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Abstract—This paper tries to get a response to the following 

question: When can a narrowband power amplifier (PA) be 

considered to be memoryless and when can it not be considered 

memoryless? To this end, a thorough and consistent analysis of 

the notions and definitions related with the above topic is carried 

out. In the considerations presented, two models of the 

narrowband PA are exploited interchangeably: the black box 

model widely used in the literature and a model developed here, 

which is based on the Volterra series. These two models 

complement each other. In this paper, the conditions for a linear 

or nonlinear narrowband PA to be memoryless or approximately 

memoryless or possessing memory are derived and illustrated. 

They are formulated in terms of the signal delay as well as in 

terms of the  amplitude-to-phase (AM/PM) conversion of the 

amplifier. Furthermore, the two possible interpretations of the 

amplitude-to-amplitude (AM/AM) and AM/PM conversions are 

given a mathematical framework. That is these conversions are 

presented through some operations. One set of these operations 

allows to treat the AM/AM and AM/PM conversions as 

distortions of the modulating signals. Or equivalently as 

distortions of a given signal constellation when it passes through 

the PA. Finally, it is proved that the Saleh’s and Ghorbani’s 

models of the AM/AM and AM/PM conversions occurring in the 

PAs, which were published in the literature, are not memoryless 

ones. 

Kyeywords—Narrowband power amplifiers (PAs), modelling 

memory in PAs, conditions for PA to be memoryless. 

I. INTRODUCTION 

RITING of this paper was inspired by some imprecise 

formulations and views presented in a tutorial article [1] 

on challenges in design of reconfigurable transceivers, 

published recently in IEEE Circuits and Systems Magazine. 

These imprecise formulations and views regard power 

amplifiers (PAs) used in such transceivers. For further 

discussion, we quote them here in an original, full form. They 

are expressed on page 49 of [1], left column, where one reads: 

1. “For a low-power PA and/or a narrowband PA, its 

characteristics can be regarded as memoryless. It is usually 

modeled as a nonlinear system where its output depends 

solely on its input at that particular time.”  
2. “More specifically, a memoryless PA can be characterized 

by using an amplitude-to-amplitude (AM/AM) conversion 
function and an amplitude-to-phase (AM/PM) conversion 
function.” 
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3. “Various memoryless PA models have been proposed for 

different types of PAs. The Saleh model [2], based on two 

rational functions, is defined as (these functions will be 

given here later when discussing the Saleh model). This 

model is designed especially for traveling-wave tube 

amplifiers. The Rapp model [3] has a smooth saturation in 

the AM-AM function, which is suitable for solid state 

power amplifiers (SSPAs). The Ghorbani model [4] is 

customized to field-effect transistor SSPAs.” 

Regarding the first formulation cited above, note that it 

suggests that the circuit property of being memoryless is 

identical with operation of processing (working with) only one 

value of the input signal. In the next sections, we will show that 

this belief is not correct. 

Moreover, the aforementioned first formulation can be also  

construed as suggesting that a selective narrowband 

characteristics of a PA can make it memoryless. This belief is 

also, as we will see, not correct. 

Further, the above formulation seems to suggest that a 

relation between working with relatively low powers and the 

property of being memoryless exists. We confirm in this paper 

that such a connection really exists. However, as it will follow 

from a more detailed analysis presented in the next sections, 

this relation regards, precisely saying, the notion of being 

approximately memoryless. We will show that PAs working 

with less powers are naturally better candidates to satisfy the 

condition of being approximately memoryless circuits.    

With regard to the second formulation quoted, we show here, 

once again, confirming thereby the results obtained by the 

author of this paper elsewhere [5-7] with the use of other 

approaches, that the property of having no memory by a PA 

excludes demonstrating by it nonzero values of the AM/PM 

conversion.   

Finally, the third formulation states that all the three models 

mentioned: of Rapp, of Saleh, and of Ghorbani are memoryless 

ones. We show here, confirming by the way also the results [8] 

achieved by the author of this paper in with the use of another 

approach, that only the Rapp’s model is memoryless. But, the 

models of Saleh and of Ghorbani are representations 

incorporating memory effect. 

By the way, note that an incorrect classification of the Rapp, 

Saleh, and Ghorbani models is presented also in a recent 

tutorial on PAs [9]. 

The paper is organized as follows. The next section presents 

a thorough analysis of the PA behavior; the Volterra series [10] 

is used in it. The description developed in section II is applied 

in the next one to determine the conditions for the PA to be 

memoryless or approximately memoryless or such a one that 

possesses memory. Equivalently and complementary, these 

conditions are also obtained with the help of a black box model 
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used in the literature to describe the AM/AM and AM/PM 

conversions of the narrowband PA. In section IV, the two 

possible interpretations of the latter conversions is given a 

mathematical framework. In particular, it is shown that there is 

a set of operations, which allows to treat the AM/AM and 

AM/PM conversions as distortions of the modulating signals. 

The result presented in section V determines the dependence 

existing between the signal delay caused by the PA memory 

and its AM/PM conversion value. In section VI, the results 

achieved in the previous sections are used to show that the 

Saleh’s model is not a memoryless one. Note that this allows to 

refine the example classifications mentioned above as well as 

others in which the Saleh’s model is considered to be 

memoryless, as for example, those in the papers [1], [11], [12] 

and the book [13]. The paper concludes with some final 

remarks. 

II. MODELING LOW-POWER AND NARROWBAND AMPLIFIER 

CHARACTERISTICS WITH THE USE OF VOLTERRA SERIES 

Influence of PA nonlinearities upon their behavior is 

commonly characterized [2], [9], [13] by evaluating their 

AM/AM and AM/PM distortions. For this purpose, a PA is 

driven by a bandpass signal of the form 
  

       cos cx t r t t t   , (1) 

 

where the angular frequency 2c cf   in which 
cf  means the 

carrier frequency. Moreover, t in (1) denotes the time variable. 

