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Abstract—Following the results presented in [21], we present

an efficient approach to the Schur parametrization/modeling of a

subclass of second-order time-series which we term p-stationary

time-series, yielding a uniform hierarchy of algorithms suitable

for efficient implementations and being a good starting point

for nonlinear generalizations to higher-order non-Gaussian near-

stationary time-series.
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I. INTRODUCTION

T
HE Schur parametrization, originating from the cele-

brated Schur algorithm [3], [7], [9], [18], can be inter-

preted as a mapping of a given signal into an associated set of

parameters, usually called the Schur coefficients. Those param-

eters are extracted during innovations filtering, mapping the

observed signal into the innovations signal (see Fig. 1). There

is a 1:1 correspondence between second-order signal statistics

(eg. its covariance matrix) and the set of its Schur parameters.

An important application of the Schur parametrization in

telecommunications is digital signal transmission using the

Linear Predictive Coding (LPC) method, allowing for com-

pression of the amount of the transmitted information. In this

method, only the set of Schur parameters is transmitted over

the communication channel from a transceiver to a receiver,

instead of digital transmission of a signal (i.e., time-series)

sample by sample. At the receiver side the modeling filter

(whose parameters are exactly the Schur coefficients) which

is actually an inverse filter, driven by white noise, produces an

output signal (time-series) which is stochastically equivalent

(in a weak second-order sense) to the original parametrized

signal (see Fig. 1).

In the stationary case, the covariance matrix of a process

(or its estimate if a time-series is considered) is a positive-

definite symmetric Toeplitz matrix which implies fast and sim-

ple parametrization algorithm. In real-life, however, in most

cases we are dealing with non-stationary stochastic processes

whose covariance matrices are positive-definite Hermitian, and

the parametrization problem solution leads to the general-

ized Schur algorithm of ’full complexity’, comparing to the

Toeplitz case [2], [6], even if the process is not necessarily ’to-

tally nonstationary’ and its covariance matrix might be ’close’
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Fig. 1. Signal transmission using Schur parametrization and the LPC method.

to a Toeplitz matrix. Therefore, consideration of ’stationary’

versus ’non-stationary’ processes is not too instructive, and

many approaches of complexity reduction have been proposed,

employing so-called ’structured’ properties of those matrices,

to mention the ’staircase elimination’ algorithm, proposed in

[6], [4] and generalized to the nonlinear Schur parametrization

problem of higher-order stochastic processes [24]. They are

based on and following from the concepts of ’low-rank’ [12],

[10], resulting in a hierarchical classification of nonstationary

processes in terms of their ’distance’ from stationarity, block-

Toeplitz or other structured matrices. In this applications-

oriented paper originating from [21], [23] we show, for a sub-

class of second-order near-stationary time-seriess, which we

call ’p-stationary’ whose etimates of the covariance matrices

are block-Toeplitz, how their low displacment-rank is reflected

in the structures of the corresponding Schur parametrization

schemas. allowing for a considerable complexity reduction in

a uniform way. The results presented here are a good starting

point and prove to be useful for nonlinear generalizations

to higher-order near-stationary stochastic processes, treated in

[22], as complexity in the general nonlinear Schur parametriza-

tion problem solution becomes an essential constraint in the re-

sulting algorithms efficient implementations so that complexity

reduction is of crucial importance in that case.

II. p-STATIONARY TIME-SERIES IN THE SAMPLE-PRODUCT

SPACE

Let y denote a zero-mean ergodic stochastic process rep-

resented by a ’proper’ single realization, being a time-series

{yt}
∞

t=−∞
observed on a finite time-interval t = 0, . . . , T , and

being a collection of samples {y0, . . . , yT }. Employing the

< bra|ket > notation, following [14], define the ket-vector

|y >T
∆
= [y0 . . . yT ]

′
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where ′ stands for transposition. Then the bra-vector will be

< y|T
∆
= |y >′

T= [y0 . . . yT ]

Considering the sample-product space ST of those elements,

we introduce the sum and scalar multiplication operations as

|x + y >T= |x >T +|y >T= [x0 + y0 . . . xT + yT ]
′ and

|y >T α = [y0α . . . yTα]
′, together with the inner-product

< x|y >T
∆
=

∑T

t=0 xtyt, inducing the norm ‖|y >T ‖2 =<

y|y >T and metric d(|x >T , |y >T ) = ‖ < x−y|x−y >T ‖
1
2 .

