transparent and removes 

shortcomings of constructions known in the literature. Some 

examples illustrate its usefulness. 

 
Keywords—Convolution, network calculus, min-plus algebra, 

graphical construction of min-plus convolution. 

I. INTRODUCTION 

UEUEING  theory, called also a mass service theory in some 

publications, is used in analyses of traffic in packet 

networks. Nowadays, it is not however only tool exploited in 

this area. The seminal works of R. Cruz [1], [2] initiated 

emergence of the so-called deterministic network calculus [3], 

being a new instrument facilitating analysis of packet flows in 

communication networks, their performance calculations, and 

also design of components of which they consist. 

This paper is devoted to a particular problem of a graphical 

visualization of the min-plus convolution used in the 

deterministic network calculus [3]. Admittedly, the main parts 

of the material presented here were already presented at a 

telecommunications symposium in Poland, in September 2017. 

However, the proceedings of this symposium are hardly 

available to a wider audience because they are only in a form of 

a CD attachment to [4], and in Polish language. On the other 

hand, the topic considered therein has a fundamental 

importance in the deterministic network calculus. Therefore, we 

want to interest also the readers of this international journal in 

the subject mentioned above.     

The deterministic network calculus used in an analysis of 

teletraffic systems can be viewed, as shown in [3], as a 

counterpart of the classic systems theory [5], [6] that deals with 

processing and transmission of signals. And, as known in this 

theory (or more precisely, in the theory of linear systems), a key 

operation is the convolution operation – in form of a 

convolution integral (in the case of analog systems) or in form 
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of a convolution sum (for digital systems). According to it, a 

system input signal is „convoluted” – with the use of the so-

called system’s impulse response – giving a system output 

signal as a result. A similar operation called also convolution 

and denoted here by a symbol   occurs in the network 

calculus. Its defining equation is the following: 
 

        
0
inf

df

t
A t A t


   

 
     , (1) 

 
 

where  A t  means the so-called  cumulative traffic at the input 

of a system servicing packets (whereby the word “system” used 

here may also mean the following: network, network node, 

communication link, and so on). Furthermore, the symbol  t  

in (1) means the so-called service curve of a given system. Note 

that this curve is a counterpart of the system’s impulse response 

used in the classic systems theory [3]. It is always a non-

decreasing function, similarly as the function  A t . Moreover, 

the symbol inf in (1) denotes the operation of calculation of a 

lower bound of the sum of functions  A   and  t   in an 

indicated range of values of a time variable τ. 

In the network calculus, the notion of cumulative traffic is a 

counterpart of the notion of a signal that is used in the classic 

systems theory. The former means simply a sum of the packets 

(bits), which entered or leaved a teletraffic system in a time 

period from 0 to t, where 0 stands for an assumed initial 

moment. Note that the value of the sum defined in such a way 

depends upon the value of t, which changes. Therefore, this 

sum can be regarded as a function of a time variable t. Further, 

if this function regards the system input it is then named the 

input traffic. It has been denoted above as  A t . But when the 

cumulative traffic regards the system output it is called the 

output traffic, and denoted here as  D t . This function is 

always a non-decreasing one, similarly as the functions  A t  

and  t . 

It has been shown [3] that the following inequality: 
  
   ( )D t A t   (2) 

 

relates the cumulative input traffic of a system with its 

cumulative output traffic. This inequality determines the 

amount of traffic,   A t , which will be certainly serviced 

in the period from 0 to t by a system possessing the service 

curve  t . Because of this reason, the latter curve is oft 

called in the literature the minimum service curve [7]. 
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Note that in a particular case, when a traffic system behaves 

as a linear one, the inequality (2) turns into equality.       

Moreover, observe that the operation of calculation of 

infimum occurring in the convolution definition (1) is a 

counterpart of the convolution integral in the convolution 

operation defined in the classic systems theory. Furthermore, 

the operation of addition in (1) is a counterpart of the 

multiplication of the system’s impulse response by a time-

shifted input signal, which occurs under the convolution 

integral. So, we see that the algebra used in the network 

calculus is not an usual algebra. The algebra used therein is 

called the min-plus algebra [3], while the convolution defined 

by (1), consistently, the min-plus convolution. 
 