Furthermore, it is assumed that  x t  in (1) contains a slowly 

varying real-valued baseband signal  r t . The latter signal 

modulates the carrier amplitude, but the carrier phase changes 

with time according to the function  t . It is also assumed 

that the function  t , similarly as  r t , represents a slowly 

varying baseband signal. 

Many authors, using different mathematical tools, as for 

example those applied in [5] and [13], have shown that the PA 

output signal, when this amplifier is driven by the input signal 

given by (1), can be expressed in the following form: 
 

           cos  cy t A r t t t r t  , (2) 

 

where the functions   A r t  and    r t  are generally 

nonlinear functions of  r t . Moreover, these functions are 

called in the literature [2], [9] the AM/AM characteristic 

(conversion) and AM/PM characteristic (conversion), 

respectively. 

PAs behave as linear devices for small enough values of the 

input signal amplitudes. However, for large enough values of 

these amplitudes, they begin to behave as typical nonlinear 

circuits. Transition from the linear to the nonlinear region of 

operation of a PA can be recognized by appearance in it of the 

nonlinear products like signal compression, harmonic and/or 

intermodulation distortion, cross-modulation distortion, and/or 

of the other kinds of distortions. Amongst the latter ones are 

the AM/AM and AM/PM distortions (conversions), we 

consider in this paper. These are the specific types of 

distortions. However, their appearance is an indicator of the 

transition to the nonlinear regime of operation, similarly as in 

the case of all the other ones mentioned above. If this entering 

into the nonlinear region of operation is not very strong, one 

says that the circuit is working in a mildly (weakly) nonlinear 

[14-19] or moderately nonlinear regime (when the nonlinear 

products produced are a little bit stronger than in the previous 

case). This notion and understanding regards also the PAs. 

It seems that the notion of a low-power PA used in [1] in the 

context of its memoryless models needs some explanation. 

From reading [1], one can guess that there a PA is understood, 

which is power efficient. That is a PA with a reduced power 

consumption from DC supply. In analog circuits, such power 

reduction is achieved by making the values of the circuit bias 

voltages and currents as small as possible [20]. This circuit 

design philosophy aims at getting the so-called low-voltage 

and low-current analog circuits [20]. However, it does not 

mean that such circuits are automatically memoryless. They 

still contain reactance elements as, for example, parasitic 

capacitors, which prevent the low-voltage and low-current 

analog circuits from being considered as fully memoryless. In 

other words, we see that a low-power PA cannot be identified 

with a memoryless one. 

On the other hand, as a rule, the low-voltage and low-

current analog circuits including low-power PAs work with 

evidently smaller values of power of the transferred and/or 

amplified signals than those processed by their counterparts 

possessing bias circuitry designed for larger values of supply 

voltages. So, because of this reason, the notion of a low-power 

amplifier can be also understood in the sense just described. 

That is as an amplifier working with smaller signal amplitudes 

than those usually worked with. And in this sense, this notion 

will be used here. 

Obviously, any so-called low-power PA, as any other quasi-

linear analog circuit, can work in its linear region of operation 

or mildly nonlinear or moderately nonlinear or even in a 

strongly nonlinear region of operation (in the latter case when 

it is admissible and/or required.) For a given frequency, it 

depends upon the value of the input signal amplitude [21]. And 

we say then that such a PA behaves, accordingly, as a linear, 

mildly nonlinear, moderately nonlinear, or highly nonlinear 

circuit.    

In what follows, we will derive a general model for the 

behavior of any low-power and narrow-band PA suitable for 

the following regions of operation: linear, mildly (weakly) 

nonlinear, and moderately nonlinear. At the starting point, we 

will take also into account the reactance elements of a PA 

mentioned above, which are responsible for existence of any 

memory in it. Only afterwards, we will check whether and 

under what conditions they can be neglected making the model 

approximately memoryless. 

There is a vast literature on modelling of nonlinear circuits 

and systems with the use of Volterra series; see, for example, 

books [10], [17], and [24] on these topics, and references cited 

therein. This shows that the Volterra series is a best suited 

mathematical tool to tackle with the PAs characterised as just 

above. That is with nonlinear circuits working in their linear or 

mildly or moderately nonlinear regions of operation, and 

possibly possessing memory. Then, for the linear region of 

operation, one takes into account only the first (linear) 

component in the Volterra series, for the mildly nonlinear 

region, additionally also the second and third ones, and finally, 
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for the moderately nonlinear region also the components of 

higher orders like fourth, fifth, sixth ones, and so on. The 

number of the latter ones depends, for larger signal amplitudes, 

upon the accuracy requirements imposed on in a concrete case 

[18], [19], [25], [26].                   

 So, let us now start with a wideband PA whose nonlinear 

impulse responses [5], [6], [10], similarly as in [8], are given 

by 
 

    (1)

1 exp  h t b t a , (3a) 

 

    (2)

1 2 2 1 2( , ) exp exp   h t t b t a t a , (3b) 

 

      (3)

1 2 3 3 1 2 3( , , ) exp exp exp    h t t t b t a t a t a , (3c) 

 

and so on, for the values of the time variables t and 

,  1, 2,3,... ,it i  greater and equal to zero, and which are 

identically zero otherwise. Furthermore, the upper index in the 

successive responses in (3):    1
h t ,    2

1 2,h t t ,    3

1 2 3, ,h t t t , 

and so on, means their order (degree). In other words, they are, 

accordingly, the first order (linear), second order, third order, 

and so on, nonlinear impulse responses (Volterra kernels) of 

the PA considered. Moreover, the coefficients 0a   and 

,  1, 2,3,... ,ib i  in (3) are some constants. Observe further that 

the constant a corresponds to the time constant RC of a simple 

low-pass RC filter. We assume here that this time constant is 

very small making the PA a wideband amplifier. Furthermore, 

note that the constant a can be considered as a measure of the 

amplifier memory length. 

