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Trellis Coded 4-ary PAM using
Distance-Preserving Mapping
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Abstract—A trellis coded 4-ary Pulse Amplitude Modulation
(4-PAM) is presented, where the encoding algorithm is derived
from Distance Preserving Mapping (DPM) algorithm. In this
work, we modify the DPM algorithm for 4-PAM and obtain a
new construction for mapping binary sequences to permutation
sequences, where the permutation sequences are obtained by
permuting symbols of a 4-PAM constellation. The resulting
codebook of permutation sequences formed this way are termed
mappings. We also present several metrics for assessing the
performance of the mappings from our construction, and we show
that a metric called the Sum of Product of Distances (SOPD) is
the best metric to use when judging the performance of the
mappings. Finally, performance results are presented, where the
mappings from our construction are compared against each other
and also against the conventional mappings in the literature.

Keywords—Distance-preserving mappings, Hamming distance,
Euclidean distance, Pulse Amplitude Modulation

I. INTRODUCTION

ISTANCE-PRESERVING mapping (DPM) is not a new

topic, it was investigated in 1989 by Ferreira et al. [1].
Ferreira et al. [1] mapped a binary convolutional code to a
runlength constrained or balanced trellis code. The mapping
was such that the free distance of the convolutional code
was preserved or increased in the resulting runlength con-
strained or balanced trellis code. A similar idea of DPM was
also presented by French [2], where he constructed distance-
preserving runlength-limited (RLL) codes from binary convo-
lutional codes.

In [3], [4] and [5] the authors considered convolutional
codes mapped to permutation codes of length M. In the map-
ping, n-tuples taken from the output of a binary convolutional
encoder were mapped to M -tuples of a permutation code such
that the Hamming distance of the n-tuples was preserved in
the M-tuple permutation codewords. The permutation codes
constructed this way were termed permutation trellis codes.
By “preserving the Hamming distance” of the n-tuples, the
authors meant that the Hamming distance was either kept
the same or increased in the M -tuple permutation codewords.
Preserving the Hamming distances in the M -tuple permutation
codewords meant that the error correcting capabilities of
the permutation code was as good as (or better than) the
corresponding binary codes (from which they were mapped).

The previous work on mapping binary sequences to per-
mutation sequences dealt with creating mappings (sets of
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sequences) that preserve the Hamming distances of the corre-
sponding binary sequences (see [1] — [8]). These types of map-
pings were termed Distance-Preserving Mappings (DPMs).
By “a mapping” we mean the set of sequences (codebook)
resulting from the DPM procedure, which maps binary n-
tuples to non-binary M-tuples. In this article we make use
of the DPM procedure in [8], of mapping binary n-tuples to
permutation M-tuples, to develop a new way of mapping that
can be used in M-ary PAM (Pulse Amplitude Modulation).
We shall consider the case of M = 4 (4-PAM). Work that
studied DPMs and PAM was presented in [9]. However, that
work discussed the generation of PAM signals with spectral
nulls and only considered the Hamming distance, which makes
the mapping methods used in [9] different from the methods
used in this article. The encoding process of the mappings
generated from a PAM constellation can be the same as that
of the permutation trellis codes in [4] shown by Fig. 1.

Permutation
information ! C]?Idiwolrds
k-tuples _|Convolutional| n-tuples DPM -tuples
encoder procedure

Fig. 1. Encoding process, converting n-tuples from the convolutional encoder
into M-tuples, which are permutation sequences.

II. DISTANCE-PRESERVING MAPPING PROCEDURE

We first give a brief background discussion about DPMs and
the algorithm used to generate DPMs in the next subsection.
Then, in Section II-B, we give our new way of generating
DPMs which considers the Euclidean distance.

A. Hamming distance to Hamming distance DPM

The existing mapping of binary n-tuples to permutation
M-tuples in the literature considers permutations of the set
A ={1,2,..., M}, where the elements of A are permuted
according to unique binary n-tuples ([4], [5] and [8]). We
use the following DPM algorithm found in [8], together with
Example 1 to illustrate the DPM procedure.