The orthogonal projection operator on ∨{|y >T } is

P (|y >T )
∆
= |y >T< y|y >−1

T < y|T

where ∨ stands for ’the span of’. Let |π >T
∆
= [0 . . . 0

︸ ︷︷ ︸

T

1]′.

Then < π|y >T= yT . Given |y >T let us introduce the shift-

operator as

|zy >T
∆
= [0 y0 . . . yT−1]

′

so that

|ziy >T
∆
= [0 . . . 0

︸ ︷︷ ︸

i

y0 . . . yT−i]
′

Let

|Y k
i >T

∆
= [|ziy >T . . . |zky >T ]

Assuming linear independence, the entries of |Y k
i >T will

form a basis of the subspace

Sk
i;T

∆
= ∨{|Y k

i >T} (II.1)

Then ∀Φ∈Sk
i;T

we have

|Φ >T= |ziy >T fi + . . .+ |zky >T fk

Given |Φ >T and |Ψ >T ∈ Sk
i;T , we obtain

< Φ|Ψ >T= [fi . . . fk] < Y k
i |Y k

i >T [gi . . . gk]
′

where < Y k
i |Y k

i >T is the Gram matrix of the basis of the

subspace Sk
i;T being actually an estimate of the covariance

matrix

ĤT

k

i =< Y k
i |Y

k
i >T=






ĥi,i . . . ĥi,k
...

...
...

ĥk,i . . . ĥk,k






(where ĥi,k =< ziy|zky >T ) and yielding

‖|Φk
i >T ‖2 = [fi . . . fk] < Y k

i |Y
k
i >T [fi . . . fk]

′

Consider the entire estimation space SN
0;T , corresponding to

i = 0 and k = N . Observe that the associated Gram matrix

ĤT = < Y n
0 |Y n

0 >T=
[
< ziy|zky >T

]

i,k=0,...,n
=

= [ĥi,k]i,k=0,...,n

is not Toeplitz as we have

< zi+1y|zk+1y >T= ĥi+1,k+1 6= ĥi,k =< ziy|zky >T

so that the time-series is not stationary (in a weak second-

order sense). If we consider, however, the following pre- and

post-windowed case; i.e.,

|ziy >T= [0 . . . 0
︸ ︷︷ ︸

i

y0 . . . yT−n−i]
′

we can immediately see that

< zi+1y|zk+1y >T= ĥi+1,k+1 = ĥi,k =< ziy|zky >T

resulting in the Toeplitz estimate ĤT of the covariance matrix.

Hence, the idea of p-stationary class stochastic processes,

introduced in [21], can also be employed for the underlying

time-series. Firstly, let us observe that the sample-product

space and the space of random variables are isometrically

isomorphic. To see that, recall the second space.

Let L2{Ω,B, µ} denote a separable Hilbert space of σ-

measurable maps w : Ω → R, satisfying
∫

Ω
|w(ω)|2µ(dω) <

∞ whose elements are random variables {yt}
∞

t=−∞
from

a zero-mean, dicrete-time, second-order stochastic process

y. Assume that the process is observed on a finite time-

interval and represented by the set {yt−i}i=0,...,n of linearly

independent random variables spanning the space

Sn
0 = ∨{yt, . . . ,yt−n} (II.2)

Let us assume the offset t = 0. We introduce the inner-product

on Sn
0 as

(y−i,y−k)
∆
=

∫

Ω

y−i(ω)y−k(ω)µ(dω) = Ey−iy−k = hi,k

where E indicates expectation and hi,k stands for the covari-

ance. Then

H = [hi,k]i,k=0,...,n (II.3)

will be a (positive-definite) covariance (Gram) matrix of the

process y. The matrix (II.3) is, for a nonstationary process,

a Hermitian matrix and will reduce to a Toeplitz matrix

H = [hk−i]i,k=0,...,n if this process is stationary (in a weak

second-order sense).

