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Video Streaming to Empowered Video Walls
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Abstract—Video walls are useful to display large size video
content. Empowered video walls combine display functionality
with computing power. Such video walls can display large
scientific visualizations. If they can also display high-resolution
video streamed over a network, they could enable distance
collaboration over scientific data.

We proposed several methods of network streaming of high-
resolution video content to a major type of empowered video
walls, which is the SAGE2 system. For all methods, we evaluated
their performance and discussed their scalability and properties.
The results should be applicable to other web-based empowered
video walls as well.

Keywords—Video wall, Video streaming, SAGE2, WebRTC,
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I. INTRODUCTION

IDEO walls built from LCD or LED panels are increas-

ingly used to display large size video content. A high-
resolution and a decreasing cost of thin-frame LCD panels
makes them a popular choice for video walls. LED panels
allow even completely seamless surface and may replace LCD
panels in the future even for scientific use, if their resolution
increases and the cost decreases.

We can see video walls in places such as shopping malls
or airports, where they present video content played out in a
loop. They are also used in control centers to display a state of
some industrial system and a set of camera views. A resolution
of such video walls is limited by a hardware controller used,
regardless of the number of LCD or LED panels.

There is another type of video walls that we call empowered
video walls, where each LCD panel is connected to an output
of a powerful video graphical adapter with GPU circuits. Such
video walls are usually installed in research laboratories or
in university classrooms. An empowered video wall differs
in several key aspects. First, it keeps a full resolution of
each LCD panel, therefore a total resolution of the video
wall can scale arbitrarily with the number of LCD panels
used. Second, it can display content generated in real time,
such as scientific visualizations or output of multiple running
software applications. Finally, empowered video walls are
usually connected to the Internet and can communicate with
remote applications.

A suitable software control system is required to provide
such functionality, particularly sharing a video wall for mul-
tiple concurrent applications or visualizations. Many video
walls use the Scalable Amplified Group Environment (SAGE2)
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[1]. It is a web-based system allowing easy programming
of applications with visual outputs that are scalable across
video walls of arbitrary sizes and resolutions. SAGE2 is now
installed in tens of laboratories around the world.

Video streaming to an empowered wall can be useful for
distance collaboration scenarios. It can be used for video con-
ferences or to stream remotely rendered visualizations in real
time for discussions or distance processing among researchers,
students or teachers. However, it is not straightforward to
stream remote video content to a wall driven by a set of web
browsers.

We implemented several techniques for streaming of high-
resolution video to a SAGE2 video wall and evaluated their
performance, advantages and limitations. We believe that the
results are generally applicable to other empowered video
walls with web-based software control systems.

II. RELATED WORK

We base our work on several previous works and existing
technologies.

In SAGE2 [1], LCD panels are divided into groups, where
each group (typically a vertical column) shows an output
of one Chrome or Electron web browser, see Fig. 1. Ap-
plications run directly inside the web browsers using their
Javascript engines. Multiple application instances exchange
synchronization messages through a SAGE2 server. Based on
the communication with the SAGE2 server, each application
instance displays only its part of the whole application user
interface. When compared to the original SAGE system [2],
the new web-based architecture allows easier application pro-
gramming and is well suited for applications like gigapixel
image viewers.

Web Real-Time Communication (WebRTC) [3] is a collec-
tion of communications protocols and application program-
ming interfaces (APIs) that enable real-time communication
over peer-to-peer connections, typically for video applications.
WebRTC is being standardized by the World Wide Web
Consortium (W3C) and the Internet Engineering Task Force
(IETF). Most modern web browsers implement WebRTC,
including Google Chrome, Mozilla Firefox or Microsoft Edge.
This makes WebRTC particularly useful for applications with
web-based user interfaces and it is also an attractive option for
the SAGE2 system, which itself uses web browsers for visual
output.

Ultragrid [4] is open source software for video and audio
network transmissions. It is available for Linux, Windows and
Mac OS X platforms. Ultragrid can transmit video signals
captured from various types of grabber cards. Several types of
video compression are implemented, some of them accelerated
using GPU. It has been used for transmissions of video signals
in up to 8K resolution.
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Fig. 1. SAGE2 empowered video wall

Libyuri [5] is a library of processing modules for video,
audio and other data. Applications can be specified as directed
graphs of modules in a data flow fashion. A particular appli-
cation is created dynamically at startup by reading a module
graph from an XML file or another source. The graph concept
provides high scalability and ease of application creation with
little programming. Libyuri can be linked with Ultragrid to
create network applications.