Observe that the PA nonlinear model described by the 

expressions (3) mirrors its most relevant characteristics we 

need to take into account in our analysis. More precisely, by 

assuming that the coefficient a is arbitrarily small, we ensure 

that the amplifier is a wideband one. But, on another hand, by 

having 0a   we ensure that this property of being wideband 

does not extend into the infinity. Moreover, this model is 

simple and algebraically easy to work out. 

In what follows, we proceed similarly as in [8]. However, 

since the details of the calculations are a little bit tedious, they 

are moved into the appendix. In the rest of this section, we 

only characterise shortly the derivations presented therein and 

repeat a final result modelling the nonlinear narrowband PA 

((4) in this section identical with (A11) in the appendix). 

In short, substituting (1) and (3) into the Volterra series 

given by (A1) in the appendix, and performing then, 

successively, the manipulations indicated in (A2-A5), we 

arrive at (A6). The latter models a moderately nonlinear 

wideband amplifier driven by a signal of the form (1).  

Here, the narrowband PA is modelled as a wideband one 

followed by an inherent passband filter. This allows us to 

consider this series connection as a one structure. It is then 

called the narrowband PA.  

As it has been shown in the appendix, by virtue of the 

inherent passband filter at the end of the narrowband PA, all 

the products in (A6) related to the frequencies different from a 

carrier frequency are filtered out in such an amplifier. Taking 

into account this effect, one gets (A7) from (A6). And after 

introducing, instead of the corresponding nonlinear impulse 

responses, the nonlinear transfer functions    1,..,
n

nH f f  of 

the wideband part of the narrowband PA model, which are 

defined by (A8), one arrives finally at 
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For definitions of  n c   ,  n c   , 
c ,   , 1 / 2C n n  , 

and    , 1 / 2C n n   occurring in (4), see the appendix. 

Observe now that both (2) and (4) represent the same signal 

that is the one occurring at the output of the narrowband PA. 

This allows us to identify the signal ( )Ny t  given by (4) with 

that provided by (2). Further, by comparison of the 

components in (4) with the corresponding ones in (2), we can 

deduce the expressions describing the AM/AM and AM/PM 

conversions in any narrowband, moderately nonlinear PA. This 

was done in [5] and [6]. In this paper, we will use however 

these expressions and the related ones, which were derived 

therein, to clarify other aspects of modelling the PAs. 

III. NECESSARY CONDITION FOR NARROWBAND AMPLIFIER TO 

BE APPROXIMATELY MEMORYLESS 

Let us begin this section with the following observation. If a 

circuit processes only one value of its input signal to provide 

the value of its output signal this fact does not mean that it 

represents a circuit without memory. Note that this is opposite 

to the widespread opinion that the aforementioned facts mean 

the same. This opinion says that working with (on) only one 

input signal value to provide the output signal value for a given 

time instant is identical with saying that such kind of 

processing is memoryless, and a circuit performing it does not 

possess memory. This view is also followed by the authors of 

the paper [1], when they are saying: “[memoryless PA] is 

usually modeled as a nonlinear system where its output 

depends solely on its input at that particular time” or “for a PA 

with memory effects, the output does not depend only on its 

current input, but on its previous inputs as well”. At first 

glance, these statements seem to be true. However, there are 

cases in which the above is not valid. In what follows below, 

we illustrate this on an example of a linear circuit possessing 

memory and driven by a sinusoidal signal. Note that such a 

circuit has a complex-valued transfer function, say  lH f , or 

equivalently an impulse response  lh t  different from a 

constant. Moreover, the sinusoidal input signal can be 

expressed as 

 

 
     

   

0 0

0 0

cos cos 2

1
   exp 2 exp 2

2

ix t AMP t AMP f t

AMP j f t j f t

 

 

    

    

 , (5) 

 



232 A. BORYS 

 

where 
0f  and 

0 02 f   have the usual meaning of frequency 

and angular frequency, respectively, of this signal. AMP in (5) 

is its amplitude and 1j   . 

The circuit is illustrated in Fig. 1. 

Fig. 1. Black-box scheme of a linear circuit. 

 

Obviously, the signal  iy t  at the output of the circuit in 

Fig. 1 can be calculated in the following way: 
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 (6) 

 

where  0lH f  denotes phase shift of the transfer function 

 lH f  calculated at the frequency 
0f . In derivation of the 

result given by (6), the definition of the Fourier transform and 

the fact that     
*

l lH f H f   were used. In the latter, the 

operation  
*

  means calculation of the conjugate of a complex 

number. 

Comparison of the final result in (6) with (5) allows us to 

write the following 

 

         0 0 02
li l i Hy t H f x t f f    . (7) 

 

Observe now from (7) that the linear circuit with memory of 

Fig. 1 works with (processes) only one value of the input 

signal. This operation (mapping) can be described illustratively 

in the following way: It picks up the value equal to 

     0 02
li Hx t f f    from the past of the input signal.  

The value chosen is scaled by  0lH f  and attributed to the 

value of the circuit output signal for a considered time instant 

t.    

Now, for more concrete illustration, consider the circuit of 

Fig. 1 to be a first-order low-pass passive filter consisting of 

one resistor of resistance R and one capacitor of capacitance C. 

