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Energy Efficiency Optimization by Spectral
Efficiency Maximization in 5G Networks

Bujar Krasniqi, Blerim Rexha* and Betim Maloku

Abstract—Energy and spectral efficiency are the main
challenges in 5th generation of mobile cellular networks.
In this paper, we propose an optimization algorithm
to optimize the energy efficiency by maximizing the
spectral efficiency. Our simulation results show a sig-
nificant increase in terms of spectral efficiency as well as
energy efficiency whenever the mobile user is connected
to a low power indoor base station. By applying the
proposed algorithm, we show the network performance
improvements up to 9 bit/s/Hz in spectral efficiency and
20 Gbit/Joule increase in energy efficiency for the mobile
user served by the indoor base station rather than by the
outdoor base station.

Keywords—Energy efficiency, 5G, radio resources,
power allocation, optimization convexity

I. INTRODUCTION

THE 4G had initially promised to offer high data
rate as well as low data latency. However, the

real needs and current technical services are still far
away to meet the users’ demands and satisfaction.
The reports of mobile operators around the world,
indicate that 4G users consume up to three times
more data compared to non-4G users. One of the key
factors in increasing the data consumption is video
streaming. In the next six years, more than 1 million
new mobile subscibers will be added per day, resulting
in 2.6 billion subscribers by the end of 2022 [1]. It
is predicted that the total daily mobile traffic in the
Western European countries in years from 2010 to
2020 will increase from 186 TBs (terabytes) to 12540
TBs, thus resulting in 67 times higher daily traffic
[2]. At the end of 2016 the global mobile data traffic
reached 7.2 exabytes per month [3].

The current wireless systems are far from providing
the substantial traffic increase due to the requirements
from applications as fast remote access to the cloud,
high speed data for video streaming etc. Furthermore,
the energy efficiency (EE) is low as the most power
consumption of base stations (BSs) is used to meet
the threshold of pathloss. The fifth generation (5G) of
mobile networks, which is expected to meet high end
requirements [4] and be deployed by 2020, is supposed
to provide approximately 1000 times higher the data
rates, 90% savings up of the energy expense per
service, ten times higher battery life time of connected
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devices, more than 1000 Gbit/s/km2 spectral efficiency
(SE) in dense urban areas, and 5 times less end-to-end
latency compared to 4G [5].

A fundamental study on the trade-off between EE
and SE for the scenario with and without hardware
properties was done by authors in [6]. For an OFDMA
system [7] the EE was shown to be quasi convex in
SE. The trade-off between EE and SE is applied in
different scenarios [8], [9]. A new design framework
which tries to balance the SE and EE in a 5G wireless
system is done by authors in [10]. According to [5], an
ultra-densification of access nodes is indispensable to
meet such requirements. With an enormous increase
of access nodes, the total energy consumption will
increase too, where a large amount of total energy
expense goes for the energy radiated by antennas.
Thus, to make the 5G network more efficient in terms
of energy consumption, the power allocated to the BSs
should be optimized [11]. There have been some works
in this direction, for example [12], [13], [14], [15],
[16], [17], [18], applying different techniques, but none
of them formulated an optimization algorithm which
increases the efficiency of the network by maximizing
the spectral efficiency under optimal power allocation
to the BS.

To address this challenging problem, we present a
unique solution that optimizes the EE by maximizing
the SE under optimal power allocation. This solution
considers a specific scenario as part of a 5G network.
Furthermore, we have analyzed the trade-off between
EE and SE for indoor and outdoor environments.

The paper is organized as follows. In Section II, the
geometry of the system model is presented together
with the pathloss attenuation models for indoor and
outdoor user’s environment. In Section III, we have
formulated the SE optimization problem and solved it
by using Water-Filling-Like method for power alloca-
tion. In Section IV, we present the simulation results
and finally the Section V concludes the work.

II. SYSTEM MODEL

In our system model, we consider seven micro
outdoor base stations (OBSs), each equipped with
three sector antennas, thus yielding three cells per site.
In each cell, indoor base stations (IBSs) are randomly
distributed. The system model is illustrated in Fig. 1.