Distance-Preserving Mapping algorithm: A binary se-
quence (x1,%2,...,2,) is mapped to the permutation se-
quence (y1,Y2,...,Ym). Let swap (y;,y,) denote the swap-
ping of symbols y; and y; in a sequence.
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Let n = 3 and M = 4. Then the (n = 3) — (M = 4) DPM
algorithm is defined as follows:
Input: (z1,22,3)
output: (y1,Y2,Y3,Ya)
begin
(y1,y2,y3,y4) + (1,2,3,4)
if 23 =1 then swap(ys,ys)
if xo =1 then swap(yi,y2)
if #1 =1 then swap(ys,ys)
end.
Example 1 By applying the (n =
algorithm we obtain:
{000, 001,010,011, 100, 101,110, 111} —
{1234, 1432,2134,4132,1243,1342,2143,2341}. (1)

3) — (M = 4) DPM

As was done in [5], we set up the Hamming distance matrices
for the binary sequences and the permutation sequences which
are D = [d;;] and E = [e;;], respectively, for the mapping in
(1) as follows:

000
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011
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111
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1234
1432
2134
4132
1243
1342
2143
2341

Note that d;; and e;; are the entries of D and F, respectively.q
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In general, the matrices D and E can be used to verify the
distance-preserving property of DPMs, that is, the correspond-
ing distance entries in F are at least as large as the ones in D
(eij > d;j) fori,j =1,2,...,2" as can be seen in Example
1.

In [8], the sum of Hamming distances of FE, which we
denote by Xgspp in this paper for reference, was used to
determine the distance optimality of distance-preserving map-
pings. To calculate Xgsyp, all the entries in E are summed up,

resulting in
2" 2"

Xsup = Z Z €ij- 2

j=1i=1
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The higher the value of the sum of Hamming distances of F
(Xsup), the better the mapping in terms of error correcting
capabilities [8].

B. Hamming distance to Euclidean distance DPM

Our new mapping procedure maps the 2™ binary n-tuples
to permutation M-tuples taken from a set, A = {—M +
1,-M+3,...,—-1,+1,...,M — 3, M — 1}, for M even;
A={(-M+1)/2,(-M +3)/2,...,—-1,0,+1,..., (M —
3)/2,(M —1)/2}, for M odd. In this article, we will focus
the application of our new mapping procedure to the case
of M = 4, that is A = {-3,—1,+1,+3}. Now, instead
of the Hamming distance metric we will use the Euclidean
distance metric for our E matrix. However, we still consider
the Hamming distance for our D matrix.

Our goals are to: (a) “preserve” the D distances in F, that
is e;; > d;j;, and (b) make sure that the maximum Euclidean
distances are on the minor diagonal of E. Goals (a) and (b) are
a systematic way to guarantee that the mappings are distance-
preserving, and optimal (or sub-optimal, if not optimal).

We use the following observation and knowledge to
achieve goals (a) and (b): to achieve goal (a), note that
the existing mapping mentioned in (1) builds/increases the
Hamming distance between the permutation sequences by
swapping the positions of the permutation sequence accord-
ing to the corresponding binary sequence. In our new set
A, building/increasing the Hamming distance implies build-
ing/increasing the Euclidean distance. To achieve goal (b),
we observe that for a given permutation sequence, Py (kK =
1,2,..., M!) from the set of M! permutation sequences, there
can only be one permutation sequence with which it can give
the maximum Euclidean distance. That permutation sequence
is the one that whose symbols are the complements of the
symbols of P, which we denote by P,. For example, for
M=4,A={-3,-1,41,+43}, if P, = +1 —1 +3 —3, then
Py =-1+1-3+3.

To achieve goal (a), we apply the DPM algorithm presented
earlier to obtain the first half of the permutation sequences with

symbols taken from A = {—3,—1,+1,+3}. To illustrate this
we use the mapping in Example 1 and obtain:

{000, 001,010,011} —
{-3-14+1+43,-34+3+1-1,-1 =3 +1 +3,+3 =3 +1 —1},

or
{000,001, 010,011} — {Py, Ps, Ps, Py}

in short notation. Then the other half of the permutation
sequences will be the mirrored opposites of the first half of the
permutation sequences, hence achieving goal (b). This results
in the complete DPM, which we call DPM; as:

DPM; : {000, 001,010,011, 100, 101,110,111} —
{=3 =141 +43,-3 +3 +1 —1,—1 =3 +1 +3,+3 =3 +1 —1,
—3+43-1+41,41 43 -1 -3,+43 =3 —1 +1,4+3 +1 —1 -3},

or

{000,001, 010,011,100, 101,110,111} —
{PlaP27P37P47P4ap37p27p1}'
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Note that the third symbol in the first half of the permutation
sequences is the same, due to the DPM algorithm. This is used
here to guarantee that P, and P, do not appear together in
the first half of the permutation sequences. The E matrix of
Euclidean distances for DPM; is

