Ky
J Manuscript received Fabruary 27, 2018; revised October, 2018.

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64, NO. 4, PP. 439-444

DOI: 10.24425/123543

Finding Optimal Frequency and Spatial Filters
Accompanying Blind Signal Separation of
EEG Data for SSVEP-based BCI
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Abstract—Brain-computer interface (BCI) is a device which
allows paralyzed people to navigate a robot, prosthesis or
wheelchair using only their own brains reactions. By creating
a direct communication pathway between the human brain
and a machine, without muscles contractions or activity from
within the peripheral nervous system, BCI makes mapping
persons intentions onto directive signals possible. One of the
most commonly utilized phenomena in BCI is steady-state vi-
sually evoked potentials (SSVEP). If subject focuses attention
on the flashing stimulus (with specified frequency) presented
on the computer screen, a signal of the same frequency will
appear in his or hers visual cortex and from there it can be
measured. When there is more than one stimulus on the screen
(each flashing with a different frequency) then based on the
outcomes of the signal analysis we can predict at which of
these objects (e.g., rectangles) subject was/is looking at that
particular moment. Proper preprocessing steps have taken place
in order to obtain maximally accurate stimuli recognition (as
the specific frequency). In the current article, we compared
various preprocessing and processing methods for BCI purposes.
Combinations of spatial and temporal filtration methods and
the proceeding blind source separation (BSS) were evaluated in
terms of the resulting decoding accuracy. Canonical-correlation
analysis (CCA) to signals classification was used.

Keywords—BCI, SSVEP, BSS, FastICA, AMUSE, Infomax,
Extended Infomax, CAR, Large Laplacian, Small Laplacian,
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I. INTRODUCTION

ITH an increasing interest in brain-computer interfaces

(BCI) there emerges a need for more accurate meth-
ods for decoding information from signals generated within
cerebral cortex. One of the recent developments in the field
of BClIs is utilizing blind signal separation (BSS) algorithms
(e.g., independent components analysis, ICA [1]) in signal
preprocessing pipeline. For signals acquired with an elec-
troencephalograph (EEG) ICA is usually used as a denoising
technique that allows removal of artifacts like eye and facial
muscles activity (primarily blinks), heart beat/blood flow, chest
and respiratory system’s muscles contraction, signals from
outside region of interest, etc. [2].
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Various BSS methods were successfully exploited to sep-
arate meaningful EEG signal from the noise (e.g., for P300
potentials [3] and for steady-state visual evoked potentials,
SSVEP [4], [5]). In our previous work [6] we asked whether
BSS algorithms may improve the accuracy of SSVEP decod-
ing, and if it would be the case, which of the commonly
used ICA algorithms (FastICA [7], Infomax [8], Extended
Infomax [9] and AMUSE [10]) would be the most suitable for
that purpose. The results we obtained implied that regardless
of ICA method applied BSS preceding decoding of visually
evoked potentials significantly increased the signal-to-noise
ratio (SNR) and signal energy. There were also other attempts
to establish which ICA algorithm should be used in order to
increase SSVEP decoding [11][12]. However, up to date, we
found no reports on the possible interaction between the kind
of ICA method adapted and the other signal preprocessing
procedures (e.g., filtering).

Therefore, in the current study, we asked what preprocessing
techniques (frequency and spatial filtering [13]) should be
conducted alongside ICA methods. Four hypotheses were
tested: (1) whether BSS should be applied at the beginning
or at the end of processing workflow; (2) would digital band-
pass (frequency) filtration differentiate decoding accuracy; (3)
similarly for spatial filters; (4) does general filter class used
(frequency vs. spatial) influence the outcomes of the classi-
fication. Decoding measure metric chosen was information
transfer rate (ITR), as it is a widely used method for estimating
BCI performance [14].

II. MATERIALS AND METHODS

The high dimensional EEG dataset was collected from
SSVEP database [5][10]. Signal acquisition was performed
with 128 active electrodes, but in further analyses only seven
were used: PO7, O1, POz, Oz, 02, POS8, FPz (according to
the international standard of 10-20 [15]; correspondingly, in
Biosemi-128 standard: A10, A15, A21, A23, A28, B7 and
C17). The exception was CAR-all method (see below for its
detailed description), where a signal from the whole scalp was
utilized.