A V4L2 Linux kernel driver [6] creates a virtual web camera
in a Linux operating system. An application can insert real-
time video content into a Linux device created by this driver.
Other applications can then open this device as a regular web
camera and read the video content from it. The webcam can
be used with RGB or YUV uncompressed video.

A v412loopback [7] is another implementation of a virtual
web camera for a Linux operating system. The advantage of
this implementation is that it can be used also with compressed
JPEG video.

GPUJPEG [8] is a compression and decompression library
for JPEG images accelerated on GPU. This acceleration allows
for compression and decompression of 4K images up to
125 fps. The library was developed as a part of the UltraGrid
software project.

III. DESIGN OPTIONS

We implemented several methods of video streaming to a
set of web browsers that form the display part of the SAGE2
system using WebRTC, JPEG images provided by a web server
and the Ultragrid software. A window that displays the video
stream can span multiple web browsers. Each method differs
in a way the video content is delivered to individual web
browsers. The window displaying the video, can be freely
resized and moved across the video wall, except with the last
method with video stripes.
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In order to obtain reproducible results, we read prepared
video content from files encoded in H.264. For live streaming
from a camera using a grabber card, performance would be
equal or higher, because we would save H.264 decoding on
the sender side.

The number of frames displayed per second (fps) was
counted in the Javascript code that ran inside the SAGE2 web
browsers. An exception was the second configuration, with
JPEG images retrieved from a web server, where the code did
not allow to insert such instrumentation. In this configuration,
we used a camera to capture the video wall and we counted
the time code, which was inserted in the video content.

A. WebRTC

The configuration using WebRTC is shown in Fig. 2. An
application based on libyuri reads content from a video file
and inserts the content into a virtual web camera. A web
browser started on the same PC opens a web page with
webrtc—send. js Javascript application. This application
uses WebRTC to connect to all SAGE2 web browsers and
streams to them the content from the virtual web camera.
Each remote web browser runs a webrtc-receive. js
Javascript application, which displays a part of the original
video frame selected based on the application window position
and size on the video wall. Since the video content is being
inserted into the virtual web camera in its original frame rate,
if the WebRTC application cannot keep up, the frames are
skipped and not displayed.

WebRTC
virtual i
webcam :
|
_ [decose]_ [Videoto] , e
video.mp4 H.264 webcam : .

libyuri-webcam.xml

webrtc-send.js
! Chrome

webrtc-receive.js

Fig. 2. Streaming by WebRTC

B. JPEG images

The system configuration using JPEG images is shown in
Fig. 3. An application based on libyuri reads content from a
video file, decodes H.264, splits the uncompressed video into
individual frames, encodes these frames using the GPUJPEG
library and provides the resulting JPEG images to a web server.
Web browsers that drive the video wall open a jpeg.js
Javascript application. This application runs in a loop, which
repeatedly requests a JPEG image from a remote web server
and displays the image. Since frames are taken from the
input source on request by web browsers, if the Javascript
application cannot keep up, the video playout is either slowed
down for a file-based video source or scattered for a live
(camera) video source.

C. Ultragrid with H.264 streaming

The system configuration using Ultragrid with H.264
streaming is shown in Fig. 4. An application based on libyuri
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Fig. 3. Streaming by JPEG images

reads content from a video file, decodes H.264, encodes the
video again with H.264 and uses Ultragrid software to stream
the H.264 encoded video over a network to multiple SAGE2
PCs. The reason why the input video file is first decoded by
the H.264 module is to keep H.264 encoding in a processing
chain, because it would be needed for a real-time video source,
such as a camera. Each SAGE2 PC runs again the Ultragrid
software, which receives the video content and decodes H.264.
A virtual web camera is created on each PC and an application
based on libyuri linked with Ultragrid is used to put content
into the virtual web camera. Finally, the web browser displays
the content from the virtual web camera.