0 57 28 75 49 85 69 89
57 0 75 85 2.8 49 89 6.9

28 75 0 57 69 89 49 85

B _ |75 85 57 0 89 69 28 49
1= 149 28 69 89 0 57 85 7.5
85 49 89 69 57 0 75 28

69 89 49 28 85 75 0 5.7

| 89 69 85 49 75 28 57 0

NE)
In general, the mappings we are creating are of the form
{P1, Py,..., Py, ]52”/2, ..., Py, P}, where the first half
of this set, {Py,Ps,...,Pyn/p} is obtained using a DPM
algorithm that guarantees that Py and P do not appear in that
set. Throught the article we shall be denoting the E matrix
of a corresponding mapping, DPM, by E,. Next, we give
performance measure metrics which can be used to compare
the performance of the different mappings we create with our
algorithm.

III. PERFORMANCE MEASURE METRICS

Since we are now dealing with different distance metrics
in D and E to assess the mappings, we look at different
ways of assessing the performance of mappings, which are
an adaptation of the one in (2) which was proposed [8]. In
the metrics introduced in this article, we seek to capture the
distance improvement (increase) from D to E matrices. We
begin by explaining two closely related metrics as follows.
Given a fixed, positive number, say NV, the conventional way
to measure the improvement from N to another number, say
N, (where N; > N and 7 is a positive integer for all possible
numbers) is to find the difference between the two numbers,
N; — N. The larger the difference, the larger the improvement.
Another way of finding the improvement from N to N; would
be to find the product of the two numbers, N x N;. The larger
the product, the larger the improvement.

The measure of the performance of the mappings is captured
in the relationship between the corresponding elements of the
D and E matrices. As mentioned in the definition of a DPM,
the distances (or elements) in the £ matrix should be at least
as large as the corresponding distances in the D matrix. To
compare the improvement from one distance (D distances) to
the other distance (E distances), we can either subtract the
two corresponding distances and pay attention to the value of
their difference or multiply the two corresponding distances
and pay attention to the value of their product. We need to
remember that the D matrix will be the same for different £
matrices. For example, D x F; and D x E5 which are element-
wise multiplication, can be compared because in each case
we are multiplying the elements of an F matrix with fixed
elements of a D matrix. After performing either a subtraction
or multiplication of the D and E matrices, a new matrix is
obtained which is the difference of distances (DD) or product
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of distances (PD), respectively. Summing up the entries of
the DD or PD matrix we obtain a value which we call the
sum of difference of distance (SODD) or sum of product of
distances (SOPD), respectively. The SOPD is maximised when
a large value is multiplied by another large value in the D and
E matrices. Whereas the SODD is maximised when the two
entries being subtracted are very different in value, that is a
large value minus a small value.

Recall that d;; and e;; denote the entries of D and F,
respectively, for ¢,7 = 1,2,...,2". Then the SODD and
SOPD can be mathematically described as follows:

(a) the sum of the difference of distances (SODD) of D and
E. Let the difference of two corresponding entries of D and
E, be denoted by D;; as D;; = e;; — d;j, resulting in a new
matrix D = E — D (element-wise subtraction). The value of
the SODD is then given as

gn g
22D
j=1i=1
2m o

SN iy —dij “

j=11i=1

Xsopp =

(b) the sum of the product of distances (SOPD) of D and F.
Let the product of two corresponding entries of D and F, be
denoted by P;; as P;; = d;; X e;;, resulting in a new matrix
P = D x E (element-wise multiplication). The value of the
SOPD is then given as

on  on

22 Py

j=1i=1
gn om

= Z Z dij X €ij- (5)

j=11i=1

Xsorp =

A third method of assessing the mappings would be to treat the
entries of D and E matrices as vectors in the dimension (or
unit) D and dimension F, respectively. This results a metric
we call,

(c) the sum of the resultant magnitude (SRM) of the
corresponding entries of D and F, d;; and e;;, respectively.
This criteria of assessing the mappings treats the entries d;;
and e;; as vectors, where d;; is the magnitude of a vector in the
Hamming distance (x-axis) direction and e;; is the magnitude
of a vector in the Euclidean distance (y-axis) direction. These
two entries result in a resultant vector R;; = di; + Jeyj ,
where J denotes the unit vector on the y-axis, and R;; are
entries of matrix R = D + JE (element-wise addition). The
magnitude of the resultant vector |R;;| = +/(d;;)? + (ei;)?
captures the improvement from d;; to e;;. Therefore, to assess
the mappings using SRM, we obtain the sum of the resultant
vectors, which is
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2m 2n
X = D> [Riil
j=11i=1
gn gn
= ZZ‘/(dUV + (e45)2. 6)
j=1i=1

