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Investigation of the Stability and Convergence
of Difference Schemes for the Three-
dimensional Equations of the Atmospheric
Boundary Layer

Almas N. Temirbekov, Baydaulet A. Urmashev, and Konrad Gromaszek

Abstract—In this article we construct a finite-difference scheme
for the three-dimensional equations of the atmospheric boundary
layer. The solvability of the mathematical model is proved and
quality properties of the solutions are studied. A priori estimates
are derived for the solution of the differential equations. The
mathematical questions of the difference schemes for the
equations of the atmospheric boundary layer are studied.
Nonlinear terms are approximated such that the integral term of
the identity vanishes when it is scalar multiplied. This property of
the difference scheme is formulated as a lemma. Main a priori
estimates for the solution of the difference problem are derived.
Approximation properties are investigated and the theorem of
convergence of the difference solution to the solution of the
differential problem is proved.

Keywords— atmospheric boundary layer equations, difference
scheme, approximation error, stability, convergence algorithm,
numerical solution.

I. INTRODUCTION

ATHEMATICAL models of computational fluid

dynamics serves as the basis for the study of various

natural phenomena, technological processes and
environmental problems. In this regard, the development and
study of efficient and stable numerical algorithms for solving
the system of equations of the atmospheric boundary layer and
their practical implementation is relevant. There are various
methods for the numerical solution of differential equations,
new techniques have been developing, the work on their
improvement has been continuously performed, and
reassessing the methods is carried out. Basic methods for
solving grid equations are systematized and described in detail
in [1]. When solving the Navier—Stokes equations, explicit
schemes are inefficient due to hard restrictions on the ratio of
temporal and spatial steps of the computational grid, especially
on finding stationary establishing solutions. Therefore, the
most  frequently used implicit difference scheme is
unconditionally stable or has weaker constraints on the
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stability. An overview of the most commonly used numerical
algorithms is presented e.g. in papers [2]-[10].

In [11] a new symmetric method of approximation of the
non-stationary Navier-Stokes equations of the Cauchy-
Kovalevskaya type is proposed. The properties of the modified
problem are studied. The convergence of the solution of
modified problem to the solution of the original problem is

proved on an infinite time interval when & — 0. In [12] the
convergence of a finite-difference scheme, approximating the
primitive equations with the second order in the spatial
variables, to the solution of the differential problem is proved
under the natural assumption of smoothness of the solution of
the original problem. Paper [13] studies difference schemes by
time which accuracy order can be arbitrarily high. Difference
schemes by time for solving the Navier-Stokes equations are
presented. The impact of the scheme order on the calculations
accuracy is examined. In [14]-[16] numerical algorithms for
solving the Navier-Stokes equations using the finite element
method are proposed. The analysis of stability and
convergence of the proposed methods is conducted.

In [17], stable and convergent difference schemes for the
boundary layer equations of the atmosphere, transport and
transformation of impurities of harmful substances were
constructed. A package of applied programs for the numerical
simulation of atmospheric air pollution taking into account
photochemical transformations and visualizations of the
corresponding scenarios was developed. The problem of
impurities” distribution from point sources was considered.
The results of numerical modeling of the harmful impurities’
propagation and transformation on the mesometeorological
processes were presented on the example of Ust-
Kamenogorsk.

Il. STATEMENT OF THE PROBLEM

Consider the three-dimensional equations of the

atmospheric boundary layer in a domain
Q={0<x <l,i=1,2, 3} withaborder S :
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where t is time, X;,X,,X; are Cartesian coordinates, V is

the wind velocity vector with components U,0, @, P is

pressure, De is a dimensionless characteristic describing

deviation of the wind from the geostrophic value, Re; is a
dimensionless number of turbulent exchange, s a
dimensionless  parameter of convection, a, ,a are

horizontal coefficients of atmospheric turbulence for the

amount of movement, ax3 is a vertical coefficient of

atmospheric turbulent exchange for the amount of movement.