Four healthy subjects were told to observe two small re-
versing black and white checkerboards displayed at 21” CRT
computer screen. The checkerboards were flickering at the
frequency of 8 and 14 Hz. Each dataset contained 5 trials
(25-second sample for each trial). Within each trial, there
were 5 seconds of baseline at the beginning, 15 seconds of
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the stimulus exposition and the concluding 5 seconds without
checkerboards. Signal analysis was carried out in Python (in
particular with Python-MNE v. 0.15 [16][17]).

The research was conducted in three stages.

At the first stage we created various combinations of BBS
algorithms and digital filters, which was roughly as follows
(list of all used sequences are summarized in Table I):

1) BBS algorithm; digital and/or spatial filtering;

2) BSS algorithm; spatial and/or digital filtering;

3) digital and/or spatial filtering; BSS algorithm;

4) spatial and/or digital filtering; BSS algorithm.

TABLE I
CONDITIONS, KINDS OF FILTERS AND ICA ALGORITHMS UTILIZED

[ Group [ Method or algorithm ]
BSS BSS initiates signal processing
BSS at the end of signal processing
1-40 Hz
.. 1-50 Hz
band od Butterworth digital filter 37 Tz

none

CAR - all electrodes
CAR - selected electrodes
Large Laplacian
Small Laplacian
none
AMUSE
Infomax
Extended Infomax
FastICA
none

spatial filter

BSS algorithm

As an expansion of these major groups, 221 combinations
were created in total. If BSS algorithm was used at the
beginning of the processing pipeline a high-pass filter at
1 Hz had to be applied before the BSS itself, as ICA is
sensitive to low-frequency signal drifts. Withing these groups
(possible processing setups) we used 2 filtering methods:
digital (frequency bandpass of 1-40 Hz, 1-50 Hz or 8-42
Hz) and spatial (CAR-all, CAR-selected, Small Laplacian and
Large Laplacian). For the detailed description of these filters
see sections below.

During the second stage, each of the 221 sets of com-
binations was evaluated in terms of its informational value.
Utilizing canonical-correlation analysis (CCA) [18] (please
refer to CCA section below for characteristics of this algo-
rithm) we classified signals from within different time periods,
from 1 to 15 s, with a step of 0.5 s (four CCA reference
signals were created consisting of the main frequency and its
second harmonic). This way, we received a 29x221 matrices
of the classification values (29 time periods per 221 sets of
algorithms). Subsequently, we calculated the ITR coefficient
for each element of the matrix, and finally, the highest ITR
value for each combination was passed for further analysis.

Since data from our groups (processing setups) did not
follow a normal distribution (as assessed with Shapiro-Wilk
test) we used one-way analysis of variance Kruskal-Wallis
procedure to test for statistical differences between these
groups. The proceeding pairwise comparisons were performed
with Mann-Whitney test.
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All statistical analyses presented in this article were carried
out with IBM SPSS Statistics for Windows, v. 24 (24.0.0.0),
Armonk, NY: IBMcorp.

A. Digital and spatial filters

Digital frequency filtering was performed as-implemented
in Python-MNE (v. 0.15), with finite impulse response (FIR)
“firwin’ filter design.

"CAR-all’ was used as described by McFarland et al. [13].
’CAR-selected’ was similar, yet the only signal from the elec-
trodes of interest was subtracted from the particular channel.
’Laplacians’ were in our case not exactly the same method
as used by McFarland and collaborators, with the difference
being that instead of referencing the signal from the single
electrode with respect to 4 surrounding (neighboring) ones we
arbitrarily chose electrodes of reference. It was necessary in
this case to prevent removing the meaningful signal by using
one of the other electrodes of interest as a reference (see Fig. 1
for visualization).
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Fig. 1. Electrodes of interest and reference channels for ’small-laplacian’
(Biosemi-128 standard). Light red circles are electrodes that were essential for
performing ICA preprocessing for SSVEP decoding (occipital channels and
one frontal electrode for blinks removal). Light gray rectangles are reference
required for ’small-laplacian’ spatial filter. E.g., reference electrodes for A10
were: All, D31 and A9 for ’small-laplacian’ (as visualized in the figure
above); and: A12, D24 and A8 for ’large-laplacian’ (not visualized here).

B. Information Transfer Rate

We used information transfer rate to describe the overall
performance of the BCI system. ITR is based on the formula
[14]:

B,, =logaN + PlogaP + (1 — Pﬂog?(}v_i)[ bits ]

trial
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and:

Bt _ %Bm[bits}

min
where P is the classification accuracy, N is the number of

targets and T is the time it takes to reach the target. B, is
expressed in bits per trial, and B, is bits per minute.