To show that the spaces Sk
i;T (II.1) and Sk

i (II.2) are

isometrically isomorphic, observe that

y−i ↔ |ziy >T

(y−i,y−k) = lim
T→∞

1

T
< ziy|zky >T

so that the desired isometry ‖y−i‖
2 = limT→∞

1
T

<

ziy|ziy >T follows. If we consider ϕ = fiy−i + . . .+ fky−k

and ψ = giy−i + . . . + gky−k then ϕ ↔ Φ, (ϕ, ψ) =
limT→∞

1
T
< Φ|Ψ >T and ‖Φ‖2 = limT→∞

1
T
< Φ|Φ >T .

A. Displacement rank of block-Toeplitz covariance matrices

The covariance (Gram) matrix H or its estimate ĤT are

Hermitian in the nonstationary case, reducing to Toeplitz ma-

trices in the stationary situation. For near-stationary processes

those matrices can be ’close’ to Toeplitz (in a well-defined

sense), allowing for essential complexity reduction of the

underlying parametrization procedures. Complexity reduction
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can be introduced if the matrix is ’structured’, and many

approaches have been proposed, to mention block-Toeplitz

cases, staircase extension idea, low displacement-rank and/or

α-stationarity concepts. The last treatment of the problem has

been summarized in [21] as that work has been inspired up to

some extend by those ideas, allowing to propose and consider

a class of stochastic processes whose covariance matrices are

block-Toeplitz (which we called p-stationary).

Let

Sk
i;T

∆
= ∨{|ziy >T , . . . , |z

ky >T }

denote a (k−i+1)-dimensional subspace of ST . Assume i = 0
and k = (N + 1)p+N for p,N = 0, 1, . . ., and consider the

subspace

ST
∆
= S

(N+1)p+N

0 = ∨{|z0y >T , . . . , |z
(N+1)p+Ny >T }

(II.4)

of dimension (N + 1)(p+ 1). Then the Gram matrix will be

ĤT = [ĥi,k]i,k=0,...,(N+1)p+N of dimension (N +1)(p+1)×

(N + 1)(p + 1). Let Ĥm,n denote the following submatrices

of dimension (p+ 1)× (p+ 1)

Ĥm,n
∆
=






ĥm(p+1),n(p+1) . . . ĥm(p+1),n(p+1)+p

...
...

ĥm(p+1)+p,n(p+1) . . . ĥm(p+1)+p,n(p+1)+p






for m,n = 0, . . . , N . Then the matrix ĤT can be rewritted as

the (N +1)× (N +1) block-matrix ĤT = [Ĥm,n]m,n=0,...,N

with blocks of dimension (p + 1) × (p + 1). A matrix ĤT

will be called block p-Toeplitz if Ĥm,n = Ĥn−m for m,n =
0, . . . , N .

Example (N = 2): (a) block p-Toeplitz matrix for p = 0

ĤT =





ĥ0,0 ĥ0,1 ĥ0,2

ĥ0,1 ĥ0,0 ĥ0,1

ĥ0,2 ĥ0,1 ĥ0,0





(b) block p-Toeplitz matrix for p = 1

ĤT =












ĥ0,0 ĥ0,1 ĥ0,2 ĥ0,3 ĥ0,4 ĥ0,5

ĥ0,1 ĥ1,1 ĥ1,2 ĥ1,3 ĥ1,4 ĥ1,5

ĥ0,2 ĥ1,2 ĥ0,0 ĥ0,1 ĥ0,2 ĥ0,3

ĥ0,3 ĥ1,3 ĥ0,1 ĥ1,1 ĥ1,2 ĥ1,3

ĥ0,4 ĥ1,4 ĥ0,2 ĥ1,2 ĥ0,0 ĥ0,1

ĥ0,5 ĥ1,5 ĥ0,3 ĥ1,3 ĥ0,1 ĥ1,1












Definition 1.

A time-series will be called p-stationary if its covariance

matrix is block p-Toeplitz.

Let Zp+1 denote a (p+1) shift-matrix, being a zero-matrix

of dimension (N + 1)(p + 1) × (N + 1)(p + 1) with 1’s

on the (p + 1)-st left-lower subdiagonal. Introduce the block

difference matrix Dp+1ĤT
∆
= Zp+1ĤTZ

∗

p+1 and notice that

rankDp+1ĤT = 2(p+ 1)