The system of equations (1)-(4) is complemented by the
following initial and boundary conditions:

V(x0)=V°(X), xe@:V(xt)=0,xeS. (5)
In Q the function V ° (x) is set as follows:
divw°(x)=0.

For the numerical solution of the equations of the
atmospheric boundary layer (1)-(4), a mesh with distributed

velocities is used. In £, we introduce the meshes
Qy, 0, =9,V V0 UQ,, where
Q,= {(Xli 1 Xoj 0 X )v X; = ihy, X5 = ihy, X5 = khy }‘
(i=0,1,,N;; j=021,..,N,;k=021,..,N,,h =1, /N, b, =1, /N, b, =1 IN,)
‘Qx:{(xliﬂ/ZYXZj'Xfik) Xy = (I+1/2)h X jh2|X3k:kh3v} (6)
(i=01..N; =L j=01,...,N,;k=01,..,.N, ,h, =1, /N, h =1,IN, b =1,/N,)
Qy:{(xli'xzj+1/27x3k)v X =1y, Xy a2 = (J+1/2)h X3 =kh3},
(i=0,4,..N;; j=01,...N, Lk=01,...,Ny,h =1, /N, ,h, =1, /N, b, = I,/ N,)
Q= {(Xll‘XZJ’X3k+1/2)’ X =10, X5 = Ny Xgey, = (k+1/2) }
(i=0,1.Ny; j=0.0,N,;k =01, Ny =L =1, N b, =1, /N, By =1, /N, )
Thus, the following difference scheme is constructed:

1
n+l n
Uz, ik Poiik = eUi,j+1/2,k+

L T D (7)
+ Re. [(al,j‘ku:biﬂ/z,j,k)il + (a|+1/2‘J+1/2,ku:2,|+1/2‘J,k)iz +
.

n+l

n
Uisyz,jk —Yisarz,jx +LOyn

+(ai+1/2,j,k+1/2u>':3‘i+1/2,j‘k)Y3]+ figl/z‘j.k'
i=LN,-2, j=LN,-Lk=LN, -1

n+l n

Ui jsyak ~Yijsek | 1) 0 n4l n
- L0 ok HPoijk = " De Uiy t
1 ©))

n n
+ Re [(ai+l/2,j+]/2,kux1,i+l/2.j+1/2,k)il (@ ki i)y, T
;

+ (ai,j+1/2,k+1/21)>?3,i,j+1/2,k+1/2)23 ]“' fi,0j+1/2,k'
i=LN,-2,j=LN,-Lk=1N,-1

A.N. TEMIRBEKOV, B. A. URMASHEV, K. GROMASZEK
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k412 I,J,k+1/2 3)
a),,k+1/z+P ik =A+

: ©
1

n n
+ Re [(aif.l/z‘j,k+1/2wx1,i+l/2,j,k+1/2)i, + (ai‘j+1/2,ka)x2,i‘j+1/2,k)iz +
N

+(ai,j,k+1m:3,i,j‘k)i3]+ fi,oj,k+1/21
i=L,N,-2,j=LN,-1k=1,N,-1
The continuity equation in a difference form is written as
follows:
div,V" = U:+,l+1/21k + sz IJ+1/2k + 0" 5 k2 =0

(10)
The following initial and boundary conditions are
satisfied:
Ui0+1/z ik =V°(x,; +0,5h,, Xy Xsk)v”i?ju/z,k =
=V’ (X1|’X +0,5h,, X5, ), wiojk+1/2 :VO(Xlilxzj’X3k+0’5h3)v

n+l

U1/z ik =Unyz ik =
“1k=0,N,-1,

n+1l _
Vo jry2k = UNl‘j+1/2 k=

_ n+l _ n+l _ _
_a)ojk+:l/2_a)Nljk+1/2_O i=0,N,

n+l r| n+l
Vlyax = Un,. ]:I/Zk |+1/20k_u|+1/2N2k_

|nglk+1/2 = a’u N k+lj2 = =0,i=0, N, -1, k=0, N; -1,

n+ _ N+l __ N+l _
Ui,j+1/2,o = Ui.j+1/2,N3 =Uiy2,5.0 =Uisyzjn, =

= w,"ﬁ/z = i?;}Nz,]/z =0,i=0,N,-1 j=0,N, -1

(1)

