
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64,  NO. 4, PP. 481-485 

Manuscript received February 28, 2018; revised October, 2018.                                          DOI: 10.24425/123549 

 

  

Abstract—Non-Orthogonal Multiple Access (NOMA) with 

Successive Interference Cancellation (SIC) is one of the promising 

techniques proposed for 5G systems. It allows multiple users with 

different channel coefficients to share the same (time/frequency) 

resources by allocating several levels of (power/code) to them. In 

this article, a design of a cooperative scheme for the uplink 

NOMA Wi-Fi transmission (according to IEEE 802.11 standards) 

is investigated. Various channel models are exploited to examine 

the system throughput. Convolutional coding in conformance to 

IEEE 802.11a/g is applied to evaluate the system performance. 

The simulation results have been addressed to give a clear picture 

of the performance of the investigated system. 

 
Keywords—5G, Non-Orthogonal Multiple Access (NOMA), 

Successive Interference Cancellation (SIC) 

I. INTRODUCTION 

OWADAYS, multicarrier techniques are mainly used in 

broadband wireless communications, because of their 

adaptability in resource allocation, in addition to advantages 

resulting from multiuser diversity [1]. Cellular networks 

widely use Orthogonal Multiple Access (OMA) techniques 

such as Frequency Division Multiple Access (FDMA), Time 

Division Multiple Access (TDMA), Code Division Multiple 

Access (CDMA), and Orthogonal FDMA (OFDMA) for 

serving multiple users within the network [2]. Due to the 

growing demand for mobile access to the Internet and the 

Internet of Things (IoT), the requirements for 5G wireless 

communications systems established a challenge, such as high 

spectral efficiency, massive connectivity, and user fairness [3]. 

Non-orthogonal multiple access (NOMA) has emerged as one 

of the promising techniques to meet these requirements when 

compared to conventional orthogonal multiple access (OMA) 

[4]. 

 The NOMA transmission approach allows multiple users to 

transmit or receive information upon the same channel 

resources (e.g., time/frequency) by being allocated either in the 

code domain (CDM) or in the power domain (PDM). There are 

two categories of CDM-NOMA, namely, low-density 

spreading (LDS) and sparse code multiple access (SCMA) [5], 

[6]. Persistently in PDM-NOMA, more power is assigned to 

the users that have poor channel conditions [7]. 

  At the transmitting side, the superposition coding (SC) 

principle is applied to superpose the information signals 

coming from different users with proper transmission power 

levels, while the composite multiuser signal is separated at the 
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receiving side by using the concept of Successive Interference 

Cancellation (SIC) [5], [8].  

  To achieve user fairness, NOMA nominates a user terminal 

with good channel conditions and combines it with another one 

which experiences poor channel conditions [9]. 

  Moreover, the power allocation scheme that is employed for 

NOMA users has an impact on the system throughput, 

including the throughput of cell-edge users. Several algorithms 

have been studied for allocating the power among the users 

within the same sub-band, for instance, the Full Search Power 

Allocation algorithm (FSPA), Iterative Water Power 

Allocation algorithm (IWPA), Fractional Transmit Power 

Allocation algorithm (FTPA), and finally Fixed Power 

Allocation algorithm (FPA) [10], [11]. 

  Internet of Things (IoT) has become a very interesting 

technology especially for the industrial and marketing sectors. 

It represents the proposed expansion of the Internet in the 

future by achieving a massive jump in the capability of 

collecting, analyzing and spreading data which can be 

converted into information, knowledge, etc. [12]. 

In order to connect things to each other or to the cloud, there 

are several standards and proper devices can be used for this 

purpose, such as Wi-Fi, Bluetooth, ZigBee, Active RFID, etc. 

Because of the Wi-Fi features (energy consumption and secure 

network), it is considered the most suitable choice to provide 

the Internet connection everywhere in the world [13]. 

This article presents a novel approach in wireless 

communication systems by employing the principle of Wi-Fi 

standards with NOMA. The rest of this paper is organized as 

follows: Section II presents the system design of the Wi-Fi 

LAN standard based on the NOMA technique using different 

channel models. Sections III and IV formulate the simulation 

results and conclusions, respectively.  