Example (N = 2): (a) block p-Toeplitz matrix for p = 0

D1ĤT =





1 h0,1 h0,2

ĥ0,1 0 0

ĥ0,2 0 0





b) block p-Toeplitz matrix for p = 1

D2ĤT =












1 ĥ0,1 ĥ0,2 ĥ0,3 ĥ0,4 ĥ0,5

ĥ0,1 1 ĥ1,2 ĥ1,3 ĥ1,4 ĥ1,5

ĥ0,2 ĥ1,2 0 0 0 0

ĥ0,3 ĥ1,3 0 0 0 0

ĥ0,4 ĥ1,4 0 0 0 0

ĥ0,5 ĥ1,5 0 0 0 0












B. p-shift invariant sample-product spaces

Let us introduce for n = 0, . . . , N a family of subspaces

Sn;T
∆
= S

n(p+1)+p

n(p+1);T = ∨{|zn(p+1)y >T , . . . , |z
n(p+1)+py >T }

(II.5)

of dimension (p + 1) together with Sk
i;T = ∨{|ziy >T

, . . . , |zky >T} and elements |Φk
i >T=

∑k

j=i |z
jy >T fj .

Definition 2.

The space ST will be called a p-shift invariant inner-product

space if for any elements |Φk
i >T and |Ψk

i >T we have

< Φk
i |Ψ

k
i >T=< Φ

k+(p+1)
i+(p+1) |Ψ

k+(p+1)
i+(p+1) >T

Observe that if a time-series spanning the space ST is

p-stationary then ST is a p-shift invariant inner-product space.

III. SCHUR PARAMETRIZATION OF NONSTATIONARY

TIME-SERIES

In the sequel we will show that the Schur parametrization

algorithm for a nonstationary time-series is actually equivalent

to Gram-Schmidt orthogonalization of the basis of the space

(II.4) due to the forward and backward orderings.

A. Block orthogonalization algorithm

Let us observe that he space (II.4) can be rewritten (using

(II.5)) as

ST = S0;T

·

+ . . .
·

+ Sn;T

·

+ . . .
·

+ SN ;T

where
·

+ stands for direct sum of subspaces. The Gram-

Schmidt orthogonalization procedure (actually, the Schur

parametrization) will, hence, consist of the two following

steps: (a) ’partial’ auto-orthogonalization of the bases of the

subsequent subspaces Sn;T , n = 0, . . . , N due to the forward

and backward orderings; (b) mutual orthogonalization of the

’partial’ ON bases of the subspaces Sm;T and Sn;T for

m = 1, . . . , N and n = m, . . . , N . This is considered in

some detail in the sequel, and schematically shown in Fig.

2 if N = 3.
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Fig. 2. Block-orthonormalization of the basis of the space ST (N = 3) – the

nonstationary case: ’triangles’ - auto-orthogonalization of the bases of Sn;T ,

n = 0, 1, 2, 3; ’squares’ - mutual orthogonalization of the bases of Sm;T and

Sn;T (m = 1, 2, 3 ; n = m, . . . , 3).

B. Partial orthogonalization (Schur parametrization) algo-

rithm

In each subspace Sn;T consider a family of the subspaces

Sk
i;T = span{|ziy >T , |z

i+1y >T , . . . , |z
k−1y >T , |z

ky >T }
(III.1)

1) Forward ordering: Rewrite (III.1) as

Sk
i;T = span{|ziy >T , S

k
i+1;T }

and define the forward estimate

|ŷki >T
∆
= P (Sk

i+1;T )|z
iy >T∈ Sk

i+1;T

where P (S) denotes the orthogonal projection operator on

S. The associated forward estimation error (i.e., coprojection)

will be expressed as

|εki >T
∆
= P (Sk

i;T ⊖ Sk
i+1;T )|z

iy >T ⊥Sk
i+1;T

(where P (S1 ⊖ S2) stands for the orthogonal projection

operator on the orthogonal complement of the subspace S2)

together with its normalized version

|eki >T
∆
= |εki >T< εki |ε

k
i >

−
1
2

T

Notice that (k − i) can be termed a patrial orthogonalization

order of the element |ziy >T .

2) Backward ordering: Rewrite (III.1) as

Sk
i;T = ∨{Sk−1

i;T , |zky >T }

Define the backward estimate

|y̌ki >T
∆
= P (Sk−1

i;T )|zky >T∈ Sk−1
i;T

together with the backward error

|νki >T
∆
= P (Sk

i;T ⊖ Sk−1
i;T )|zky >T ⊥Sk−1

i;T

The normalized backward error will then be

|rki >T
∆
= |νki >T< νki |ν

k
i >

−
1
2

T

and (k − i) can be termed a patrial orthogonalization order

of the element |zky >T .