I1l. STUDY OF THE STABILITY AND CONVERGENCE OF THE
DIFFERENCE SCHEME

Lemma. For any grid functions U, €9,
Ui a2 er, O k172 € Q, satisfying conditions (10), (11),
the following identities hold:

(Llh |+1/2]k’u|+1/21k) (Lih |J+1/2k’D|J+1/2k) (Lih I]k+l/2’a)i,j,k+1/2)=0 (12)
where the summation is performed by internal nodes of the
mesh @ UQ, UQ,.

We define the norm of the velocity vector as follows:

2 2 n 2 13

= Z(uinﬁ/z‘j,k) hh,h, +Z(Uir,‘j+1/2‘k) hh,h, +z (a)i,j,k+1/2) hh,h,. ( )
Multiplying the differential equations (1)-(3) by

Zwin++11/2,j,kh1h2h3 ! .n;;ll/zkh h,h, and Zm’uku/zh h,h,

respectively, then summing them over points of Q | Q,,Q,
we obtain the foIIowing basic energy inequality:

Ve e

+ il ns 2 Thoyyne
+Z pm1 .njij/szer ! .Jlsz]mhzha*ZZdthzSn+2T(fhvV Yl

nZ

v vw>+z{zpw o 14

Let us evaluate the term in equation (14). Considering the
conditions (11), it can be seen that

T

_ n n+l n o R n+l
- 11k x, KX N 3 ) %2 IR+ 2, ),
d, Re {Z(aku i2, ) kU iz, ik T @iy, eyl i 2 ikl s e
T o

n n+l
+ ai+]/2‘j,k+1/2ux3‘i+]/2.j,kux3‘i+]/2‘j.k)hthhS +

n n+l
+ Z(aiu/z.jwz,kuxl.iwz,j,kal,iu/z.jx +

¥y

(15)

no n+lo
+a|’j+1’kl) Xuh, kD xp0,,k

n n+l
+ & jiy2ky2Vx 0, 1y 2.k4205 i 42, k412 )‘thha +
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n n+l
+ z(aiﬂ/lj‘k+]/2wx,‘i+]/2‘j,k+J/2a)x,,i+J/2,j‘k+]/2 +

2,

n n+1 n n+l
8 jy2k@ i jry2k @y i joyax T ai.j,k-lwx}i,j‘kwxyi‘j,k)hthhS]

Using Young's inequality and the boundedness of the
coefficient a(Xy; ,X,; , X5, ) from below, we have

) (16)

v,/

d,|> cl(thv"HZ v -
where
[V =]V,

2 2

+

%, (17)

C,=0,5ar/Re;
The term S, can be written as follows:
va/z jku|+1/2 ichihhy 7Zuir,‘j+1/2,kvi’?j+«21/2,khlh2h3 =

(18)
va/zj,k (U.+1/z,1,k _uin+1/Z,J‘k )h1hzhs _ZU.?JA/z,k(v:;li/zx _vlr,‘j+1/2‘k )h1hzh3-
Qx Qy
Further, using Young's inequality, we have
|Sh|S [z(vinjﬂlzk )Zhlhzha +Z(Uin+1/z,jk )Zhlhzha]"' (19)
!2y Qx
{Z(UEZ ik~ Uy, ik Yhhyh +Z(".“ﬁ1/zk Dir,|j+1/2,k )Zhlhzhs}
Y
Adding non-negative summands
. \ 20
Z(wlr‘]JJHl/Z )Zhlhzhs +Z(w|r,‘1‘t+1/2 — W jk+s2 )2 h;h,h, ( )
QZ !?Z
to the right-hand side of the inequality, we obtain
s, <[ + o v (21)
By virtue the Lemma proved above, we have
2L, V"N ™) =202,V V") (22)
Using the Cauchy-Schwarz inequality we obtain:
12
‘ZfZ(LmanV(n) pS CZTZ{Z[(U&yz,;‘k)Z +(U|r.‘|+1/2‘k)2 +(w|n,|‘k+1/z)]2 hlhzha} : N«n =
=C 2 ‘nz . ‘(n
iy (23)
The term |j\/" 2H is evaluated as follows [18]:
3
V” 2 S(%)A —n[¥2 Vh\i" 32. (24)
Then
e (L V" V| <, () < TN e @5
where c, = 25/;542’2
Fnal? _inl2 L eyl ik 72 a7y 7nl)?
vl - +EN -V +c1(thv e - [, vy )—CaM - (26)
Vi 7ol 2 7l n n+1
—c,Nllv,v s&( | j+21(f y
Hence we have
VieC, 3 v svouz{j fr ][v oy fk]g 27)
k=0 k=0 k=0