C. Canonical Correlation Analysis

Canonical-correlation analysis has been one of the most
popular methods for frequency recognition in SSVEP-based
brain-computer interfaces. Consider two multidimensional ran-
dom variables X, Y and their linear combinations z = XTW,
and y = YTW,, respectively. CCA finds the weight vectors,
W, and W, which maximize the correlation between x and
1y, by solving the following problem [19][20][21]:

o(2,y) = mas Elry |

Y) = Wo W, F————= =
CEEGTam
Ewl XY w,)

mawWw,Wy
\/E[ngXTwI}E[ngYTwy]

The maximum of correlation coefficient p with respect to w,
and w, is the maximum canonical correlation.

CCA in frequency recognition of the SSVEP-based BCI,
where there are K targets, with the stimulus frequencies f =
fi, f2, ..., fx, being finds the maximum correlation between
M samples of EEG signal recorded from N channels, X (N x
M) and the reference signal Yy (R x M). R is the number of
variables in the reference signal. The reference signals Y} is
set as:

[ sin(2nft) ]
cos(2m ft)

sin(27r'Nh ft)
| cos(2m Ny, ft) |

and:

t = i 2 M
fs Js2 0 fs
where N, is the number of harmonics and fs denotes the
sampling rate.

The command C' is recognized as:
C = maxp; 1=1,2,.... K

where p; are the CCA coefficients obtained with the frequency
of reference signals being f = fi, fo, ..., fk-

D. Blind Source Separation

The general goal of blind source separation (BSS) is to
estimate unknown sources from a set of observed mixtures.
The estimation is performed with no prior information about
neither the sources nor the mixing process.

The linear and instantaneous models of BSS can be formu-
lated as:

x(t) = As(t)

where A € R™" in an unknown non-singular mixing matrix,
s(t) = [s'(t),....,s"(®)]T and z(t) = [z(¢),...,2"(t)]"
Without knowing the source signals and the mixing matrix,
we want to recover the original signals from the observations
z(t) by the following linear transform:

y(t) = Wa(t)

where y(t) = [y'(t),...,y"(#)]T and W € R™" is a de-
mixing matrix [22][23][24].

III. RESULTS

Our goal was to determine which set of algorithms provides
the highest ITR value (and thus the highest accuracy of
recognition in the shortest possible time).

First, we checked whether the BBS algorithm should be
the first or the last element of signal processing. We ran a
one-way analysis of variance Kruskal-Wallis test to account
for the statistically significant differences. We obtained the
significance level of p=0.019 with statistic=7.960 (Fig. 2). The
only significant pairwise comparison (p<0.019, Bonferroni-
corrected) was BBS initiating processing vs. finalizing it.
There are significant differences between the proposed solu-
tions, so we decided that BSS algorithm should be used as the
first element of signal processing.
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ITR [bit/min]
2

T
BSS at the end of
signal processing

BBS in signal processing

T
BSS initiates signal
processing

none

Fig. 2. Boxplot showing results within BSS performed before other
preprocessing steps, after them and with no BSS at all. The horizontal lines
within boxes represent medians of these groups. The whiskers reach the first
datum beyond 1.5 interquartile range (IQR) of the first and third quartiles
(box range).

Then we checked whether the use of digital filters affects
the value of ITR and what bandwidth should be used. We ran
a one-way analysis of variance Kruskal-Wallis test to check
the significant differences. The probability reported with the
test was p<<0.659; statistic=1.608 (see Fig. 3). Hence, there are
no significant differences between the Stypes of digital filter
applied.

Subsequently, we checked whether performing spatial fil-
tering affects the ITR value. We ran a one-way analysis of
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ITR [bit/min]
g

o

T T T
1-40Hz 1-50 Hz 8-42 Hz

band of Butterworth digital filter

T
none

Fig. 3. Results for a band of digital filter used. The horizontal lines within
boxes represent medians of these groups. The whiskers reach the first datum
beyond 1.5 interquartile range (IQR) of the first and third quartiles (box range).
Values beyond whiskers are considered outliers.

variance Kruskal-Wallis procedure to test for the statistical
differences. The resulting significance level of p<0.001 (statis-
tic=168.859) implies strong differences depending on what
kind of spatial filter was utilized (see Fig. 4). Statistically
significant (p<0.001, Bonferroni-corrected) pairwise compar-
isons were observed between members of (1) none, CAR-all
and CAR-selected group and (2) Large and Small Laplacian
group; within these two groups there were no differences as
measured with Mann-Whitney test.
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results, however, we report no statistical significance of these
differences (p<0.797; statistic=1.670).