Unlike the sum of Hamming distances of E used in [8],
the SODD, SOPD and SRM involve both the D and E matrix
entries in the calculation. Including both D and E matrices
gives the improvement (distance increase) in E relative to the
distances in D. It can be seen that setting D = 1 in (5) reduces
it to (2); setting D = 0 in (4) or (6) reduces it to (2). This
eliminates the reference to the D matrix as was done in (2).
The conclusion drawn from this observation is that the sum
of Hamming distances of E can be a specific case of either
the SODD or the SOPD or the SRM. We will present results
later to show that the sum of the distances of E as well as the
SODD cannot be used as performance measure metrics in the
mappings in this article because the D and E distances are
of different units/dimensions. However, the SOPD and SRM
can be used for both cases, when the units of the D and F
distances are the same and when they are different. This means
that the SOPD and the SRM proposed in this article can be
used in place of the sum of Hamming distances of E.

In the next subsections we illustrate the use of matrices
D and E in calculating the performance measure metrics
discussed above, but before we do that we need to have two
mappings to compare in terms of the metrics. We have already
created DPM;, then we need to create a second mapping for
comparison purposes. To create the second mapping, we use
the DPM algorithm applied in Example 1 without modifica-
tion, to obtain a mapping using the set A = {—3, —1,+1, +3}.
This results in a mapping, which we call DPM,, as:

DPM; : {000,001,010,011, 100,101,110, 111} —
{-3-14+1+43,-34+34+1-1,-1 -3 4+1+3,+3 -3 +1 —1,
-3 -1+43+1,-3+1 43 -1,-1 -3 +3 +1,—1 +1 +3 -3},

which has the £ matrix of Euclidean distances

S
I

0
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DPM metrics calculation

e SODD: D = E; — D, then

0
4.7
1.8
5.5
3.9
6.5
4.9
5.9

Therefore,

4.7
0
5.5

7.5
8.5
9.7

6.9
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1.8
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0
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Xsopp =

e SOPD: P = E; x D, then

P=

0
5.7
2.8

15.0

4.9

17.0
13.9
26.8

Therefore,

5.7
0
15.0
8.5
5.7
4.9
26.8
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2.8
15.0
0
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4.9
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e SRM: R =D + JE;, then
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DPMs metrics calculation
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6.9
4.0
7.5
6.3
4.9
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5.7

- (N

49 5.9 ]
59 4.9
3.9 6.5
0.8 3.9
75 5.5
55 1.8

4.7 0

17.0 139

9 268

26.8 4.9
13.9 5.7
5. .
0 15.0
15.0 0
15.0 2.

7 85

8 5.7

26.8 7
13.9
17.0
4.9
15.0
2.8
5.7

In this subsection we avoid showing the entire procedure of
the calculation of the metrics for DPMy because it is similar
to that of DPM;. We show only the results as follows.
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e SODD: D = E5 — D, then

NE

Xsopp

8
> _Di
=1

.23.

— S
NeJ
=~ =
[N}

e SOPD: P = E5 x D, then

M-
M-

Xsorp = P
j=11i=1
= 531.53
e SRM: R =D + JEj, then
g 8
Xsrm = D> IRyl
J=1i=1
= 307.38.

Using the D matrix in Example 1 we obtain the SOPD for
DPM,, which is 531.5264. It can be seen that the SOPD for
DPM, is lower than that for DPM; which is 665.4580. We will
show the significance of this difference in SOPD in Section
V.