As well known [27], its transfer function is given by 

 

  
1

1 2
lH f

j fRC



  . (8) 

 

From (8), we get the following values of  0lH f  (scaling 

factor) and    0 02
lH f f   (delay Dt ) occurring in (7) 

 

  
 

0
2

0

1

1 2
lH f

f RC




 (9a) 

and 

        0 0 0 02 arctg 2 2
lD Ht f f f RC f       . (9b) 

 

Moreover, because the value of  arctg 2 0fRC  , the time 

instant         0 0 0 02 arctg 2 2
lHt f f t f RC f t        . 

That is this time instant belongs, with regard to t, to the past of 

the input signal. 

It follows clearly from the above example that the fact of 

processing only one value of the input signal is not sufficient  

for saying that a circuit is a memoryless one. Relevant is, as in 

the above example, whether this value is taken from the input 

signal past or it is its present value. Note that in our example 

this was the value of  i Dx t t . That is the value taken from 

the input signal past. And only on the basis of the value of 

0Dt  , we could recognize that we had to do with a circuit 

with memory. 

Further, observe that on the basis of the above explanation 

we could make the following classification of circuits with 

regard to the property of possessing memory or not: without 

memory (pure memoryless), approximately memoryless 

(almost memoryless), and with memory. More precisely, the 

proposed classification could look like: 

1. without memory when 0Dt  , 

2. approximately memoryless when 0 Dt D  , where D  

means a chosen admissible value for which we assume 

that for the picked up value    i D ix t t x t   holds for 

every t, 

3. with memory when 
Dt D . 

Pure memoryless circuits are such ones whose transfer 

functions are real-valued. So, their phase shifts  0lH f  are 

identically equal to zero for any frequency 
0f . After the left-

hand side expression in (9b), this means then that 0Dt  . 

Both circuit categories mentioned above in points 2 and 3 

are with memory. However, at some circumstances, these 

circuits can behave approximately as memoryless ones 

depending whether they fulfil the condition 0 Dt D   or do 

not. In what follows now, we take a closer look at it. To this 

end, using the left-hand side expression of (9b), we rewrite it 

in the following form: 

  

    0 00 2
lD Ht f f D      . (10) 

 ix t  

 

 iy t  Linear circuit with memory 

characterized by  lH f  or 

equivalently by  lh t  
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Observe that fulfillment of the condition given by (10) 

depends upon the following three factors: 

1. the way of realization of the transfer function  lH f , 

2. frequency 
0f  of the sinusoidal signal applied at the 

circuit input, 

3. the tolerance on the signal shift in time we assume not to 

distinguish from the zero value shift; it is denoted here 

by the capital letter D. 

Note that these observations can be used in designing 

approximately memoryless amplifiers and/or checking whether 

they really possess the above property. For example, given a 

frequency of the input sinusoidal signal and its tolerance on the 

shift in time assumed not to be distinguished from the zero, we 

design a PA circuitry (mirrored in  lH f ) accordingly to 

fulfil the requirement (10). 

Let us now illustrate the above explanations on the previous 

example of a simple low-pass filter with turnover frequency 

100 kHztf  . We will check whether its behavior can be 

assumed to be approximately memoryless or does not, in the 

following environment: 
0 1 kHzf   and  100 μsD  . To this 

end, we invoke the following relation between the time 

constant RC and its turnover frequency: 1 tRC f  [27]. Using 

it in (9b), we get    0 0arctg 2 2D tt f f f  . Next, observe 

that in our case 
02 2 1 100 0.06tf f    . And this allows us 

to use the standard polynomial expansion for the function 

 arctg x x  restricted to the first component only. Hence, we 

get    0 02 2 1D t tt f f f f   . By substituting this into 

(10), we arrive at 0 1 tf D  . Rearranging the latter, we 

receive 0 1 tD f  . And finally, we check whether the last 

inequality is fulfilled for the values of our example. The 

substitution gives 0 10 kHz 100 kHz  . So, it is fulfilled. 

Therefore, we conclude that the low-pass filter in our example 

behaves approximately as a memoryless circuit at the 

environment characterized by the aforementioned parameters.   

We will show now that similar arguments as those used  in 

the example just presented can be also applied for description 

and explanation of a relation (mapping) between the input and 

output signals of a narrowband PA given by (1) and (2), 

respectively. To this end, let us start with writing down 

formally the mapping existing between these signals as  
  

 
        

     

cos

   cos

c

c

A r t t t r t

PA r t t t

 

 

  

 

, (11) 

 

where the notation PA is used for this mapping. We draw here 

attention to the fact that the mapping     y t PA x t  given 

by (11) is a specific one. It is defined only for the input signals 

having the form given by (1) and results in the output signals 

possessing the form expressed in (2). 

The mapping given by (11) is illustrated in Fig. 2. 

 
 

 

Fig. 2. PA description by a mapping     y t PA x t  relating the signals 

having the form given by (1) and (2). 

 

In the next step, let us rewrite (1) and (2) in the following 

form:  
  

          cos 2 2c cx t r t f t t f     (12) 

and 
 

 
  
 

 
    

cos 2
2 2

N c

c c

A r t r tt
y t r t f t

r t f f




 

  
    

  
  

. (13) 

 

Note that we have applied the notation  Ny t  in (13) instead 

of  y t , which was used before in (2). This is done now here 

because introducing in the meantime the notation  Ny t  (see 

(4)) was for denoting the PA output signal after passing 

through its bandpass output filter. That is for such a PA that 

produces a narrowband output signal. But, see that (2) is 

nothing else than just the description of such the PA. So, 

thereby, alignment of notation has been achieved. 

Further note that comparison of (12) with (13) allows to 

rewrite (13) in such a form 

  

  
  
 

  
2

N

c

A r t r t
y t x t

r t f

 
  

 
 

 (14a) 

 

if the following conditions: 
 

 

 
  

 
  

   and  
2 2c c

r t r t
r t r t t t

f f
 

 

    
      

   
   

 (14b) 

 

are satisfied.  