II. SYSTEM MODEL 

A. IEEE 802.11a Wi-Fi Standard 

 Currently, wireline digital networks are strongly supported 

by wireless access due to the enormous increase in using 

mobile communication devices like smartphones, laptops with 

wireless communication capabilities, etc., at homes, in offices, 

and in public areas. Wireless LAN technologies proved their 

capabilities of providing unlimited access for users who were 

formerly served by wireline networks [14]. 

   In the early 1990s, the IEEE 802.11 standard was released by 

the Institute of Electrical and Electronic Engineers (IEEE) for 

Local and Metropolitan Area Networks as an enhancement for 

wireless LAN standards. The IEEE 802.11 standard is a set of 

various standards (e.g., IEEE802.11a, b, g, n, and ac) operating 

at different frequencies and ranging allotments [15]. 

    Let us concentrate our attention on IEEE 802.11a. 

Transmission in conformance to this standard is less liable to 
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interference than IEEE 802.11g due to the high operating 

frequency (5 GHz), and it is more convenient for indoor 

deployment. This standard uses Orthogonal Frequency 

Division Multiplexing (OFDM) as a modulation technique and 

utilizes the single input/single output (SISO) antenna 

technology [16]. 

    Table I shows the specification of the IEEE 802.11a 

standard that has been chosen in our experiments. 

 

TABLE I 

SPECIFICATION OF THE IEEE 802.11A STANDARD 

   Parameter                      Value 

  Bandwidth 

  Cyclic prefix duration                           

20 MHz 

0.8 µsec 
  Data duration 

  FFT size 

                        3.2 µsec 

                  64 

 

  No.of subcarriers                                      52  
  Operating frequency                                       5 GHz  

  Sampling rate 

  Subcarrier spacing 
  Throughput 

  Total symbol duration 

 

                       40 MHz                   

                            312.5 KHz 
                        6 up 54 Mbps 

                        4.0 µsec 

 

B. Uplink NOMA Principle 

In this part, an uplink scenario with indoor environment 
is assumed. The signal 𝑠𝑗  (j = 1, 2) is transmitted by the 

user equipment 𝑈𝐸𝑗  to the access point with the allocated 

transmit power 𝑝𝑗 . Its value depends on the channel 

conditions and the distance between the user and the 
access point. Without loss of generality we assume that  
𝑝1 > 𝑝2 according to Fractional Transmit Power Allocation 
algorithm (𝐹𝑇𝑃𝐴) [10]. 

Suppose that two NOMA users simultaneously send their 
signals 𝑠1 and 𝑠2 to the access point with allocated powers 
equal to 𝑝1, and   𝑝2, respectively. These two signals share 
the same frequency and interfere with each other as shown 
in Fig. 1.  

 

 

Fig. 1 Uplink NOMA scheme 

The received signal at the access point can be 
represented by the following formula: 
 

 𝑥 = √𝑝1ℎ1𝑠1 + √𝑝2ℎ2𝑠2 + 𝑛𝑜𝑖𝑠𝑒     (1) 
 

where ℎ𝑗  represents the complex channel gain coefficient 

vector between 𝑈𝐸𝑗  and the access point, while the term 

𝑛𝑜𝑖𝑠𝑒 is referred to as an Additive White Gaussian Noise 
(AWGN) that is generated at the receiving side. 

Successive Interference Cancellation (SIC) is 
implemented at the receiving side, in which the access 
point is trying to recover both signals 𝑠1 and 𝑠2,   
respectively, in two steps. 

In general, the SIC receiver decodes 𝑠1 and treats 𝑠2 as 
noise. After 𝑠1 being recovered, it is subtracted from the 
whole received signal 𝑥 to decode the component 𝑠2. A 
more precise description of this rule applied in the 
analysed system will be presented below.  

C.   Proposed System 

In this article, an OFDM-based uplink NOMA system is 
considered. It consists of two users co-operating with one 
access point. User selection depends on the Channel State 
Sorting-Pairing Algorithm (CSS-PA). One of them is a 
strong user (closer to the access point) and has good 
channel conditions, while the other one is considered a 
weak user with poor channel conditions. We assume that 
the multi-symbol stream (that is transmitted by both 
users) is synchronous and mutually independent. 
Synchronization has to be achieved with the accuracy of a 
fraction of the OFDM cyclic prefix, so that the receiver can 
find the orthogonality period common for both users.  