Constructing and operation in the time domain of the 

convolution defined in the classic systems theory is oft 

explained graphically [8]. This convention - for illustration 

purposes  - is also used  in the monographs [3] (see Fig. 1.8 in 

[3]) and [10] (see Fig. 2.4 in [10]), and basic articles [7] (Fig. 1 

in [7]) and [9] (Fig. 3 in [9]) regarding the network calculus. 

However, a problem with all these figures mentioned above 

lies in the fact that they do not explain a basic issue of the min-

plus convolution in an enough understandable way. This is 

mostly because of the lack of visibility on them of the lower 

limit calculation. 

In order not to be groundless, let us take a closer look, 

successively, at all these figures mentioned above.  

 

 
 

(a) 

 
 

 

 

 

 

 

 

 

 
 

 (b) 
 

Fig. 1. This is the Fig. 1.8 in [3] redrawn for discussion in this paper: (a) a 
graphical illustration to the service curve definition and constructing min-plus 
convolution – after [3]; (b) a form of the service curve used in calculations for 
getting figure (a). 

 

In Fig. 1, we see only a bunch of the shifted curves  t   

(blue thin lines), but there is a lack of any visualization of the 

min-plus convolution calculations, even for a one value of the 

time variable t (denoted as time therein). Moreover, the usage 

of an auxiliary time variable τ is also not shown in this figure. 

Consider now another graphical min-plus convolution 

presentation after [10] that is visualized in Fig. 2. 
 

  

 

 

 

 

 

 

 
Fig. 2. This is the Fig. 2.4 in [10], which is redrawn here for illustration of the 
construction of the min-plus convolution that was proposed in [10]. 

 

In [10], a caption to Fig. 2 reads as follows: “The min-plus 

convolution of two functions passing through the origin can be 

obtained by placing one of the two functions at each point of 

the other function and taking the minimum of all the resulting 

functions.” Really, it difficult to recognize a construction 

carried out according to the above description. 

A construction of the min-plus convolution, which was 

proposed in [7], is visualized here in Fig. 3. 
 

 

 
 
Fig. 3. This is the Fig. 1 in [7], illustrating the construction of the min-plus 
convolution that was proposed therein. 

Some symbols occurring in Fig. 3 need explanation. A(t)  

denotes a curve of the cumulative traffic (similarly as ( )A t  in 

Figs. 1 and 2) and B(t)  means a service curve (similarly as 

( )t  in Figs. 1 and 2). Moreover, the symbol * denotes the 

operation of the min-plus convolution (similarly as   in Figs. 

1 and 2).  

In Fig. 3, one value of an auxiliary time variable τ is 

indicated explicitly and further ones, for calculations of the 

time-shifted function B(t - τ)  and the associated function 

A(τ) , are suggested. The main drawback of Fig. 3 is that the 

operation of calculation of infimum, which is inherently 

associated with the min-plus convolution (see the definition 

(1)), is not at all visualized on it. In fact, the same problem is 

also with Figs. 1 and 2. 

Finally, consider also a graphical construction of the min-

plus convolution, which was presented in [9]. It shown here in 

Fig. 4. 
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Fig. 4. This is the Fig. 3 in [9], which is redrawn here. It illustrates the graphical 

construction of the min-plus convolution as proposed in [9]. 
 

The symbol ( )S t  in Fig. 4 means the service curve that is 

denoted by ( )t  in (1). Furthermore, a caption in [9] to Fig. 4 

reads as follows: “System with service curve ( )S t  being a rate-

latency function (as illustrated in Fig. 1b above) and arrivals 

( )A t . A lower bound for the departures ( )D t  follows by min-

plus convolution and is constructed graphically by shifting 

( )S t  along ( )A t  and taking the infimum.” That is a result of 

the last operation mentioned (i.e. taking the infimum) is not 

shown at all in Fig. 4. Moreover, the usage of an auxiliary time 

variable τ in performing the constructions leading to obtaining 

the min-plus convolution is also not shown in this figure. Also, 

the meaning of the variable “time” in Fig. 4 is not described. 