Note that (14a) resembles (7), and this fact will be the basis 

for our further discussion in the context of the PA model 

derived in section II. However, before starting this discussion, 

we draw the reader’s attention to the fact that we will consider 

now a definitely more complicated case than that considered in 

our example discussed at the beginning of this section. In 

detail, we have assumed in the latter case that the input signal 

amplitude as well as its phase – that is AMP and the phase 

equal to zero in (5) - were not modulated. This is opposite to 

the case we consider now, in which both the input signal 

amplitude and its phase are modulated. The amplitude 

modulation goes according to the function  r t , but the phase 

according to the function  t  - see (1). 

 x t  

 

 y t  
PA described by a mapping 

    y t PA x t  with  y t  

and  x t  given by (2) and 

(1), respectively 
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To continue now, let us rewrite (4) in the following form: 

 

 

   
  

           

         
*

1

1, odd

, 1 / 2
2

exp , 1 / 2

exp   .

( )
2

N

n

n c c

n

n c c

n
N

n

r t
C n n

H j t t C n n

H j t t

r t
y t

   

   









 
      

 

     

   


 

 (15) 

  
In derivation of (15), the equalities 

 
      , 1 / 2 , 1 / 2C n n C n n    (16a) 

and 

 

           n n

n c n cH H    


    (16b) 

 

have been applied. 

Introducing next a complex-valued function 

 

   

 
       

1

1

1, odd

, , ,

 ,

( )

 , 1 / 2
2

N

nl c

n
N

n

n c
n

r t N HH

r t
C n n H



 









 
 
 
 



  

 (17) 

 

we can rewrite (15) in the following form: 
 

 

 
   

        

   

1

*
1

, , ,
2

exp , , ,

exp  =

( ) ( )

( )

N

N nl c

N

c nl c

c

r t
r t N H

j t t r t N H

j t t

y t H

H



  

 





 


   

  




 (18) 

 
     

       

1

1

= , , ,

cos , , ,  ,

( )

nl

N

nl c

N

c H c

r t r t N H

t t r t N H

H 

   







  

 

 

where ( )nlH   and  
nlH   mean the magnitude and phase, 

respectively, of the function ( )nlH  .  

Note now that the function    1
, , ,( )

N

nl cr t N HH 
  defined 

by (17) plays a role of a describing function [28] of the 

nonlinear PA shown in Fig. 2. Admittedly, its definition 

applied here is a little bit different from that used for the 

formulation of describing functions in [28] or [29]. However, 

its action and usage is the same. It depends upon the amplitude 

modulating signal  r t  and the angular frequency 
c  (or 

frequency 
cf ). The fact that it is an approximation obtained 

with the use of a Volterra series is also shown. This is done by 

indicating its dependence upon the number N of the 

components of the Volterra series taken into account. 

Moreover, the symbol  1 N
H


 means that the PA nonlinear 

transfer functions of orders from 1 to N are taken to build up 

the approximation. 

Equivalent PA model of the one of Fig. 2, which uses the 

describing function    1
, , ,( )

N

nl cr t N HH 
  (denoted in this 

paper also as    1
, , ,( )

N

nl cr t N H fH
 ), is visualized in Fig. 3. 

 

Fig. 3. PA description using the describing function 

   1
, , ,( )

N

nl cr t N H fH
 . 

 

Finally, see that in view of (1) equation (18) can be 

rewritten as 
 

 
   

     

1

1

, , ,

  , , ,

( ) ( )

nl

N

N nl c

N

H c c

r t N H

x t r t N H

y t H 

  







 


 (19a) 

or 

 
   

       

1

1

, , ,

  , , , 2

( ) ( )

nl

N

N nl c

N

H c c

r t N H f

x t r t N H f f

y t H

 







 


 (19b) 

 

showing the frequency
cf  instead of 

c  if the conditions (14b) 

are satisfied. 

Furthermore, comparison of (14a) with (19b) shows that the 

following relations: 

 

 
  
 

   1
, , ,( )

N

nl c

A r t
r t N H f

r t
H


  (20a) 

and 

 

        1
, , ,

nl

N

H cr t r t N H f


   (20b) 

 

hold. 

Now, the more detailed considerations regarding (19b) 

follow. First, we show that the case when (19b) reduces to the 

linear case ( 1N  ) differs significantly from the truly 

nonlinear one ( 1N  ). To this end, assume 1N   in (17). 

Then, we obtain 
 

        1 1
, 1, ,( ) ( )nl c l c cH r t N H f H f H f    , (21) 

 

which shows that    1
, 1, ,( )nl cH r t N H f  reduces to the 

first order (linear) transfer function of the PA. This is clear 

because it was assumed to be a linear device. And, because of 

this reason, the subscript nl in ( )nlH   was changed to l in (21). 

Moreover, note also that this notation is consistent with the one 

used in description of the linear circuit with memory of Fig. 1. 

 

 x t  

 

 Ny t  PA characterized by the 

describing function 

   1
, , ,( )

N

nl cr t N H fH
  
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Furthermore, note that in the case of a purely linear PA the 

expressions (20a) and (20b) reduce to 

 

 
  
 

   1
( )l c c

l

A r t
f H f

r t
H   (22a) 

and 
 

         1
lH c cHl

r t f f     , (22b) 

 

where the subscript l is added in the left-hand side quantities to 

emphasise the fact that they regard the linear PA. Also, we see 

that (19b) assumes then the following form: 
 

  
 

2
( ) lH c

N l c

c

f
y t f x t

f
H





 
   

 

. (23) 

 

The result achieved in (22) and (23) is illustrated in Fig. 4. 
 