Proposition 1. (Partial orthogonalization step)

The following recurrence relations hold
[

|eki >T

|rki >T

]

=

[
|ek−1

i >T

|rki+1 >T

]

θ(ρ̂ki;T ) (III.2)

where

θ(ρ̂ki;T )
∆
= (1 − (ρ̂ki;T )

2)−
1
2

[
1 ρ̂ki;T
ρ̂ki;T 1

]

is a J-orthogonal matrix; i.e.,

θ(ρ̂ki;T )Jθ
′(ρ̂ki;T ) = J =

[
1 0
0 −1

]

while (the estimate of) the Schur coefficient is given by

ρ̂ki;T
∆
= − < ek−1

i |rki+1 >T

Proof. Recall that

|ŷki >T= P (Sk
i+1;T )|z

iy >T∈ Sk
i+1;T

|εki >T = P (Sk
i;T ⊖ Sk

i+1;T )|z
iy >T=

= (I − P (Sk
i+1;T ))|z

iy >T=

= |ziy >T −|ŷki >T ⊥Sk
i+1;T

|eki >T= |εki >T< εki |ε
k
i >

−
1
2

T

From (III.1) it follows that

Sk−1
i;T = ∨{|ziy >T , S

k−1
i+1;T }

so that

|ŷk−1
i >T

∆
= P (Sk−1

i+1;T )|z
iy >T∈ Sk−1

i+1;T

|εk−1
i >T = P (Sk−1

i;T ⊖ Sk−1
i+1;T )|z

iy >T=

= (I − P (Sk−1
i+1;T ))|z

iy >T=

= |ziy >T −|ŷk−1
i >T ⊥Sk−1

i+1;T

|ek−1
i >T= |εk−1

i >T< εk−1
i |εk−1

i >
−

1
2

T

Similarly,

|y̌ki >T= P (Sk−1
i;T )|zky >T∈ Sk−1

i;T

|νki >T = P (Sk
i;T ⊖ Sk−1

i;T )|zky >T=

= (I − P (Sk−1
i;T ))|zky >T=

= |zky >T −|y̌ki >T ⊥Sk−1
i;T

|rki >T= |νki >T< νki |ν
k
i >

−
1
2

T

Moreover, we have

Sk
i+1;T = ∨{Sk−1

i+1;T , |z
ky >T }

so that

|y̌ki+1 >T= P (Sk−1
i+1;T )|z

ky >T∈ Sk−1
i+1;T
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|νki+1 >T = P (Sk
i+1;T ⊖ Sk−1

i+1;T )|z
ky >T=

= (I − P (Sk−1
i+1;T ))|z

ky >T=

= |zky >T −|y̌ki+1 >T ⊥Sk−1
i+1;T

|rki+1 >T= |νki+1 >T< νki+1|ν
k
i+1 >

−
1
2

T

Since |rki+1 >T∈ Sk
i+1;T but ⊥Sk−1

i+1;T , we obtain

Sk
i+1;T = Sk−1

i+1;T ⊕ ∨{|rki+1 >T }

where ⊕ stands for the orthogonal sum of subspaces. Hence,

P (Sk
i+1;T ) = P (Sk−1

i+1;T ) + P (|rki+1 >T )

with P (|rki+1 >T ) denoting the orthogonal projection operator

on ∨{|rki+1 >T}. Thus,

|ŷki >T = (P (Sk−1
i+1;T ) + P (|rki+1 >T )|z

i >T=

= |ŷk−1
i >T +|rki+1 >T< ziy|rki+1 >T

taking in mind normalization of |rki+1 >T . Then we obtain

|εki >T = |ziy >T −|ŷki >T=

= |ziy >T −|ŷk−1
i >T −|rki+1 >T< ziy|rki+1 >T=

= |εk−1
i >T −|rki+1 >T< εk−1

i |rki+1 >T=

as we have < ŷk−1
i |rki+1 >T= 0. Since |εki >T= |eki >T

‖|εki >T ‖ and |εk−1
i >T= |ek−1

i >T ‖|εk−1
i >T ‖, we get

|eki >T=
‖|εk−1

i >T ‖

‖|εki >T ‖
[|ek−1

i >T +|rki+1 >T ρ̂ki;T ]

where we introduced the estimate of the Schur coefficient

(parameter)