At the transmitting side, the data of each user before 
being transmitted are first encoded using the convolutional 
code with coding rate (R = 1/2). The standard (133,171) 
code is applied.   

Different modulation schemes are supported depending 
on the channel propagation path in the channel of each 
user. Hence, 16-QAM or QPSK is suggested to be used for 
the strong user, while the weak one uses QPSK due to poor 
channel conditions. Other modulation arrangements are 
also possible. 

 

 
                  

Fig. 2 Design of the proposed system 

Rayleigh fading channels whose complex channel gain 
coefficient vectors are indicated as 𝐡1, 𝐡2 represent the 
channel models between UE1 and the access point and UE2 
and the access point, respectively. Thereafter, the access 
point receives a combined version of the signals that have 
been transmitted by both users. 
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SIC is implemented at the receiving side with two stages; 
at first, the data of the strong user (𝑥1) are decoded, 
whereas the weak user’s data (𝑥2) are treated as noise. 
These data constitute the input stream to the local virtual 
transmitter which, knowing the channel gain coefficient of 
the strong user, resynthesizes his signal approaching the 
receiver. Such sample stream is subsequently subtracted 
from the samples of the received joint signal in order to 
decode the data symbols of the weak user (𝑥2). The 
investigated system is demonstrated in Fig. 2. 

Let us note that, in contrast to cellular systems, in IEEE 
802.11 WiFi the users have access to the transmission 
medium based on contention according to the CSMA/CA 
(Carrier Sense Multiple Access/Collision Avoidance) rule. 
Thus, only a single user is able to transmit his data in a 
given time and frequency channel, otherwise, collision 
between different users occurs. In order to enable NOMA in 
WiFi and potentially increase its spectral efficiency 
considerably, the radio resource management rule has to 
be substantially changed. An access point managing uplink 
and downlink transmissions should arrange appropriate 
users in pairs after learning from them their wish to 
transmit data in packets of similar lengths and knowing 
their propagation path losses. Thus, the NOMA 
transmission in a WiFi cell shown in this paper can be 
treated as a proposal that checks the potential of a possible 
increase in WiFi network capacity due to this technology. A 
new MAC procedure enabling NOMA has to be worked out.  

III. SIMULATION RESULTS 

In this section, some simulation results are presented to 
show the performance of the analysed system. BER vs. SNR 
measurements are considered for that purpose. Certainly, 
the propagation path loss of the strong user is assumed to 
be greater than the propagation path loss of the weak user 
(𝑔1 > 𝑔2). 

           𝑔𝑗 = √
𝑝𝑥

𝑝𝑗

                     𝑓𝑜𝑟 𝑗 = 1,2                                 (2) 

where 𝑝𝑥   represents the received power at access point.  
The simulation results are shown for two scenarios 

determined by the channel models which have been 
employed, i.e., AWGN and Rayleigh channels.  
 

A. AWGN Channel 

We assume the channel models between the users and 
the receiving side are AWGN channels. The propagation 
path losses are assumed to be 𝑔1 = 1.0, 𝑔2 = 0.3,  
respectively. 

In our experiments we assumed the number of packets 
that are transmitted from each user to be 𝐾 = 100, while 
the number of OFDM symbols that are sent in every packet 
is 𝐿 = 300. Figs. 3 and 4 respectively illustrate BER vs. SNR 
for the strong and weak user after the decoding process. 

We modelled our system in two versions with respect to 
convolutional code decoding: one which employs the hard 
decision (HD) Viterbi decoder and a second one in which 
soft decision (SD) 8-level decoder input  is applied. For that 

         Fig. 3 BER vs. SNR Curve for the strong user (𝑔1 = 1.0, 𝑔2 = 0.3)    
  

 

             Fig. 4 BER vs. SNR Curve for the weak user (𝑔1 = 1.0, 𝑔2 = 0.3) 

 

purpose we evaluated log-likelihood ratios for each 
transmitted bit in a signal constellation and then we 
quantized them into 8 levels. As we can expect, soft 
decision decoding (SD) achieved better performance than 
hard decision decoding (HD). The difference in coding gain 
is about 2 dB at BER level of 10−2. Therefore, soft decision 
decoding is adopted in all other investigations. 
 