»| decode encode __, |Ultragrid
video.mps4 | H-264 H.264 RTP sender
RTP virtual
webcams

Ultragrid »| decode|  |videoto 3
RTP receiver H.264 webcam

Ultragrid »| decode video to 3

RTP receiver H.264 webcam—>

webcam.js

Fig. 4. Streaming by Ultragrid with H.264

D. Ultragrid with JPEG streaming and decoding in Chrome
web browsers

The system configuration using Ultragrid with JPEG stream-
ing and decoding in Chrome web browsers is shown in Fig. 5.
An application based on libyuri reads content from a video file,
decodes H.264 and uses Ultragrid software to encode video in
JPEG using the GPUJPEG library and to stream the encoded
video over a network to multiple SAGE2 PCs. Each SAGE2
PC runs again Ultragrid software, which receives the video
content. A virtual web camera is created on each PC and an
application based on libyuri linked with Ultragrid is used to
put JPEG encoded video into the virtual web camera. Finally,
the web browser reads video from the virtual web camera,
decodes it using its own JPEG implementation and displays
the decoded video in its window frame.

E. Ultragrid with JPEG streaming and decoding in GPU-
JPEG

The system configuration using Ultragrid with JPEG stream-
ing and decoding in GPUJPEG is shown in Fig. 6. An
application based on libyuri reads content from a video file,
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Streaming by Ultragrid with JPEG and decoding in Chrome web

decodes H.264 and uses Ultragrid software to encode video in
JPEG using the GPUJPEG library and to stream the encoded
video over a network to multiple SAGE2 PCs. Each SAGE2
PC runs again the Ultragrid software, which receives the video
content and decodes it using the GPUJPEG library. A virtual
web camera is created on each PC and an application based on
libyuri linked with Ultragrid is used to put the uncompressed
video into the virtual web camera. Finally, the web browser
reads video from the virtual web camera and displays the video
in its window frame.

N decode GPUJPEG |, [Ultragrid
video.mpa | H-264 encode RTP sender
RTP 1 virtual
webcams

Ultragrid » GPUJPEG video to 3
RTP receiver decode webcam

Ultragrid »| GPUJPEG video to

RTP receiver decode webcam— ' ©

webcam-jpeg.js

Fig. 6. Streaming by Ultragrid with JPEG and decoding in GPUJPEG

FE. Ultragrid with H.264 streaming in stripes

The system configuration is similar to the case of Ultragrid
with H.264 streaming, as shown in Fig. 7. However, instead
of sending the whole video frame to each PC, we send only
a cropped subframe corresponding to each PC’s part of the
application window. The advantage of this configuration is a
lower load of SAGE2 PCs as well as a lower network bitrate.
The disadvantage is the need for splitting the video content
into subframes, which are typically vertical stripes of LCD
panels. When the application window is moved or resized on
the wall, the coordinates of subframes will change. Therefore,
some synchronization mechanism is required between the
transmitting applications and the SAGE2 server, which knows
the coordinates of individual web browsers. We have not
implemented such mechanism yet, therefore for this solution
the video window has a fixed size and position on the video
wall.
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Fig. 7. Streaming by Ultragrid with stripes

IV. PERFORMANCE EVALUATION AND DISCUSSION

We assume that a user has a video wall driven by the SAGE2
system. The video wall may have any physical configuration,
varying in the number of panel rows, columns and the res-
olution of individual LCD panels. The video content can be
stored in a file or available from a live source (camera). The
video content should be displayed in a window that can be
freely moved and resized around the video wall.

We used three video content types for testing - a series
of static images (slide show), a dynamic movie content and
white noise. Nature photographs were used as static images
and a section of the Tears of Steel movie was used for
the dynamic scene. Each content type was prepared in three
pixel resolutions of 720p (1280x720), 1080p (1920x1080) and
2160p (3840x2160). All content samples were stored in MP4
files with H.264 compression, 4:2:0 color subsampling. We
aimed at playout at 30 fps and measured the achieved fps and
CPU load, depending on the transmitted bitrate per second.
We also subjectively observed the image quality, limiting our
observation to finding the limits when the video still looked
without visible frame losses and distortions. The SAGE2 web
browsers were running on Dell Precision T620 PCs, one per
a vertical stripe of monitors. Each PC had two 6-core Xeon
E5-2640 CPUs running at 2.6 GHz. The same type of PC was
used for the SAGE2 server that streamed the video content.
The performance of streaming by different methods is shown
Tab. I through Tab. VI.