20

ITR [bit/min]
g

o
o
T T T T T
AMUSE none Extended FastiCA Informnax
Infoman
BSS algorithm type

Fig. 5. Type of BSS algorithm applied. The horizontal lines within boxes
represent medians of these groups. The whiskers reach the first datum beyond
1.5 interquartile range (IQR) of the first and third quartiles (box range). Values
beyond whiskers are considered outliers.

We also computed "baseline ITR’. ITR was determined for
a combination in which no signal processing algorithms were
used. That ’baseline ITR’ equals 12.47 bits/min.

To find the best set we have to reduce a list of 221
algorithms. All combinations that contained: Small Laplacian,
Large Laplacian and/or BBS algorithm at the end of processing
(based on results described above), as well as combinations
with ITR lower than ’baseline ITR’ were rejected.

If we assume that we want to minimize the number of

20 electrodes, we should also reject all combinations containing
B % ”CAR-all”, because this solution uses a full set of electrodes.
The resulting list of 18 sets of algorithms is presented in
154 Fig. 6 and Table II.
= TABLE II
E EIGHTEEN HIGHEST ITR SCORES THAT REACHED 12.47 BITS/MIN
2 BASELINE THRESHOLD.
)
[+4
= BSS algorithm spatial filter band of ITR
type type Butterworth filter | [bits/min]
5 none none none 12,47
none none 1-40 Hz 12,47
none none 1-50 Hz 12,47
none none 8-42 Hz 18,26
09 none CAR-selected none 12,47
noine CAIR-aH CAR-S‘eIected Lalrge SnlmH AMUSE none none 13,69
Laplacian  Laplacian AMUSE CAR-selected none 13,69
spatial filter type AMUSE CAR-selected 1-50 Hz 15,93
AMUSE CAR-selected 8-42 Hz 13,69
Extended Infomax | CAR-selected none 12,74
Fig. 4. Results for different kinds of spatial filters used. The horizontal lines Extended Infomax | CAR-selected 1-50 Hz 12,74
within boxes represent medians of these groups. The whiskers reach the first FastICA none none 15,61
datum beyond 1.5 interquartile range (IQR) of the first and third quartiles FastICA CAR-selected none 15,61
(box range). Values beyond whiskers are considered outliers. FastiCA CAR-selected 1-50 Hz 14,78
FastICA CAR-selected 8-42 Hz 13,24
. . . . Infomax CAR-selected none 12,74
At last, we asked which BSS algorithms provide the highest Infomax CAR-selected 1-50 Hz 13.69
ITR value. One-way Kruskal-Wallis test was run to analyze the Infomax CAR-selected 8-42 Hz 13,24

variance of results for each ICA procedure. Fig. 5 shows the
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Fig. 6. The highest results for particular preprocessing setups (ITR). These are 18 of the initial 221 results, the cut-off threshold was 12.47 bits/min (baseline

ITR). For detailed ITR scores please refer to Table II.

IV. CONCLUSION

Based on the obtained results, it is possible to create guide-
lines for designing signal preprocessing stage. It is advisable to
use BSS, although it does not matter exactly which algorithm.
Confirmation of this hypothesis may be found in previous
studies and current research. We checked the possibility of
using the spatial filtering algorithms, which are usually used
in motor imaginary based brain-computer interfaces. Most of
these algorithms (except CAR with selected electrodes) were
rejected due to unsatisfactory results of signal classification
or channels minimization criterion. Therefore, we conclude
that spatial filtering algorithms do not apply to SSVEP-based
brain-computer interfaces. Lastly, we tested for the differences
in ITR values depending on Butterworth filter type used.
For this comparison no statistically significant differences
were obtained. Nevertheless, it seems that this part of our
research should be extended by several additional bandpass
filter bands (e.g., in narrow bands corresponding to frequencies
of interest). In addition to that, also a number of harmonics
of the CCA reference signal ought to be studied.

In this article we compared various preprocessing and pro-
cessing methods for BCI purposes. As far as there were studies
concerning which of BBS algorithms would be the most
suitable for signal processing preceding SSVEP decoding, no

outcomes on the possible interactions between BSS and other
processing methods (filtration) were reported until now. Our
study shows that this issue can’t be marginalized because
we revealed statistically significant differences in ITR value
depending on various spatial and temporal filtering methods
applied, as well as whether BBS was performed on the
beginning of the processing or not. All in all, our current
results delineate new fields in signal processing for SSVEP-
based BCIs worth studying.
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