B.  Rayleigh Multipath Fading Channel. 

We also used a multipath Rayleigh fading channel as a 

channel model between users and the receiving side, with 
different channel gain coefficient vectors which can be 
represented by 𝒉1, 𝒉2 respectively. Elements of the channel 
gain vectors represent subsequent channel path gains in 
conformance to a typical multipath channel used in WiFi 
investigations [17]. The channel model applied in our 
simulations had an exponentially decreasing power delay 
profile with an appropriately selected rms delay spread. 
For each transmitted packet block, new multipath channel 
gain coefficient vectors were drawn.  
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In the simulation experiments K=100 packets were 
transmitted by each user, whereas each packet consisted of 
L=100 OFDM symbols. 

 Fig. 5 shows BER vs. SNR measurement for the strong 
user by setting the propagation path loss 𝑔1 = 1.0 versus 
different values of 𝑔2, the rms delay spread used in this 
simulation was (𝑇𝑟𝑚𝑠 = 50 𝑛𝑠𝑒𝑐). 

 

 
Fig. 5 BER vs. SNR curve for the strong user (𝑔1 = 1.0) with several values 

of the weak channel gain 𝑔2 

It can be easily observed that there is an enhancement in 
the performance (nearly 2 dB gain at BER level of 10−2) 
with a lower value of propagation path loss (𝑔2) as the 
signal of the weak user looks more like noise in the strong 
user’s receiver.    

In Fig. 6, another comparison of BER vs. SNR for the 
strong user is studied by defining the propagation path 
losses of the users as 𝑔1 = 1.0, 𝑔2 = 0.03 and simulating 
the system with different values of the rms delay spread. 
The rms delay spread is considered an important 
parameter in calculating the channel gain coefficient vector 
per each user. 

Fig. 7 presents a similar comparison as in Fig. 6. Here, the 
measurement of BER vs. SNR is assessed for the weak user 
by adjusting the propagation path losses as 𝑔1 = 1.0, 𝑔2 =
0.1 and simulating the system by using various rms delay 
spread values. 

From Figs. 6 and 7 we can conclude that the relationship 
between the system performance and rms delay spread 
value is more or less inversely proportional. We can get a 
better performance when a low rms delay spread value is 
chosen due to its influence on the channel gain coefficient 
vector which in turn decreases the effect of multipath 
fading. 

Our MATLAB simulation model contained many 
procedures performed in real WiFi transmitters and 
receivers typically operating in a single link between a user 
and an access point. Most of them were described and 
illustrated in [17]. One of them is the detection of the start 
of a packet in a receiver. Typically, a certain minimum 
change in the signal level has to appear at the receiver 
input to be interpreted  as a start  of a signal  different from 

 
Fig. 6 BER vs. SNR curve for the strong user (𝑔1 = 1.0, 𝑔2 = 0.03) with 

different values of rms delay spread 

 

Fig. 7 BER vs. SNR Curve for the weak user (𝑔1 = 1.0, 𝑔2 = 0.1) with 

several values of rms delay spread 

noise. In fact, the increase in SNR is detected. In the case of 
two such signals being the mixture of a strong and a weak 
one, if their levels differ too much, the receiver of the weak 
signal working individually can have a problem with 
recognizing the packet start if SNR is low for it. During 
investigations of our NOMA system we have found that the 
receiver parameter, often called a comparison ratio, which 
plays the role of the detection threshold, substantially 
influences the system performance. When the value of this 
parameter is low, we can detect the received packet with a 
low power level (low SNR value), however, when the 
threshold is set sufficiently high, the receiver of a weak 
signal has a problem with detecting the beginning of the 
start of a packet. Fortunately, as both receivers for strong 
and weak signals are physically located at the same place, it 
is sufficient to use the sufficiently high threshold of the 
strong signal to start the reasonable operation of both 
receivers. Certainly, the synchronization of both signals has 
to be ensured first.   
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IV. CONCLUSIONS 

In this paper, uplink NOMA transmission scheme has 
been suggested for WiFi aiming to examine NOMA 
performance in such systems in order to achieve better 
QoS and hence throughput increase. User selection has to 
be made, e.g., by using the Channel State Sorting-Pairing 
Algorithm (CSS-PA), whereas the allocation of 
transmission power to the users can be based on the 
Fractional Transmit Power Allocation algorithm (FTPA). 
Nevertheless, another multiple access method different 
from the current one has to be applied which allows joint 
operation of two appropriately selected users at the same 
time on the same frequency channel. In our simulations, 
different channel models were employed to give a clear 
perception of the system performance. 