ρ̂ki;T
∆
= − < ek−1

i |rki+1 >T

Employing the equivalence < eki |e
k
i >T= 1 we get

1=
‖|εk−1

i >T‖
2

‖|εki>T‖2
[<ek−1

i |T + ρ̂ki;T <rki+1|T ]×

× [|ek−1
i >T +|rki+1>T ρ̂ki;T ] =

=
‖|εk−1

i >T‖
2

‖|εki>T‖2
[1− (ρ̂ki;T )

2 − (ρ̂ki;T )
2 + (ρ̂ki;T )

2]

Hence,
‖|εk−1

i >T ‖

‖|εki>T‖
= (1− (ρ̂ki;T )

2)−
1
2

and the first recurrence relation in (III.2) follows. Similar

reasoning yields the second relation. J-orthogonality of the

elementary Chain Scattering Matrix θ(ρ̂ki;T ) can immediately

be checked by direct computation. This completes the proof.

Qed.

The partial orthogonalization (Schur parametrization) step is

schematically described in Fig. 3 where the square indicates

the hyperbolic rotation (VII.2).

Those partial orthogonalization steps are performed for all

initializations and intermediate forward and backward error-

vectors within triangular as well as square blocks of Fig. 2,

yielding the block-outputs being initializations of the subse-

quent square-blocks. Having completed this procedure, we are

✲ ρ̂ki;T
✲

✻

✻

|ek−1
i >T |eki >T

|rki+1 >T

|rki >T

Fig. 3. The partial Gram-Schmidt orthogonalization (Schur parametrization)

step.

left with the forward and backward ON bases together with

the associated set of the estimates of the Schur coefficients,

in accordance with the ’triangular’ block-structure shown in

Fig. 2 for N = 3. This Gram-Schmidt orthogonalization

procedure is actually equivalent with the generalized Schur

parametrization of a second-order nonstationary time-series.

Computation of the LHS and RHS inner products
[
< π|eki >T

< π|rki >T

]

=

[
< π|ek−1

i >T

< π|rki+1 >T

]

θ(ρ̂ki;T )

yields the innovations filter algorithm operating directly on

samples; i.e.,
[
eki;T
rki;T

]

= θ(ρ̂ki;T )

[
ek−1
i;T

rki+1;T

]

(III.3)

If we assume ρ̂ki;T = thφki then we obtain

θ(ρ̂ki;T ) =

[
coshφki sinhφki
sinhφki coshφki

]

and θ(ρ̂ki;T ) can be interpreted as an elementary hyperbolic

rotation matrix.

C. Levinson and Schur algorithms

We remark that under the generalized Kolmogorov isomor-

phism (see [19]) between the spaces of: random variables,

coefficient-vectors and z-polynomials we immediately obtain

the generalized Levinson and Schur algorithms, proving equiv-

alence of the solution of stochastic estimation problem and

the solutions of two deterministic problems concerning the

impulse responses and the transfer functions of the innovations

filter in the nonstationary case.

IV. SCHUR PARAMETRIZATION OF p-STATIONARY

TIME-SERIES

The Schur parametrization results in extraction of the Schur

parameters and yields the forward and backward ON bases

of the sample-product space spanned by a time-series. The

Schur parameters can be interpreted as generalized Fourier

coefficients in the orthogonal development of the time-series



348 A. WIELGUS, J. ZARZYCKI

estimate (the innovations time-series) w.r. to the backward

ON basis, schematically shown in Fig. 2. In the nonstationary

(i.e., general) case, the Schur parametrization is equivalent

to this ’triangular’ Gram-Schmidt orthogonalization procedure.

Introducing a class of p-stationary time-series, spanning p-

shift invariant inner-product space, we obtain p-shift invariance

of the inner-products (see Definition 2) resulting in the p-shift

invariance of the Schur (Fourier) coefficients

ρ̂
k+(p+1)
i+(p+1);T = ρ̂ki;T

This allows to use the p-shifted versions of the original ON

basis as initializations in the subsequent block-steps of the

Schur parametrization of p-stationary time-series, following

the scheme of Fig. 4.