WebRTC streaming (Tab. I) was unstable, resolution and
frame rate changed during streaming. Generally, WebRTC
tried to keep resolution at the expense of a lower frame rate.
It also tried to keep low network bandwidth at the expense of
image quality. With 2160p, frame rate dropped to 1. Overall,
the image quality was subjectively poor, including a lot of
compression artefacts.

Streaming by JPEG images (Tab. II) provided the full
resolution of the original video content, but fps was reduced.
CPU load depended strongly on the type of video content and
its resolution. The noise content was difficult to compress,
resulting in very high network bitrate up to 6 Gbps. At
2160p, the CPU load approached the limit of the 12-core PC.
Interestingly, the network bitrate was higher for static images
than for a dynamic scene. The reason was in that the JPEG
compression of individual images could not utilize the inter-
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TABLE I
PERFORMANCE OF STREAMING BY WEBRTC
Content type Static Dynamic Noise
images scene
resolution resolution resolution
fps fps fps
Format CPU load CPU load cPU load
bitrate bitrate bitrate
720p
1280x720 px | 780x320 px | 1280x720 px
13-16 17 16
3 3.7-4 1
10-12.5 Mbps | 10-12.5 Mbps 2.5 Mbps
1080p
1920x1080 px| 1920x1080 px| 0280x270 px
13-16 16 16
4.5-6 10-13 2.5
11-16 Mbps 12.5 Mbps 12.5 Mbps
2160p
2880x1620 px| 2880x1620 px| 1280x720 px
15-16 15-16 13-16
3-6 1 3
10-12.5 Mbps | 12.5-20 Mbps | 10-12.5 Mbps

frame similarity of the dynamic scene and the static images
included more details.

Streaming by Ultragrid with H.264 encoding for network
transmission (Tab. III) was different in that the network bitrate
was specified by the user when starting the transmitting
Ultragrid application. The network bitrate was low enough
thanks to the H.264 compression. Therefore, we tried to set
the maximum possible network bitrate to maximize the image
quality, before the frame rate started to drop from the original
30 fps or before the image imperfections appeared. We started
with 10 Mbps for each column of LCD panels and increased
bitrate in 5 Mbps steps. With 2160p, however, the frame rate
dropped to as low as 1 even with low bitrate.

Performance of streaming by Ultragrid with JPEG encoding
for network transmission is summarized in Tab. IV for JPEG
decoding in Chrome web browsers and in Tab. V for JPEG
decoding in the GPUJPEG library. The use of the GPUIPEG
library allowed to achieve a slightly higher fps at a slightly
lower CPU load.

Streaming by Ultragrid with stripes (Tab. VI) allowed to
achieve the full original frame rate of 30 fps with the exception
of the noise content at 2160p when the image was of poor
quality under 50 Mbps, but already started to lose frames at
50 Mbps. However, in all other cases the full resolution and
frame rate with image quality without visible imperfections
was achieved.

A comparison of achieved fps for the 2160p format based
on the streaming method used and the video content streamed
is shown in Fig. 8. A comparison of corresponding bitrates in
shown in Fig. 9. We can see that the highest fps was achieved
with Ultragrid with H.264 encoding and dividing the video
content into stripes. At the same time, the network bitrate was
significantly lower than with JPEG encoding. However, the
solution with Ultragrid with JPEG streaming and decoding
in GPUJPEG provided nearly the same fps and allowed free
moving and resize of the video window on the wall.

Although WebRTC seems to be the nearest technology to
the web-based architecture of the SAGE2 system, it achieved
the lowest performance. With 2160p video content, it was
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TABLE 11
PERFORMANCE OF STREAMING BY JPEG IMAGES
Content type Static Dynamic Noise
images scene
fps ps fps
Format CPU load CPU load CPU load
bitrate bitrate bitrate
23 20 23
720p 0.35 0.37 1.4
260 Mbps 75-78 Mbps 720 Mbps
21 20 21
1080p 0.7 0.7 33
550 Mbps 160 Mbps 1.6 Gbps
7 11 7
2160p 2.5 2.6 12
1.7-2 Gbps 480 Mbps 6 Gbps
TABLE III
PERFORMANCE OF STREAMING BY ULTRAGRID WITH H.264
Content type Static Dynamic Noise
images scene
fps fps ps
Format CPU load CPU load CPU load
bitrate bitrate bitrate
30 30 30
720p 1 1 1.4
50 Mbps 50 Mbps 100 Mbps
30 30 30
1080p 1.6 1.8 4.5
75 Mbps 100 Mbps 40 Mbps
8-12 1 1
2160p 33 3.5 8.5-9
40 40 40
TABLE IV