REFERENCES 

[1] S. Yan, D. W. Kwan Ng, Z. Ding, and R. Schober. "Optimal joint power 
and subcarrier allocation for MC-NOMA systems." In Global 

Communications Conference (GLOBECOM), 2016 IEEE, pp. 1-6. IEEE, 

2016. 
[2]  P. Parida, and S. S. Das. "Power allocation in OFDM based NOMA 

systems: A DC programming approach." In Globecom Workshops (GC 

Workshops), 2014, pp. 1026-1031. IEEE, 2014. 
[3] L. Dai, B. Wang, Y. Yuan, S. Han, I. C.-Lin, and Z. Wang. "Non-

orthogonal multiple access for 5G: solutions, challenges, opportunities, 

and future research trends." IEEE Communications Magazine, Vol. 53, 
No. 9, 2015. 

[4] Z.  Wei, D.W. Kwan Ng, and J. Yuan. "Power-efficient resource 

allocation for MC-NOMA with statistical channel state information." In 

Global Communications Conference (GLOBECOM), 2016 IEEE, pp. 1-

7. IEEE, 2016. 

 

[5] C.-L. Wang, J.-Y. Chen and Y.-J. Chen. "Power Allocation for a 

Downlink Non-Orthogonal Multiple Access System." IEEE Wireless 
Communications Letters 5, No. 5, 2016, pp. 532-535. 

[6] Z. Wei, J. Yuan, D. W. Kwan Ng, M. Elkashlan, and Z. Ding. "A survey 

of downlink non-orthogonal multiple access for 5G wireless 
communication networks." arXiv preprint arXiv, pp. 1609-01856, 2016. 

[7] P. Xu, Y. Yuan, Z. Ding, X. Dai, and R. Schober. "On the outage 

performance of non-orthogonal multiple access with 1-bit feedback." 
IEEE Transactions on Wireless Communications 15, No. 10, 2016: 6716-

6730. 

[8] R. Sun, Y. Wang, X. Wang, and Y. Zhang. "Transceiver design for 
cooperative non-orthogonal multiple access systems with wireless energy 

transfer." IET Communications 10, No. 15, 2016: 1947-1955. 

[9] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. C.-Lin, and H. V. Poor. 
"Application of non-orthogonal multiple access in LTE and 5G 

networks." IEEE Communications Magazine 55, No. 2, 2017: 185-191. 

[10] H. Zhang, D.-K. Zhang, W.-X. Meng, and C. Li. "User pairing algorithm 
with SIC in non-orthogonal multiple access system." In: 2016 IEEE 

International Conference on Communications (ICC), 1-6. IEEE, 2016. 

[11] L. Yao, J. Mei, H. Long, L. Zhao, and K. Zheng. "A novel multi-user 
grouping scheme for downlink non-orthogonal multiple access systems", 

In: 2016 IEEE Wireless Communications and Networking Conference 

(WCNC), 1-6. IEEE, 2016. 
[12] T. Kramp, R van Kranenburg, and S. Lange.” Introduction to the Internet 

of Things”. In: A. Bassi et al. (eds) Enabling Things to Talk. Springer, 

Berlin, Heidelberg, 2013. 
[13] https://www.networkworld.com/article/2917793/internet-of-things/is-wi-

fi-going-to-be-the-technology-of-choice-for-iot.html 

[14] S. Banerji, and R. S. Chowdhury. "On IEEE 802.11: Wireless LAN 
Technology." arXiv preprint , 2013:1307-2661. 

[15] J. Berg. “The IEEE 802.11 standardization its history, specifications, 

implementations, and future”. Technical Report GMU-TCOM-TR-8, 
George Mason University, Fairfax, VA, USA, 2011. 

[16] R. B. M. Addelrahman, A. B. A. Mustafa, and A. A. Osman. "A 

Comparison between IEEE 802.11 a, b, g, n and ac Standards", IOSR 

Journal of Computer Engineering (IOSR-JEC) 17, No. 5, 2015, 26-29. 

[17] A. Schwarzinger, Digital Signal Processing in Modern Communication 

Systems, Mary Lake, FL, 2013 
 