A. Partial ON bases of the p-shift invariant subspaces

Gram-Schmidt orthogonalization of the subspace S0;T ,

employing the elementary ortogonalization steps, yields the

following two ON bases: according to the forward ordering

{|ep0 >T , |e
p
1 >T , . . . , |e

p
p >T } and due to the backward

ordering {|r00 >T , |r
1
0 >T , . . . , |r

p
0 >T } whose elements

satisfy < e
p
i |A

p
j >T= δi,j and < ri0|B

j
0 >T= δi,j This

orthogonalization procedure requires extraction of the set of

Schur coefficients {ρki:T }i=0,...,p;k=i+1,...,p.

B. ON basis of the entire space ST and p-shift invariant Schur

parametrization

The derivation of the ON basis of the entire space ST ,

being a set of the subspaces Sn;T (n = 0, . . . , N ), requires the

two following steps: (a) auto-orthogonalization of the sample-

vector bases of each subspace Sn;T for n = 1, . . . , N , and

resulting in the ON bases of each subspace due to the forward

{|e
n(p+1)+p

n(p+1) >T , |e
n(p+1)+p

n(p+1)+1 >T , . . . , |e
n(p+1)+p

n(p+1)+p
>T } and

backward {|r
n(p+1)
n(p+1) >T , |r

n(p+1)+1
n(p+1) >T , . . . , |r

n(p+1)+p

n(p+1) >T }
orderings; (b) mutual orthogonalization of the bases of the

subspaces Sm;T and Sn;T for m = 0, . . . , N i n = 1, . . . , N .

Taking in mind, however, that ST is a p-shift invariant inner-

product space, we have |e
k+n(p+1)
i+n(p+1) >T= |zn(p+1)eki >T and

|r
k+n(p+1)
i+n(p+1) >T= |zn(p+1)rki >T Hence: (1) orthogonalization

of the basis of S0;T is equivalent to orthogonalization of the

bases of the subspaces Sn;T for n = 0, . . . , N ; (2) mutual

orthogonalization of the bases of S0;T and Sn;T for (n =
1, . . . , N) is equivalent to the mutual orthogonalization of the

bases of Si;T and Sn+i;T ; (3) to obtain the ON basis of ST it is

sufficient to confine the derivations to orthogonalization of the

basis of V0 and mutual orthogonalization of the basis of S0;T

and the ON bases of Sn;T for n = 1, . . . , N due to backward

ordering (see Fig. 4); (4) initializations of the subsequent steps

in mutual orthogonalization of the ON basis of S0;T and the

ON bases of Sn;T result from the p-shift invariance of the

inner-product and are expressed as

|r
i+(p+1)
p+1 >T= |z(p+1)ri0 >T , i = 0, . . . , p (IV.1)

...

... ... ... ...

...

.........

......

... ... ...

... ... ... ...

...

|z0y>T

|zpy>T

S0;TS0;TS0;TS0;T

S1;T S2;T S3;T

|e>T

z(p+1)z(p+1)z(p+1)

Fig. 4. Block-orthonormalization of the basis of the space ST (N = 3)

– the p-stationary case: ’triangle’ - auto-orthogonalization of the basis of

S0;T ; ’squares’ - mutual orthogonalization of the bases of S0;T and Sn;T

(n = 1, 2, 3).

From the above considerations it clearly follows that the

concept od p-stationary processes, spanning p-invariant inner-

product spaces, results in a class of efficient orthogonaliza-

tion/parametrization algorithms, implying Schur parametriza-

tion algorithms for p-stationary processes with considerably

reduced complexity.

V. COMPLEXITY REDUCTION IN THE p-STATIONARY CASE

Consideration of the class of p-stationary second-order

time-series results in a considerable complexity reduction of

the Schur parametrization, stochastic modeling and, hence,

the LPC transmission method of nonstationary time-series,

comparing to the general nonstationary case. In this case the

Schur parametrization procedure consists of (N + 1)(p
2

2 +

(p + 1)) +
∑N

n=0(N − n)(p + 1)2 hyperbolic rotors. This

is reduced to p2

2 + (p + 1) + N(p + 1)2 in the p-stationary

situation. Hence, the complexity reduction is given by ∆ =

N(p
2

2 + (p+ 1)) +
∑N

n=1(N − n)(p+ 1)2.