The mobile user is served always by the micro OBS,
expect the case when the users’ pathloss attenuation is
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Fig. 1. 5G system model with OBSs and IBSs.

smaller than indoor pathloss attenuation threshold. In
the system model, the mobile users served by IBS are
denoted as M IBS , and outdoor users served by OBS
are denoted as MOBS . Our cell cluster in the system
model is organized in hexagonal grid with a center
BS, denoted as BS0 and its three sectors denoted
as S01, S02 and S03, where index 0 denotes BS0

and indexes 1, 2 and 3 denote first, second and third
sector, respectively. Outdoor users which are located
in the coverage area of sector S01 of OBS BS0 receive
power from sector S01, and interference from two
other sectors (S02 and S03) of their serving OBS, and
from all sectors (Sk1, Sk2 and Sk3) of other OBSs,
BSk, where k = 1, 2, 3, 4, 5, 6. Considering the fact
that the transmit power of an IBS is low compared
to the transmit power of OBS, the interference from
IBSs is neglected. The spectral efficiency ηOBSSE(m) of
an outdoor user m located in sector S01 is defined as
in [19],

ηOBSSE(m) =
ROBSm

BOBS0

, (1)

where ROBSm denotes the transmission rate, and BOBS0

is the allocated bandwidth for the randomly chosen
outdoor user m.

The data rate achieved by an outdoor user m located
in sector S01 is defined as in [20],[21], [22]

ROBSm = BOBSm log2

1 +
GOBS0m pOBS0

N0BOBSm +
6∑
k=1

GOBSkm pOBSk

,
(2)

where pOBSm represents the transmit power assigned
to the outdoor user m, N0 is the noise spectral den-
sity, and pOBSk is the interference power. The direct
channel pathloss attenuation coefficient of the desired
channel is denoted with GOBS0m while the interference
channels pathloss attenuation is represented by GOBSkm .
The Equation for the pathloss models of desired and
interfering channels is defined in (5). Similarly to the
outdoor users, the indoor users which belong to sector

S01 of OBS BS0 receive power from IBS located in
this sector, and interference from all sectors (Sk1, Sk2
and Sk3) of OBSs, BSk, where k = 0, 1, 2, 3, 4, 5, 6.
Assuming the effect of wall penetration loss and that
the transmit power of IBS which is low compared to
the transmit power of OBSs, we neglect the interfer-
ence from other IBSs. The spectral efficiency denoted
as ηIBSm of an randomly choosen indoor user m located
in sector S01 is defined as

ηIBSSE(m) =
RIBSm

BIBS0

, (3)

where RIBSm denotes the transmission rate, and BIBS0
is the bandwith allocated to an indoor user m. The
transmission rate achieved by an indoor user m located
in sector S01 is defined as [20],[21], [22]

RIBSm = BIBSm log2

1 +
GIBS0m pIBS0

N0BIBSm +
6∑
k=1

GIBSkm pIBSk

,
(4)

where pIBSm denotes the transmit power assigned to the
indoor user m, N0 represents the noise spectral den-
sity, and pIBSk is the interference power from neighbor
OBSs, i.e. pIBSk = pOBSk , to avoid notation definitions.
The coefficients GIBS0m and GIBSkm denote the pathloss
model of the desired channel and interfering channels,
respectively. The indoor pathloss model for desired
channel is defined by Equation (6), while the indoor
pathloss model for interference channels is expressed
by Equation (7).

A. Pathloss Attenuation Models

As it is known, due to the movement of the Receiver
(Rx) and also of the surrounding objects, the wireless
channel is not time invariant. From the measure-
ments realized for vehicular and non-vehicular users
in lower frequencies such as 800 MHz, 1800 MHz
and 2600 MHz [23], [24], [25], [26], we found that
penetration loss is different for inside and outside
users. So different pathloss models are necessary to be
considered for indoor and outdoor users. To consider
the effects of a time variant wireless channel, we use
an improved version of pathloss model given in [27].
Two factors that characterize the propagation environ-
ment are the antenna gain and small-scale fading. The
pathloss model (PLM) for a desired channel of the
outdoor users is expressed as