Fig. 4. Black-box scheme of a linear PA characterized by the linear transfer 

function ( )l cfH  calculated at the carrier frequency 
cf . 

 

Note now that the form of the expression given by (23) is 

identical with the one given by (7). So, this allows us to say 

that the whole discussion and conclusions regarding the 

behaviour of the circuit of Fig. 1, which were presented above, 

are also fully applicable to the behaviour of the linear PA 

scheme presented in Fig. 4. Because of this reason, they are 

not repeated at this place, with only one exception - regarding 

the condition for the linear PA to be approximately 

memoryless. In view of (10), the latter condition is given by 

  

    0 2
lD H c c xt f f D      . (24) 

 

where 
xD  means the tolerance on the signal shift in time 

assumed not to be distinguished from the zero value shift and 

that is now referred to as the PA input signal given by (1). 

It is also worth noting that we could express shortly our last 

conclusions presented above in the following way: Processing 

the sinusoidal signal by a linear PA does not depend at all of 

whether the amplitude and/or phase of this signal are 

modulated or are not. It is identical in both the cases. The 

modulation operations have no influence on it. 

As well, it is worth mentioning at this place that the 

conditions (14b) can be reformulated using the introduced 

notion of the tolerance D on the signal shift in time we assume 

not to distinguish from the zero value shift (see the definition 

presented at the beginning of this section). Such a 

reformulation can be carried out along the following lines: We 

assume that  
 

   
     

2
D

c

r t
r t r t t r t

f


 
    

 
 

 (25a) 

 

holds approximately for all times t if the delay 
Dt 

 defined in 

(25a) fulfils the following inequality: 

 

     2D ct r t f D     (25b) 

 

for all times t, where D
 means the tolerance on the signal 

shift in time assumed not to be distinguished from the zero 

value shift and that is now referred to the modulating signal 

 r t . 

Similarly, we assume that  
 

 
  

   
2

D

c

r t
t t t t

f
  



 
    

 
 

 (26a) 

 

holds approximately for all times t if the delay 
Dt 

 defined in 

(26a) fulfils the following inequality: 

 

     2D ct r t f D     (26b) 

 

for all times t, where D
 means the tolerance on the signal 

shift in time assumed not to be distinguished from the zero 

value shift and that is now referred to as the modulating signal 

 t . 

Note further that because the maximal frequencies in the 

spectrum amplitude characteristics of the baseband signals 

 r t  and  t , say 
mrf  and 

mf 
, respectively, fulfil the 

corresponding inequalities: 
mr cf f  and 

m cf f   the 

following  relations hold: 
 

   and  x r xD D D D   . (27) 

 

Observe that it follows immediately from (24) and (27) that 

if a PA can be assumed to be approximately memoryless when 

processing a sinusoidal carrier signal, then it possesses 

automatically this property also with respect to the modulating 

signals  r t  and  t . Maybe the above statement seems to 

be obvious, nevertheless, it is worth reminding.  

Consider now the nonlinear PA described by (14a) or by 

(19b) (if using the Volterra series). These expressions show 

first that the nonlinear PA represents a nonlinear circuit with 

memory. This is so because the delay of the input signal is not 

identically equal to zero. Second, the PA works with 

(processes) only one value of the input signal taken from its 

past. However, now, the instantaneous amplification factor 

    A r t r t  of this value and its delay     2 cr t f  

depend upon the modulating signal  r t  (its instantaneous 

amplitude). And this obviously makes a significant difference 

between the nonlinear case discussed now and the previous 

linear one (see (22a) and (22b)). 

 

 x t  

 

 Ny t  
Linear PA with memory 

characterized by the linear 

transfer function 

     1

l c cH f H f  
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The latter fact can be interpreted more practically as the 

dependence  of  the amplification factor     A r t r t  and of 

the signal delay     2 cr t f  upon the energy sent during 

the symbol (bit) duration, 
is

E . This is so because we have 

 

       
2 22

0 0

s s

i i i

T T

s s s sE b r t dt b AMP dt b AMP T     , (28) 

 

where b means some constant, 
sT  denotes the symbol duration, 

and 
is

AMP  is the amplitude of the signal  r t  during duration 

of the symbol 
is . This amplitude is assumed not to change in 

duration period of a given symbol. Obviously, if the next 

symbol differs from the previous one, its amplitude assumes a 

new value. 

Equivalently, we can say that the amplification factor 

    A r t r t  and the signal delay     2 cr t f  are 

dependent upon the power transmitted,  
i is s sP E T . It follows 

from (28) that the latter is given by 

 

  
 

2

2
0

s

i

i i

T

s

s s

s s

b r t dt
E

P b AMP
T T

  


 , (29) 

 

Finally, the condition for the nonlinear PA to be 

approximately memoryless is the following:  
 

     0 2D c xt r t f D     . (30) 

 

Observe first that this condition depends upon the energy 

transmitted. As the rule is that the function   r t  is non-

decreasing one, it will be harder to satisfy the inequality (30) 

for larger values of the energy transmitted. Second, because 

this energy changes, as explained above, it is reasonable to 

consider the worst case, which will then have the following 

form: 

  

     0 max 2
iD s c x

i
t AMP f D     (31a) 

or 
  

     0 max 2
iD s c x

i
t P b f D     . (31b) 

 

Third, it follows from (31b) that in the nonlinear case the 

notion of the approximately memoryless PA depends upon the 

level of the power transmitted 
is

P . 
 