VI. INNOVATIONS FILTERING OF p-STATIONARY

TIME-SERIES

Each ’block-triangle’ and/or ’block-square’ is actually a

cluster of nested elementary hyperbolic rotation, schematically

shown in Fig. 3, yielding partial ON forward and backward

bases. Connected accordingly together those blocks constitute

the generalized Schur parametrization scheme, schematically

shown in Fig. 2 and resulting in the forward and backward ON

bases of the entire space ST . Notice that the ’upper-wire’ of

the scheme implements the innovations filter transfoming the

observed time-series |y >T into the innovations time-series

|e >T .

VII. MODELING ALGORITHMS FOR p-STATIONARY

TIME-SERIES

The innovations J-orthogonal filter realization consists of a

cascade connections of elementary Chain Scattering Matrices

(CSM) (III.3) which can be interpreted (in a component-form)

as hyperbolic rotations schematically described in Fig. 3.

The modeling filter can be obtained via replacement of the

CSMs by elementary Scattering Matrices (SM) in the cascade

structure of the innovations filter as we have
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✛ ρ̂k0;T✚✙
✛✘

✛

✻

✻

|ek−1
0 >T |ek0 >T

|rk1 >T

|rk0 >T

Fig. 5. An elementary SM of the modeling filter.
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r30

r41
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Fig. 6. Schur parametrization (p = 0).

Proposition 2. (Modeling filter recursions)

The following recurrence relations hold
[

|ek−1
0 >T

|rk0 >T

]

=

[
|ek0 >T

|rk1 >T

]

θ(ρ̂k0;T ) (VII.1)

where the SM

σ(ρ̂k0;T )
∆
=

[

(1− (ρ̂k0;T )
2)−

1
2 −ρ̂k0;T

ρ̂k0;T (1 − (ρ̂k0;T )
2)−

1
2

]

is an orthogonal matrix.

Proof.

Can be found e.g. in [5].

Qed.

If we take ρ̂ki;T = sinψk
i then we obtain

σ(ρ̂ki;T ) =

[
cosψk

i − sinψk
i

sinψk
i cosψk

i

]

(VII.2)

and the SM σ(ρ̂ki;T ) can be interpreted as an elementary

hyperbolic rotation matrix obtained from the CSM via ’arrow-

reversal’ method. The component-form of (VII.1) will then be
[
ek−1
i;T

rki;T

]

= θ(ρ̂ki;T )

[
eki;T
ri+1;T

]

The modeling filter section is schematically described in

Fig. 9 and the resulting structures of the associated p-invariant

modeling filters for p = 0, 1, 2 are shown in Figs.10–12.

VIII. CONCLUDING REMARKS

We introduced a class of near-stationary time-series with

low displacement-rank structured estimates of their covariance

matrices which we called p-stationary time-series, spanning
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Fig. 7. Schur parametrization (p = 1).
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Fig. 8. Schur parametrization (p = 2).

✛ ρ̂k0;T✚✙
✛✘

✛

✻

✻

ek−1
0;T ek0;T

rk1;T

rk0;T

Fig. 9. An elementary circular rotation of the p-invariant modeling filter.
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Fig. 10. Modeling p-invariant filter (p = 0).
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Fig. 11. Modeling p-invariant filter (p = 1).
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Fig. 12. Modeling p-invariant filter (p = 2).

p-shift invariant inner-product spaces, where the value of

the parameter p is a measure of that rank. This approach,

originating from and inspired by similar concepts concerning

low-complexity nonstationary models of signals, allows for

a uniform classification of time-series as the model obtained

for p = 0 corresponds to the stationary (Toeplitz) case while

the model associated with the value p = N yields the general

nonstationary (Hermitian) case. The intermediate values of

the parameter p result in near-stationary models associated

with the covariance matrices estimates which are ’close’ to

Toeplitzness. Their use allows for a considerable complexity

reduction of both: Schur parametrization and stochastic

modeling algorithms as well as the corresponding innovations

and modeling filters operating directly on time-samples (as

the approach proposed is applications-oriented).

Complexity reduction is obviously an important issue in the

linear Schur parametrization/modeling applications-oriented

problems for second-order time-series. This problem, however,

is of crucial importance in nonlinear generalizations to higher-

order time-series of the the algorithms presented in this paper.

In the nonlinear approach, the number of hyperbolic/circular

rotations increases tremendously, making the resulting algo-

rithms practically useless, as it was shown in [20]. Therefore,

the nonlinear complexity reduction via consideration of p-

stationary higher-order time series, spanning p-shift invariant

generalized sample-product spaces, can be the subject of a

separate paper.
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