GOBSkm = −[79.2+26 log10 d+Xσ−AOBS +F ] (5)

where d represents the distance between outdoor user
and base station in m, Xσ is the log-normal shadowing
in dB, AOBS is the sum of outdoor user antenna gain
and OBS antenna gain in dBi and F denotes the
small-scale fading in dB. The constants 79.2 and 26
are specific for the center frequency of 28 GHz. The
pathloss model for the interfering channel of outdoor
users is similar as in (5), except that the small-scale
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fading F is not taken into account. The indoor PLM
for the desired channel of indoor users is expressed as
in [28]

GIBS0m = −[20 log10 f +N log10 d+Pf (n)− 28] (6)

where f is the center frequency in MHz, N is the
distance power loss coefficient expressed as natural
number, d denotes the distance between indoor user
and IBS in m, Pf (n) is the floor penetration loss factor
in dB and n is the number of floors between indoor
user and indoor access point expressed as natural
number.

The indoor PLM for the interfering channel of
indoor users is defined similarly as in Equation (5),
except that small-scale fading F is not taken into
account and a penetration loss factor Lpen which is
added, as given in Equation (7).

GIBSkm = −[79.2+26 log10 d+Xσ−AIBS+Lpen] (7)

where AIBS denotes the sum of indoor user antenna
gain and OBS antenna gain in dBi [21] and Lpen is
the penetration wall loss in dB.

III. ENERGY EFFICIENCY OPTIMIZATION
ALGORITHMS

During a soft handover and provided its properties
in mobile communication system, a mobile user is
able to be simultaneously connected to more than one
BS. However, the mobile network will decide for a
mobile user from which BS to be served. In our model,
the decision for users service is performed based on
comparison of received pathloss attenuation form OBS
and IBS. Algorithm 1 decides whether a mobile user
will be served by OBS or IBS (see below for the details
of this algorithm).

Algorithm 1 Algorithm for User Classification

Measure: PLA, IPLA

if PLA < IPLA then
Indoor User → IBS

else
Outdoor User → OBS

end if
Calculate:
pIBS0 , pIBSk , pOBS0 , pOBSk

using Equation (9) for power allocation.

In an OBS and IBS scenario, the mobile network
measures the PLA and IPLA at the mobile user.
Depending on channel conditions of mobile user, the
Algorithm 1 classifies a user as an indoor user as a
result that the user is connected to IBS, otherwise the
user will be connected to OBS. After user selection,
the Water-filling like power allocation algorithm is
used to optimally allocate the power to the IBS and
OBS in order to maximize the SE. The optimization
problem which optimizes the SE depends on transmit

power and bandwidth assignment and is given as in
the following

maximize
pOBS ,pIBS ,BOBS ,BIBS

ηOBSSE + ηIBSSE (8a)

subject to

αIBSp
OBS
0 + αOBSp

IBS
0 ≤ Pmax

(8b)

BOBS +BIBS = Bmax, (8c)

pOBS ≥ 0, (8d)

pIBS ≥ 0, (8e)

BOBS ≥ 0, (8f)

BIBS ≥ 0. (8g)

The coefficients αIBS and αOBS in the constraint
(8b), are used to express the portion of transmit power
assigned from IBS and OBS, respectively. As the SE
maximization is a constrained optimization problem,
shown in Equation (8), in standard power control as a
particular case [20], the SE maximization problem is
not convex. Assuming that the outdoor user is served
with equal power and interference from OBSs and
the indoor user does not experience interference due
to low power of IBSs, the SE maximization problem
is solvable by Water-filling Like method as it is
transformed to a convex problem. The optimization
problem formulated in Equation (8) can be extended
for the case of multiple users on multiple cells. For
simplicity purposes, we focus on a simple scenario
with one user which is located within the micro cell on
which there are distributed several IBSs. The convexity
of the optimization problem formulated in Equation
(8) is proved by applying the second derivative of
ηOBSSE with respect to pOBS0 (results to be concave).
Consequently, we obtain that η̂OBS(BOBSm , pOBS0 ) =
BOBSm ηOBSSE (pOBS0 /BOBSm ) is concave, since it is the
prospect of a concave function [29]. Moreover, as
ηIBSSE is also concave, due to its logarithmic form [29],
the optimization problem in Equation (8) is concave
too.