Maybe it is used for both τ and t. But, how? This is not 

visualized in Fig. 4. 

The objective of this paper is to present an alternative 

approach to the graphical representation of the min-plus 

convolution. We will show that it is free of shortcomings of 

any of the methods described above. Our approach allows to 

achieve a more transparent and understandable picture of the 

min-plus convolution.  

In the next section, principles of constructing graphically the 

function defined by (1) are discussed in very detail. Then, the 

successive steps of the procedure developed are presented in 

section III for different forms of the curves of  A t  and  t . 

The paper ends with some conclusions. 

II.  CONSTRUCTING CURVE REPRESENTING MIN-PLUS 

CONVOLUTION 

On the right hand side of (1), two time variables, τ and t, 

occur, however, on its left hand side only one, t. The variable τ 

is „eliminated” therein through the use of an operation inf 

while keeping a fixed value of t. So, this fact should be shown 

in the first instance on the diagram. This is illustrated in Fig. 5. 

In Fig. 5, the way of calculation of the expression occurring 

in the braces in (1) for four values of the varying parameter τ: 

0, τ1, τ2 and t0 is shown. The calculated values are marked on a 

vertical line going through the point t=t0. The point t=t0 is 

called here a point of „observation” because, loosely saying, 

the procedure we describe can be viewed as an „observation” 

of the calculated values (related with the moment indicated 

above) for the purpose of choosing the lowest element (or 

calculation of the lower limit of a set consisting of these 

elements). 
 

 

Fig. 5. Illustration of the principle of a calculation of the min-plus convolution 

for a fixed time. 
 

For an example illustrated in Fig. 5, we see that the set 

consisting of all these values lies between the black points 

marked on the „observation” line. The lowest of them equals 

     0 00A t t   . That is the convolution value at the time 

t0 is equal to  0t  in the example considered. So, we have 

    0 0A t t   . 

In the example of Fig. 5, the service curve  t  describes a 

linear system [3]. Hence, in the case of this system, the relation 

(2) becomes an equality, what means that the system’s 

cumulative output traffic equals    0 0D t t . And the 

difference        0 0 0 0A t D t A t t    is the amount of 

traffic that the system was not able to service from 0 to the 

time t=t0. 

Changing the location of the point t=t0 on the time axis and 

carrying out the construction shown on Fig. 5 for each of them, 

we obtain a set of points that connected with each another 

build up the curve   A t . This curve for the example of 

Fig. 5, for the reasons given above, coincides with the curves 

 D t  and  t . Obviously, this is a specific case. In the next 

section, we consider other examples of the arrangements of the 

curves mentioned above. 

III. EXAMPLES OF MIN-PLUS CONVOLUTION CURVES 

A. First Example 

In this example, illustrated in Fig. 6, we have such an 

arrangement, in which the cumulative input traffic curve lies 

above the service curve in the period from 0 to 
1t  . While 

for the next times, it does not change, remaining constant equal 

to  1A  , what means the lack of further packet supply to the 

system considered. Packets staying in a buffer are all the time 

serviced by the service curve until the moment, when all of 

t 
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them will be served. The latter occurs at the time 
0t t . From 

this moment on, the service curve passes above the cumulative 

input traffic and the difference    t A t   increases over 

time. This difference determines the amount of traffic, which 

could be serviced if it appeared at the system’s input. 

  

 

Fig. 6. An example of a calculation of the min-plus convolution, when the 

curves of   A t  and  t  intersect. 

 

Moreover, with regard to Fig. 6, the following remarks may 

be made: 

1. For the time 
0t t , the values of the expression 

   A t     for the extreme values of time variable  0   

and 
0t   are the same. Therefore, we have only one black 

point lying on the „observation” line for 
0t t . However, we 

have two black points on the „observation” line for 
1t t  

because the values of    A t     differ then from each 

other. 

2. The value of the expression    A t     is shown only 

for one intermediate value of the variable 
1   on the 

“observation” lines 
0t t  and 

1t t  (blue point). Just this is a 

value for which the expression mentioned above has the 

largest value. 