n 2
£2\7°2+5[‘[Z fk] :
k=0
In order to study the convergence of the solution of finite
difference problem to the solution of the differential problem,

we consider the finite difference equations for the equations of
the atmospheric boundary layer:

n+l 1

n (2),,n —_ n
Uihivr2,jk + Llhuxl,h,i+1/2,j,k X, hi .k De Ui j+1/2 k +

n n (28)
(ai‘j,kuxl‘h,iJrl/Z,j,k )il +(ai+l/2,j+1/2,kux2,h,i+1l2,j,k )iz
Re;
n 0
+(ai+1/2,j,k+1/2ux3,h,i+1/2,j,k X3 + fi+1/2,j,k !

i=1,N,-2, j=1,N,-1,k=1,N,-1

Pn+1 — +

(2),.n
Othi j+1/2,k + Llhvi,j+1/2 Kk X2 i ik

1
Re,

n
De —Unjsz,jk

(29)

n n
+ [(ai+1/2‘j+1/2‘kvx1,h‘i+1l2,j+1l2,k )71 + (8 j+1 k0%, i i & T

n 0
+ (ai,j+1/2,k+1/20><3,h,i,j+1/2,k+1/2 )23 ]+ fi,j+1/2,k )

i=1,N,—-2,j=1,N,-1,k=1,N, -1

wthl jkaz T Llhwhl k172 Px:jﬁ,i,j,k =+
1
Re,
+(ai,j,k+1a):3,h,i,j‘k )23 ]+ fi%,k+1/2 )

i=1,N,-2,j=1,N,-Lk=1,N,-1

(30)

n n
+ [(ai+1/2,j,k+1/2a)x1.h.i+1/2‘j,k+112 )*1 +(ai.j+1/2‘ka)x2.h.i.j+l/2,k )iz +

n+1 (31)
U hi+1/2,jk * xz,hl j+1/2Kk “’xs,m k12~

with followmg initial and boundary conditions:
u'u'l/zdk (X +05h XZJ'X ) \om/zk:Vo(xlwxu+0v5hzxxak)vwiu‘1‘m/2:\/ (X levx +05h)

) _ _ _ . n+1 =
1JSJ1+1/2‘|< - I)Nl‘]“"l/z,k - ul’z‘” - uNi_llz’j’k -

1+ _ n+1 N AN A lL—nN A
=05 =00 a1y =0 1= 0N, -1k =0,N; -1

w — N+l + n+1
Dl’ZL/lZ‘k_Dvaj_]_/Z’k Uiiizox = u|+1IZ‘N2,k: (32)

=of =0,i=0,N,-1,k=0,N;-1

n+1
|‘N2,k+1/2

n+l n +1 —ym™ — U n+1 _
20 = Bijrrzng = Yivarzjo i+1/2,iNg —

|0k+l/2

n+ n+1 —ni— —
=0, = I,J,N3—1/2 =0,i=0,N,-1,j=0,N, -1,

Let us define the error of solutions of the differential problem
(2)-(5) and the difference problem (28)-(32) as follows:

(1)n — 4N "
Divii2,jk = Unjr1s2,jk — Uisarz,jk !
(2)n —,.n N
@i j+12k = Onij+r2k — Oij+1/2,k 1
(3)n n n
Piik+12 = Onjjk+1/2 ~ D jk+1s2
n+l __ n+1 n+1
nljk phljk pljk (33)

n+1

uh i+1/2,j, k’UhI J+1/2k’whl j.k+1y21 phl j.k
from (33) and

Expressing

thrOUgh ¢|+J/2 i k7¢|(§)+n]/2,k'¢| i, k+]/2’ i, J,k
substituting them into (28)-(31), we obtain

1 1
1 1 1 2 1
‘/’t( "+ L(lh)‘/’( " +7f|r,‘1‘k De 7’5»«1)2 TR [(au jkwf(j)lrl»l/z ikt (34)
1)
+(ai+1/2,j+1/2,k(p>(<z)‘in+1/2‘j,k ) + (s, ,k+1/z¢7x3 |+1/z ik )x3 ]+ A1+1/2Jk +‘/’|+1/ka ,
1 1 [
(2)n (2) (2n 4 o= (1)n (2)
+ = _a¢|,1+1/2,k + Re. (a|+112‘1+1/2,k(px1‘|+112‘J+1/2,k )71 + (35)
T
(2) (2) ] @
(ai‘jﬂ‘kgpxz‘ir‘]j‘k )iz +(ai,j+1lz,k+1/2(px3,ir,'j~1lz‘k+1/2 )23 ]"' Ai,j+1/2‘k sk
_ 1 [
(3)n 3) (2)n no— (3)
o+ L = A +¥ (ai+1/2,j,k+1/2(Px1,i+1/2,j,k+1/z )71 + (36)
T
3)n @)n (3) (©)]
+(ai,j+1/2,k(px2,i,j+1/2.k )72 +(ai,j,k+1¢’xz,i,j.k )73 ]"’ Akrra TWijke2
W+ |, @0+ L @0+ g @7
Wit 1/2, kT Pry 0 j+12k T Pr i jk+12

where error of approximation of the difference scheme (28)-
(32) on the exact solution of the differential problem (1)-(5) is
defined as
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1 ! n n
Vi = Dievi"‘jnlzk +¥ [(ai‘j‘kuxlyi.'.l/z’j’k )3 +(ai+1/2‘j+1/2‘kuxz #1/2,jk y*

+(ai+112,j‘k+1/2u:]i+1/2 jk) 1= Uiz~ LU Pn Pk (38)

1 n
Wﬁfﬂi/z,k De u|+1/zp< [(am/z 1»«1/21(”,(1 /2, 2K 5 } +(a |]+1kU ik x }

+(ai‘j+1/2‘k+1/21):Yiyj+1/2'k+1jz Y, 1 =00 jusian— Lio" - XZ ,i,j,k
-, 1
Vit = 4 +7 [(ai+1/2.j,k+112w2 #1/2,jkH/2 )y +(ai‘j+llz.kw2 B2k hy *

+( IJk+lw

e I J k™ ) ] w"“i'jrsz h L(lﬁ)w" B er:,i,j,k

and it has the second order of approximation by h and the
first order by 7 [19].

The initial and boundary conditions of the problem for
errors (34)-(37) are defined as follows:

1)0
¢i(+1)/21k =0, ¢. j+1/2,k =0, ¢Ijk+1/2 =0
(2)n+L (2)n+1 omt _ (1)n+1 (@)1 (3)n+1

Doz = Py r1i2k T Paik T Py g2, ik T Pz T Oy k120
j=0,N,-1,k=0,N, -1
i(f/’z".ll-fﬂgz)r, ,12k o= (ﬂl(}l/)?;t co.‘?fﬁ/z‘w,(s)iill,z 0 (39)
i=0,N,-Lk=0,N,-1
oo = o = oo =l = o =M =0,
i=0,N,-1,j=0,N, -1