A. Power Allocation using Water-filling-like method
The analytic solution for the optimization problem

defined in Equation (8) is not feasible. In order to come
to a solution, we further consider that the bandwidth
allocation is fixed. By fixing the bandwidth, the al-
gorithm for power allocation can be derived from the
Karush-Kuhn-Tucker (KKT) conditions for optimality
[29]. For simplicity, we are replacing the variables as
in the following

GOBS0m = sm,
6∑
k=1

GOBSkm = tm,

GIBS0m = um,
6∑
k=0

GIBSkm = vm.

(9)
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We formulate the optimization problem (9) through
the Lagrangian as

Ł(pOBS , pIBS , µ, λOBS , λIBS) = ηOBSSE + ηIBSSE −
µ(pOBS − Pmax) − µ(pIBS − Pmax) + λOBSpOBS

+λIBSpIBS ,
(10)

where the notations µ and λOBS , λIBS denote the
Lagrange multipliers, µ is the sum-power and λOBS ,
λIBS are the positivity constraints for outdoor and
indoor case, respectively.

Applying the KKT conditions we obtain the follow-
ing inequalities and equalities

pOBS ≥ 0, (11a)

pIBS ≥ 0, (11b)

pOBS − Pmax ≤ 0, (11c)

pIBS − Pmax ≤ 0, (11d)

λOBS ≥ 0, (11e)

λIBS ≥ 0, (11f)

λOBSpOBS = 0, (11g)

λIBSpIBS = 0, (11h)

∂L

∂pOBS0

= −
MOBS∑
m=1

BOBSm

pOBS0 ln 2

1

(N0BOBSm + tmpOBS0 )

× smN0B
OBS
m

[N0BOBSm + (sm + tm)pOBS0 ]

+
BOBSm

(pOBS0 )2
log2

(
1 +

sm
tm

)
+ µ− λOBS

= ψOBS(pOBS0 ) − λOBS = 0, (11i)

∂L

∂pIBS0

= −
MIBS∑
m=1

BIBSm

pIBS0 ln 2

1

(N0BIBSm + αOBSvmpIBS0 )

× umN0B
IBS
m

[N0BIBSm + (um + αOBSvm)pIBS0 ]

+
BIBSm

(pIBS0 )2
log2

(
1 +

um
αOBSvm

)
+ µ− λIBS

= ψIBS(pIBS0 ) − λIBS = 0. (11j)

The equalities (11g) and (11h), derived from the
KKT conditions, represent the first derivative of the
Lagrangian function expressed by Equation (10) with
respect to pOBS0 and pIBS0 , respectively. We obtain
the optimal pOBS0 and optimal pIBS0 as function of
µ, considering the constraints (11c), (11d), (11e), and
(11f), from the roots of functions ψOBS(pOBS0 ) and
ψIBS(pIBS0 ), respectively. The roots of above func-
tions can be calculated using Ferrari-Lagrange method

[30]. Considering that µOBS =
MOBS∑
m=1

[(sm/(N0ln2)]

and µIBS =
MIBS∑
m=1

[(um/(N0ln2)], the optimal power

allocation for the outdoor users and the indoor users
is derived as in the following

pOBS0 =

{
pOBS0 (µ), if 1

µ ≥ 1
µOBS

0, otherwise
(12)

pIBS0 =

{
pIBS0 (µ), if 1

µ ≥ 1
µIBS

0, otherwise.
(13)

If MOBS = 1 and M IBS = 1, the roots shown
above can be calculated analytically, thus we obtain
the optimal power assigned to the outdoor user as

pOBS0 =
{
− k31

4k41
+ Z1 + 1

2

√
−4Z2

1 − 2
8k41k21−3k231

8k241
− e1

Z1
, if 1

µ ≥ 1
µOBS 0, otherwise,

(14)
where parameters e1, Z1, Q1, ∆11, k01, k11, k21,

k31 and k41 are given in the following

e1 =
k331 − 4k41k31k21 + 8k241k11

8k341
,

Z1 =
1

2

√
−2

3

8k41k21 − 3k231
8k241

+ δ1,

δ1 =
1

3k41

(
Q1 +

k221 − 3k31k11 + 12k41k01
Q1

)