PERFORMANCE OF STREAMING BY ULTRAGRID WITH JPEG AND

DECODING IN CHROME WEB BROWSERS

Content type Static Dynamic Noise
images scene
fps fps fps
Format CPU load CPU load CPU load
bitrate bitrate bitrate
25 30 25
720p 0.7 0.9 1.2
230 Mbps 152 Mbps 594 Mbps
25 30 21
1080p 0.9 0.9 1.3
504 Mbps 291 Mbps 1300 Mbps
18 26 8
2160p 1.7 1.8 1.6
1910 Mbps 851 Mbps 2850 Mbps
TABLE V

PERFORMANCE OF STREAMING BY ULTRAGRID WITH JPEG AND

DECODING IN GPUJPEG

Content type Static Dynamic Noise
images scene
fps fps fps
Format CPU load CPU load CPU load
bitrate bitrate bitrate
25 30 25
720p 0.6 0.8 1.1
231 Mbps 152 Mbps 593 Mbps
25 30 25
1080p 0.5 0.6 0.8
502 Mbps 291 Mbps 1290 Mbps
25 30 12
2160p 1.5 1.7 1.7
1920 Mbps 852 Mbps 2830 Mbps

TABLE VI
PERFORMANCE OF STREAMING BY ULTRAGRID WITH STRIPES
Content type Static Dynamic Noise
images scene
fps fps fps
Format CPU load CPU load CPU load
bitrate bitrate bitrate
30 30 30
720p 0.9 0.7 0.9
100 Mbps 125 Mbps 100 Mbps
30 30 30
1080p 1.2 1 12
25 Mbps 100 Mbps 125 Mbps
30 30 30%*
2160p 2.5 1.4 1.4
50 Mbps 175 Mbps 50

35
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M Dynamic

Noise

WebRTC Web JPEG UG H.264 UGIPEG UGIPEG UG stripes
Chrome GPUIPEG

Fig. 8. Comparison of fps for 2160p

as low as approx. 1 fps. H.264 or VC9 compression used
inside WebRTC could definitely run faster on the PC hardware
used. The problem appears to be in an inefficient WebRTC
implementation inside a Chrome web browser. Additionally,
WebRTC often reduced resolution from the original all by
itself, without any possibility to configure this behaviour
inside the Chrome web browser. The network bitrate was also
configured automatically by the Chrome web browser, keeping
it under approx. 3 Mbps for 1080p video, resulting in poor
image quality. We assume that WebRTC can still be used for
a video conferencing application for the SAGE2 system, where
lower resolution and possibly lower frame rate is acceptable.

The configuration of a web server and JPEG images is the
simplest solution. We can note that the network bitrate was
different than for Ultragrid with JPEG compression. The first
reason was a slightly different compression ratio. The second
reason was that the number of JPEG images transferred was
limited by the client in the web server configuration and by
the server in the Ultragrid configuration.

The Ultragrid configuration can significantly decrease the
network bitrate using H.264 or JPEG compression. The orig-
inal frame rate of 30 fps was kept until 1080p. However,
the frame rate dropped significantly with 2160p content. The
reason was a high CPU load on the transmitting PC, because
full 2160p frames were transmitted to all SAGE2 PCs.

The final configuration with Ultragrid and video frames split
into stripes provided 30fps up to 2160p, although the network
bitrate had to be kept low at approx. 10 Mbps per stripe, before
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visual distortions appeared in the image. We assume that this
could be improved by implementation optimization.

An example of an image from the dynamic scene in a 2160p
format streamed by Ultragrid with JPEG on a 5x4 video wall
is shown in Fig. 10.

Fig. 10.

Streaming of the dynamic scene at 2160p

V. CONCLUSION

We presented several methods of high-definition video
streaming to a video wall driven by the web-based SAGE2
system and did performance comparison of these methods.
Until the WebRTC implementation inside web browsers is
optimized, significantly better results can be obtained using
an external video streaming application such as Ultragrid and
optionally splitting the video frames into subframes. For that
case, we plan implementing synchronization with the SAGE2
server, allowing to keep the video frame intact when the
application window is moved or resized.
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