Multiplying the differential equation (34)-(37) by

3 1
279053(/?}1 hhyh, s ZT(ﬂi(,zj)me,)k hhyh,, 27¢i(, j),lng/)z hlhz h3
respectively, then summing by grid domains Q,, €, , 2,

we obtain
-n+1z (1+ 1o _7J-nz (1 2‘[C) -n+12+
De

24:C, 2 2t 2
+ 177777 S+l —n +
[ h ¢ De)w v
+27(C1_C3(3n V" ) v,5" <2“V "

5 2

Let us denote ,_1.p= 1+?Tc _ct,

(40)

and rewrite (40) as

De
follows:
Znat2 Zal? 24TC 2 2 nl? Znaa?

dg™[ bl +(1_7-;-Dfe) g a2y, g + (41)
+2T( } -n ¢n+1

Let azb.Then it follows thati_ECAZc,, (42)
Let ¢ —c5v,g"]>0; 1—21]#—3—%% 1-2:C, >0. (43)

T

Then con3|der|ng that the third and fifth terms in the left-hand
side of (41) are nonnegative we obtain

a(q?”*l * g j+c v
where C, =1-2:C,.
Considering that a =1, we have
e I A R e W v
Considering similarly as for problem (1)-(5), we obtain the
foIIowmg estimate for the problem (34)-(37), (39):

eS| s (S

Further, considering that " = O(h? ) according to (38), we
finally have

(44)

n+1

n+1

(45)

n+1
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‘<, (e2+hY) (46)

~n||? N 7 n+l
2 Y

which proves the convergence of the solution of the difference
problem (28)-(32) to the solution of the differential problem
(1)-(5).

Theorem. Let the conditions (43) hold. Then the difference
scheme (28)-(32) is stable and its solution converges to the
solution of the differential problem (1)-(5) with the speed
determined by the inequality (46).

IV. NUMERICAL CALCULATIONS

The numerical calculations with different values of the
input parameters were performed based on the model and
proposed algorithm described above. The considering area is
35x35 km?, and the height of the surface layer is 3500 m. The
convection parameter A =0,16 m/(s-°C). The stratification

parameter S in terms of physical meaning determine the
temperature variations with altitude; therefore the calculations
were performed based on the vertical temperature gradient.

Carioles force is equal to | =107*s7*.

The values of the horizontal and vertical turbulent
exchange  coefficients were taken as  follows:
,ux=,uy=6-103m2/s,V=30m2/S-

The characteristic scale of length, the wind speed and
temperature are set as follows: L=35000 m, U" =10 m/s,
0" =20°C.

The following formulas were used for determination of

dimensionless values of the input parameters A, |, S, .,
Hy X,Y,H:
- 26 - I-L = S-L _ i _ 7]
ﬂ = = ] I ] S = " ] X = " 1] = 1]
U U’ o TLu T Lo
)? :ly Y_ :11 ﬁ:ﬂ
L L L
where U” is characteristic velocity, @ is characteristic

temperature, L is the length scale.

06
0.4

0.2

0 0.2 0.4 0.6
X

Fig. 1. The deviation of wind direction above the water surfaces at a wind
speed equal to 1 m/s

Figures 1 and 2 show the wind deflection over the water
surfaces. This process is observed at moderate wind speeds
and it is difficult to see it at high speeds of the fluctuations
wind over water surfaces.
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The source of carbon monoxide CO is the gas emission of
cars. It is formed by the combustion of fuel in the internal
combustion engines at insufficient temperatures [20]-[22].
Under the natural conditions, CO carbon monoxide is formed
on the surface of the earth during the incomplete
decomposition of organic compounds and the combustion of
biomass, mainly during the forest fires. Figures 3 and 4 show
the distribution isolines of this substance over the city of Ust-
Kamenogorsk in the absence of wind.

Figures 5, 6 and 7 show the isolines of contaminant
distribution in the west and north-west wind directions.

As a result of numerical experiments, it was established
that the anthropogenic impurity produced by industrial
enterprises and picked up by wind currents at different
directions, moves to large distances depending on the wind
speed, which leads to the imposition of pollution fields. At
unfavorable metaconditions, anthropogenic impurity forms a
cloud over an industrial city.
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