Q1 =
3

√
∆11 +

√
∆2

11 − 4(k221 − 3k31k11 + 12k41k01)3

2

∆11 = 2k321−9k31k21k11+27k231k01+27k41k
2
11−72k41k21k01

k01 = BOBS1 (N0B
OBS
1 )2 log2

(
1 +

s1
t1

)
,

k11 = BOBS1 (N0B
OBS
1 )

[
(s1 + 2t1) log2

(
1 +

s1
t1

)
− s1

ln 2

]
,

k21 = t1(s1 + t1)BOBS1 log2

(
1 +

s1
t1

)
+ (N0B

OBS
1 )2µ,

k31 = N0B
OBS
1 (s1 + 2t1)µ,

k41 = t1(s1 + t1)µ.

The optimal power assigned to the indoor user is
found as in the following

pIBS0 =
{
− k32

4k42
+ Z2 + 1

2

√
−4Z2

2 − 2d2 − e2
Z2
, if 1

µ
≥ 1

µIBS 0, otherwise,
(15)

where parameters e2, Z2, Q2, ∆12, k02, k12, k22,
k32 and k42 are given in the following

e2 =
k332 − 4k42k32k22 + 8k242k12

8k341
,

Z2 =
1

2

√
−2

3

8k42k22 − 3k232
8k242

+ δ2,

δ2 =
1

3k42

(
Q2 +

k222 − 3k32k12 + 12k42k02
Q2

)
,

Q2 =
3

√
∆12 +

√
∆2

12 − 4(k222 − 3k32k12 + 12k42k02)3

2
,

∆12 = 2k322−9k32k22k12+27k232k02+27k42k
2
12−72k42k22k02,

k02 = BIBS1 (N0B
IBS
1 )2 log2

(
1 +

u1

αOBSv1

)
,

k12 = BIBS1 (N0B
IBS
1 ) [(u1 + 2αOBSv1) ×K1] ,
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K1 = log2

(
1 +

u1

αOBSv1

)
− u1

ln 2

k22 = αOBSv1(u1 + αOBSv1)BIBS1 ×K2

K2 = log2

(
1 +

u1

αOBSv1

)
+ (N0B

IBS
1 )2µ,

k32 = N0B
IBS
1 (u1 + 2αOBSv1)µ,

k42 = αOBSv1(u1 + αOBSv1)µ.

Using the search via simple bisection, the water-
filling-level 1

µ reaches the optimum.

IV. SIMULATIONS

In this section, we present the simulation results
which show the evaluation of the proposed optimiza-
tion algorithm. The maximum power allocated to OBS
and IBS is set to 5 W. We consider 10000 iterations
of power allocation and along each iteration of power
allocation, 1000 channel realizations are performed.
The simulation parameters are presented in Table I.

Applying the simple bisection search in equations
(14) and (15), we find the optimal water-filling-level
1
µ and search for the optimal power allocation for both
the indoor and outdoor user.

TABLE I
SIMULATION PARAMETERS

Parameters Values
Outdoor base station maximum power 5W
Indoor access point maximum power 0.1W
Maximum bandwidth Bmax 100MHz
Center carrier frequency fc 28GHz
Outdoor power coefficient αOBS 50
Indoor power coefficient αIBS 0.02
Outdoor user position in polar coordinates (90m, 160o)
Indoor user position in polar coordinates (160m, 160o)
Indoor access point position in polar coordinates (165m, 160o)
Inter base station distance R 300m
Shadowing Xσ N(0,9.6) dB
Fast fading F X2

2 dB
Penetration loss Lpen 20 dB

Using the simulation parameters given in Table I and
Equation (1) we have generated the simulation results
for SE as given in Figure 2. The averaged SE achieved
by an outdoor user which is served by an outdoor base
station is shown in Figure 2.