3. The operation inf in either of these cases searches for the 

lowest value in a set of points lying between the lower black 

point and the blue one. The lowest value is of course 

indicated by the lower black point. 

4. In this example, similarly as in the previous one shown in 

Fig. 5, the convolution curve   A t  - passing through 

the two black points mentioned above – is at the same time 

the curve of the cumulative output traffic  D t . It overlaps 

with the curve of  t  only partly. This is shown in Fig. 7. 

 

 
 

 

Fig. 7. The curve of  D t  against the curves of  A t  and  t  for the 

example illustrated in Fig. 6. 
 

B. Second Example 

 

 

Fig. 8. An example of the convolution calculation in a case, when the curve of 

the cumulative input traffic lies beneath the service curve. 
 

The service curve of a system illustrated in Fig. 8 lies above 

the curve of the cumulative input traffic applied to it, in the 

time interval from 0 to 
1t . Moreover, it is a linear function. On 

the other hand, the curve of the cumulative input traffic is a 

polyline consisting of two segments of straight lines. The first 

of them (in the interval from 0 to 
0t ) possesses a slope, which 

is smaller than the one of the service curve. However, the slope 

of the second segment (in the interval from 
0t  to 

1t ) is larger. 

In Fig. 8, two „observation” lines are shown that belong to the 

points 
0t  and 

1t  on the time axis. Also, it is shown one 

intermediate point 
1  for which the value of the expression in 

the braces in (1) is calculated. The calculated values are 

marked by a black or blue color – according to the convention 

assumed in the previous example. 
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Moreover, with regard to Fig. 8, the following remarks may 

be made: 

1. A blue point can also lie beneath a black one. Such a case 

occurs on the „observation” line passing through the point 
1t . 

2. The black points do not overlap in this case on any of the 

„observation” lines shown. 

Note that in the configuration visualized in Fig. 8, similarly as 

in the previous ones shown in Figs. 5 and 6, the convolution 

curve   A t  represents at the same time also the curve 

of the cumulative output traffic  D t . However, now, it 

coincides on none of its segments with the curve of  t . 

But, it overlaps with the curve of the cumulative input traffic 

 A t  on the time interval from 0 to 
0t . While on the interval 

from 
0t  to 

1t , it lies beneath the latter curve and possesses a 

slope of the service curve  t . This is visualized in Fig. 9. 
 

 

Fig. 9. The curve of  D t  against the curves of  A t  and  t  for the 

example illustrated in Fig. 8. 
 

C. Third Example 

In Fig. 10, an example of the min-plus convolution 

calculation is presented, when the service curve exhibits a 

delay in the service fulfilment. (Note that the result of this 

operation is denoted here by C because in general (see (2)) it 

does not have to be equal to the system’s cumulative output 

traffic D.) It is seen in the figure that this delay equals 
0t . The 

“observation” lines for the convolution calculation pass 

through the points 
0t  and 

1t  in Fig. 10. In each case, the results 

of calculations  are shown for the extreme values of the 

variable   (black points) and for the intermediate value 
1  

(blue points).  

Note also that the lowest blue point on the “observation” 

line 
1t t  in Fig. 10 occurs for 

1 0t t   . Then, we have 
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Fig. 10. An example of the convolution calculation in a case, when the service 

curve exhibits a delay in the service fulfilment. 
 

So, it follows from the results of calculations performed for 

the “observation” lines of Fig. 10 that the convolution curve 

for the example presented in this figure has the form shown in 

Fig. 11. 
 

 

 

Fig. 11. The convolution curve  C t  against the curves of  A t  and  t  

for the example illustrated in Fig. 10. 

IV. CONCLUSIONS 

In this paper, an alternative approach to the graphical 

presentation of the min-plus convolution operation used in the 

network calculus has been presented. It is more transparent and 

removes shortcomings of the existing methods. Its usefulness 

has been proven on examples of presentations of the min-plus 

convolutions for some typical, but, on the other hand, simple 

shapes of the curves of the cumulative input traffic and service 

curves. 
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