IV.  INTERPRETATION OF AM/AM AND AM/PM 

CONVERSIONS AS DISTORTIONS OF MODULATING SIGNALS 

In this section, we would like to draw attention to a certain 

duality existing in the telecommunications literature regarding 

interpretation of the results of the mapping from (1) to (2)  

 

 

(illustrated in Fig. 2). To explain this duality, let us define first 

the following vectors:  

  

  

   

   

      

1

2

3 cos 2 c

x t r t

t x t t

x t r t f t t



 

 
 

  
 

   

x , (32a) 

 
  

  

   

   

         

1

1 2

3 cos 2 c

y t r t

t y t t

y t A r t f t t t



 

 
 

  
 

    

y , (32b) 

 

and  
  

  

    

     

      

1

2 2

3 cos 2 c

y t A r t

t y t t t

y t r t f t t



 

 
 

   
 

   

y . (32c) 

 

Moreover, let us define also the following mappings 

(operations):  
  

          cos 2 cx t X t r t f t t   x , (33a) 

 

             1 1 cos 2 cy t Y t A r t f t t t    y , (33b) 

 

and 
  

             2 2 cos 2 cy t Y t A r t f t t t    y . (33c) 

 

Defining the inverse operations to X , 
1Y , and 

2Y  determined 

above will be helpful in our further considerations, too. We 

denote the inverse mappings here in the following way: 
  

     1t X x tx , (34a) 

 

  

     1

1 1t Y y ty , (34b) 

and 
 

     
2

1

2 t Y y ty . (34c) 

 

Observe now that the vectors  1 ty  and  2 ty  given by 

(32b) and (32c), respectively, constitute two possible 

interpretations of the PA output signal. The first one says that 

both the modulating signals  r t  and  t  are transferred 

from the PA input to its output unchanged. Contrary to the 

above, the amplitude of the carrier signal changes from  r t  to 

  A r t  and its phase from  t  to    t t  . Further, 

note that this process can be schematically described in the 

following way:  
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t X x t

t t
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t Y y t
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 

 

 





 
   

   
    

    
       

x

y

.  (35) 

 

Observe from the above that in this interpretation the 

modulating signals  r t  and  t  appear at the PA output 

undistorted. But, opposite to the above, the amplitude of the 

carrier signal appears at the PA output as distorted if   A r t  

is not a linear function of  r t . And, similarly, the phase of 

the carrier signal appears at the PA output as distorted if 

   0r t  .  

This description corresponds with what really happens by 

transferring the input signal given by (2) to the PA output. It 

shows how the parameters of the carrier signal change while 

the modulating signals remain unchanged.    

Consider now the second case related with the vector  2 ty . 

We see here both the modulating signals  r t  and  t  

through transferring from the PA input to its output change. 

More precisely,  r t  turns into   A r t , and it is distorted in 

the case when the latter does not represent a linear function of 

 r t . Further,  t  turns into    t t  . So, it can be 

assumed to be distorted when    0r t  . However, in this 

case, we assume the carrier signal passes through the PA 

unchanged. This process can be schematically described in the 

following way:  
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x
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.  (36) 

 

Observe that the latter interpretation attributes all the 

changes and distortions the modulating signals  r t  and 

 t , not the carrier signal. Obviously, this does not 

correspond to the physical reality in the PA, but it is a 

convention used widely by the telecommunications engineers.  

The reason for doing so is, we think, the kind of modelling and 

description of the digital modulation schemes used in 

telecommunications exploiting the so-called signal 

constellations [30]. This point of view and interpretation 

enables observations of changes (distortions) in a given signal 

constellation when it passes through the PA [31]. However, we 

are going to develop this topic in more detail in the next paper. 

At the end of this section, note that formally both the 

interpretations described above are acceptable from the point 

of view of the PA considered as a black box. This is so 

because the following equalities are satisfied:  
  

 
       

      

1 1 2 2

  

y t Y t Y t

PA X t PA x t

  

 

y y

x

     . (37) 

 

The relations (37) are also illustrated in Fig. 5. 
 

Fig. 5. Illustration of relations (37) for the PA viewed as a black box. 

     

V.  RELATION BETWEEN AM/PM CONVERSION AND 

MEMORYLESS PROPERTY 

First, we recall here that the AM/PM conversion of the PA 

has been defined in the literature [2], [9] as the function 

   r t  occurring in (2). Second, it follows from (30) that 

the relation between the delay 
Dt , which is the parameter 

determining whether a circuit possesses memory or does not, 

and the function    r t  is the following:   
 

     2D ct r t f   . (38) 

 

An third, let us also recall our definition of possessing memory 

or not possessing it that was formulated in the three points 

below (9b). 

Considering now the above, we deduce easily that 

1. a circuit possesses no memory when    0r t  ; 

2. a circuit can be assumed to be approximately memoryless 

if the values of    r t  fulfil the inequality 

    0 2 c xr t f D   ;  

3. a circuit has evidently a memory when the values of 

    2 cr t f  are greater than the assumed value  

xD . 

Note also here that the second condition from point 2 above, 

expressing the condition for a circuit to be approximately 

memoryless (almost memoryless), can be formulated for the 

worst case - with help of (31) - as 
  

     0 max 2
is c x

i
AMP f D    (39a) 

or 
  

     0 max 2
is c x

i
P b f D    . (39b) 

 

Finally in this section, observe that the results presented 

therein confirm that the property of having exactly no memory 

by a PA excludes demonstrating by it nonzero values of the 

AM/PM conversion.   
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by the mapping 
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VI.  MODEL OF SALEH AND RELATED ONES INCORPORATE 

MEMORY EFFECT 

In [2], Saleh developed a model, which approximates the 

AM/AM and AM/PM conversions of the PA by the following 

functions: 
 
 

    
 

  
1

2

2

AM/AM
1

r t
A r t

r t




 



 (40a) 

and 

   
  

  

2

1

2

2

AM/PM
1

r t
r t

r t




  



 , (40b) 

 

where the coefficients 
1  and 

2  as well as 
1  and 

2  

assume real values. They are adjusted to the measured data for 

a given amplifier. 