The SE shown in Figure 2 on low transmit power
regime of BS increases rapidly achieving the value
of 14 bits/s/Hz until the BS transmit power attains
the value of 1.5 W. After this value the SE increases
only for 1 bit/s/Hz until the BS attains the maximum
transmit power of 5 W. This difference in SE occurs
due to the inter cell interference which increases while
the transmit power is increased. The averaged SE
achieved by an indoor user which is connected to an
IBS is shown in Figure 3. Comparing the simulation
results shown in Figure 2, in Figure 3 one can notice
that there is higher SE achieved by a user which is
connected to an IBS than the user which is connected
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Fig. 2. Averaged SE for the outdoor user.

to the OBS. This stems from the fact that the IBS is
isolated due to the inter cell interference. To analyze
the trade-off between EE and SE, we have presented
the simulation results as in the following. The simula-
tion results which show the trade-off between EE and
SE for an outdoor user are provided in Figure 4.
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Fig. 3. Averaged SE for the indoor user.
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Fig. 4. Averaged trade-off between EE and SE for the outdoor
user.
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Analyzing the simulation results shown in Figure 4,
we conclude that increasing the EE results in decreas-
ing the SE and vice versa. Similarly, in Figure 5, we
have shown the simulation results for the trade-off
between EE and SE for a user served by an IBS.
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Fig. 5. Averaged trade-off between EE and SE for the indoor user.

The simulation results shown in Figure 5, indicate
that same perception for the trade-off between EE and
SE as for the outdoor user. Comparing the simulation
results shown in Figure 4 for the outdoor user with the
simulation results shown in Figure 5 for the outdoor
user, we conclude that higher EE is achieved when the
user is connected to the IBS than the user connected
to the OBS. The comparison of SE achieved by the
indoor user compared with the SE achieved by the
outdoor user is shown in Figure 6.
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Fig. 6. indoor SE versus outdoor SE.

We apply descriptive statistics for this analysis by
using Quantile-Quantile plots (Q-Q). This analysis
ensures a fair comparison between two scenarios and
provides an analysis to benchmark between different
conditions of the mobile users. The dashed black line
shown in Figure 6 is used as reference and shows the
information of data samples gathered during simula-
tions which correspond to the outdoor user. The blue
plus scatters create a consistent curve in SE analysis

and correspond to the data samples gathered for the
indoor user. This variation is a strong indication of
significant difference between two scenarios, thus the
indoor user outperforms the outdoor user. Since the
curve is almost linear (parallel to the reference line),
we conclude that the distributions of both scenarios
derived from the proposed optimization algorithm are
almost similar, and they only change in statistical
mean. The statistical mean calculated as the average
of SE, shows 9 bits/s/Hz higher SE for the indoor
user. Note, the pink dashed line is the fitted line of
the distribution data for the indoor user. Similarly,
the comparison of EE achieved by the indoor user
compared to the EE achieved by the outdoor user is
shown in Figure 7 and we use again the Q-Q analysis
to benchmark between two scenarios.
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Fig. 7. indoor EE versus outdoor EE.

However, in this case we have a different situation
which we pay attention. First, the distributions of data
samples gathered by simulations change drastically.
Second, in low regime of EE (both users), up to
7 Gbit/J, the distributions are similar, indicating that
that there is substantial difference. This difference
is around 1 Gbit/J and indoor user outperforms the
outdoor user. Third, in low regime of EE (outdoor
user) up to 20 Gbit/J, the values of indoor user are
20 Gbit/J higher in EE (the outliers are ignored). This
big gap is created due to the very low values of SE in
indoor user which correspond to high SE for outdoor
user (but low EE).

V. CONCLUSION

In this paper we evaluated the performance of a 5G
cellular network in terms of SE (Spectral Efficiency)
and EE (Energy Efficiency) achieved by an indoor and
outdoor user under optimal power allocation. Using
the dual decomposition techniques, we derived the
equation for the optimal power allocation in a water-
filling like manner. We applied the water-filling like
power allocation to optimally allocate the power to
the users which resulted in an increase of the SE
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and EE. Simulation results show higher SE and EE is
achieved by the indoor user which is served by the IBS
(Indoor Base Station) compared to the outdoor user
which is served by the OBS (Outdoor Base Station).
The indoor user outperforms in average of 9 bits/s/Hz
the outdoor user in terms of SE. On the other hand,
considering 2-user network, the EE can be as large as
20 Gbit/J at indoor user. Moreover, we investigated
the trade-off between EE and SE by simulations. The
simulation results show strong behaviour of EE and
SE such that with increasing EE, the SE is decreased
and vice versa.
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