Note that it follows evidently from (40b) that the values of 

the AM/PM conversion of the PA differ from zero for 

  0r t  . Therefore, in view of the results of the previous 

section, the Saleh’s model cannot be considered as a 

memoryless one. Possibly, it can be only regarded as an 

approximately (almost) memoryless one when the conditions 

specified for this PA class in the previous section are fulfilled. 

The model developed by Ghorbani [4] behaves similarly in 

the sense that its AM/PM function differs from zero for 

  0r t  . Hence, the conclusions drawn for the Saleh’s model 

just before are valid also in this case. 

Contrary to the above, the Rapp’s model [3] assumes  

   0A r t  , what means that this model is exactly 

memoryless. Obviously, another thing is how exactly this 

model, incorporating the above assumption, describes reality. 

VII.  CONCLUDING REMARKS 

This paper shows that there are still topics, in which doubtful 

and imprecise notions and definitions are used. As seen, they 

are repeated and disseminated by a new generation of 

researchers, without any critical reviewing.  

We show here that some critical reviewing is in many cases 

desirable. One of the examples is the memoryless narrowband 

PA, which is assumed in the literature to possess the nonzero 

values of the AM/PM conversions. This example is considered 

in this paper and we show here that the two properties 

mentioned above are mutually exclusive. A thorough analysis 

of the problem is presented. As a result, a useful and consistent 

platform for understanding the behavior of the PA is developed.  

We hope this platform will be also utilized for re-thinking the 

current principles the designers of the PAs use. 

 
APPENDIX 

DERIVATION OF EQUATION (4) FOR THE NONLINEAR PASSBAND 

POWER AMPLIFIER 
  

Let us substitute (1) and (3) into the Volterra series defined 

as [10] 
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As the result, we obtain 
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In the next step, let us restrict consideration of the 

characteristics of the PA discussed to only the range involved 

approximately in its memory. This can be done by neglecting 

these parts of the impulse responses (3) that lie outside the 

time interval 0,   a . That is by equating them to zero. In 

other words, it means that we exploit then the following 

approximations: 
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and so on. 

Introducing the above approximations into (A2), we can 

rewrite this relation in the following way: 
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Now, we assume that the slowly varying baseband signals 

 r t  and  t  occurring in (1) do not approximately change 

in the interval 0,  a   of the integrations indicated in the 

definite integrals in (A4) for the time variables 

,  ,  1, 2,3,...i i   . In other words, we assume that 
  

          and    i ir t r t t t        (A5) 
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for 
1,  ,  1, 2,3,... ,i i     taking on the values from the 

range 0,  a  .  

 

Note that in the frequency domain the above assumption can 

be interpreted in the following way: (A5) is valid if the 

maximal frequency in the amplitude characteristics of the 

baseband signals  r t  and  t , say 
mf , fulfils the inequality: 

1mf a . 

So, taking into account (A5) in (A4), we can rewrite the 

latter as 
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In what follows, we restrict ourselves to retaining only the 

first N components in the Volterra series description (A6). 

Also, we include a passband filter with the centre frequency 

 2c cf    at the PA output into its structure. That is we 

treat this filter as a part of the PA model. And, because of this 

reason, we can say about such a PA that it is as a narrowband 

one.  

Obviously, without including the passband filter into the PA 

model or lack of such a filter at all, the relation (A6) models a 

moderately nonlinear wideband amplifier driven by a signal of 

the form (1). 

In what follows now, we consider modelling narrowband 

amplifiers. To this end, observe that by virtue of the passband 

filter all the products in (A6) related to the frequencies 

different from 
cf  are filtered out in the narrowband 

amplifier. So, in effect, we obtain the following expression: 
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 (A7) 

 

where ( )Ny t  denotes the PA output signal after passing 

through its bandpass output filter (narrowband output signal). 

Furthermore, the symbol     , ! ! !C n m n m n m   in (A7) is 

the so-called binomial coefficient and the symbol 

 1; ,

n

i

i C n m




  

stands for a sum of the time variables 
i  related with one of 

the distinct product frequencies. Note that there are in each 

case  ,C n m  of such combinations what is indicated here by 

using this symbol beneath the summation symbol  .  The 

detailed derivations can be found in [5] and [6].  

To get rid of the integrals in (A7), we apply now the 

multidimensional Fourier transforms [10] to the nonlinear 

impulse responses occurring in (A7). These transforms are 

called the nonlinear transfer functions    1,..,
n

nH f f  of the 

corresponding orders 1 (linear case), 2,3,... ,n   and are given 

by 
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, (A8) 

 
where 

1,.., nf f  mean the frequencies forming the n-th 
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dimensional frequency space [10]. In what follows below, we 

use also, for simplicity, the notation    1,..,
n

nH    with 

2 ,i if   1,2,..., ,i n  instead of     1,..,
n

nH f f . Generally 

in this paper, the notations    1,..,
n

nH f f  and    1,..,
n

nH    

are used interchangeably. 

 

We apply (A8) in (A7) in the following way:  
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(A9) 

 
where  n c    and  n c    denote such the angular 

frequency sets  1,.., n   whose elements ,  1, 2,..., ,i i n   

can assume only the values 
c  or 

c , and whose sums 

give the value 
c  or 

c , respectively. Furthermore, 

 ,1n c    in (A9) means the first element of the set 

 n c   , and so on. 

 Obviously, the components in (A7) related with the 

expressions involving the sums 

  1; , 1 /2

n

i

i C n n


 

  can be 

transformed in the same way as those in (A9) with 
    n

n cH     meaning 
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 Further, taking into account this and (A9) in (A7), we get 
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For more details, see also [8]. 
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