IV. SYSTEM MODEL

The system model to be used for the simulation of mappings
is described in Fig 3. The system employs a convolutional code
of rate R = k/n, constraint length K and free-distance dfee,
and an M-PAM modulator as follows: at point a the system
takes in information bits in k-tuples, and produces n bits for
every k information bit, at point b. Every n-tuple of bits is
mapped to an M-tuple permutation codeword by the DPM
procedure. The permutation codewords at point c are of length
M taken from an M-PAM constellation. The receiver accepts
symbols corrupted by AWGN (additive white Gaussian noise)
at point d. Then the symbols are demodulated, resulting in a
stream of noise-corrupted permutation codewords (taken from
an M-PAM constellation) at point e. The decoder takes in the
received symbols at point e in M-tuples, and performs soft-
decision decoding using the Viterbi algorithm to produce an
estimate of the information bits at point f. For the soft-decision
decoding, every received M-tuple is compared with M -tuples
on the branches of the trellis using the squared Euclidean
distance. The M -tuples on the branches of the trellis are the
codewords of the mapping. In Figure 2 we used the codewords
(4-tuples) of DPM; and a convolutional code of R = 1/3,
K =4, dgee = 10 to illustrate how the 4-tuples appear on the
branches of the trellis. The circled numbers (0 to 7) are the
states of the decoder.

The 4-tuples on the branches of the trellis are the codewords
of the mapping, hence this step of the decoding process is
equivalent to comparing the received 4-tuple with each of
the codewords of the mapping to find the codeword that was
transmitted.

We observed that for the viterbi decoder to give good perfor-
mance, the larger distance in the D matrix must correspond to
a larger distance value in the E matrix; the smaller distance in
the D matrix must correspond to a smaller distance value in the

Fig. 2. Trellis diagram for the R = 1/3, K = 4, djee

code with codewords from DPM7 on the branches.

= 10 convolutional

i M-PAM
| Y " | .
In fo}l;gclation | Modulator : PC%.(III};‘}\E gﬂﬁn
its ‘ ! s
w’ Convolutional| n-tuples 4 DPM Jﬂplcs
a encoder b : procedure : c ¢
AWGN
Information Noise-corrupted
bits ) Permutation
k-tuples |Convolutional|  codewords M-PAM
f decoder e Demodulator d

Fig. 3. System model used for the simulations.

E matrix. This is equivalent to keeping the original distances
arrangement of the trellis unchanged and only scaling the
values of the distances for better performance. This is best
captured by a SOPD metric instead of a SODD or SRM metric.

In this article we use the SOPD metric, described above,
as a performance measure because it is easier to compute
compared to the conventional free distance. We therefore use
the free distance calculation of convolutional codes to validate
the SOPD used in this article. The following example shows
that both the free distance and SOPD give the same results
for our mappings.

It needs to be stressed that distance preserving mappings,
by definition are concerned with the improvement in distance
from the D matrix to the E/ matrix (e;; > d;; for 4, 7). The
larger the corresponding distance entries in E matrix from
the D matrix, the better the mapping. Simply summing the
F matrix entries will not accurately capture the performance
of the mappings when the D and E matrices have different
distance types, like in the case of this article.
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V. PERFORMANCE RESULTS

In addition to DPM; and DPMj,, we introduce DPMgs,
DPM,, DPM;5 and DPMg. DPM3, DPM,, DPM5 and DPMg
are as follows:

T T T T
—O— Uncoded 4PAM
Soft-decision decoded

4PAM upper bound
—— DPM1 (SOPD=665.5)

—¢—DPM_ (SOPD=531.5)
(SOPD=506.8)
(SOPD=650.5)
(
(

—e—DPM
—8—DPM,
—g—DPM

SOPD=647.1)
SOPD=665.5)

2
3
4
5
6

Bit Error Rate

L L L kY
0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15
Eb/No, dB

Fig. 4. Performance comparison results of six different mappings: DPM,
DPM2, DPM3, DPM4, DPM5 and DPMg. Uncoded 4-PAM and convolutional
encoded soft-decision decoded 4-PAM results are also displayed. An (R =
1/3, K = 4, dfree = 10) convolutional code was used.

DPM; : {000,001,010,011, 100,101,110, 111} —
{3 =1 +1 +3,-3 =1 +3 +1,-3 +1 —1 +3,-3 +1 +3 1,
~1 -3 +43 +1,-1 =3 +1 +3,—1 +1 =3 +3,—1 +1 +3 -3},

DPM;, : {000,001,010,011, 100,101,110, 111} —
{-3-1+41+3,+1 -1 -3 +3,-3 +3 +1 —1,+1 +3 =3 —1,
-1 -3+1+43,+41 =3 -1 +3,-1 +3 +1 —3,4+1 +3 -1 -3},

DPM; : {000, 001,010,011, 100, 101,110,111} —
{=3 =1 +1 +43,-3 +3 +1 —1,—1 —3 +1 43,43 —3 +1 —1,
—3 43 =1 41,41 +3 =1 =3,4+3 +1 =1 —3,43 —3 —1 +1},

DPMgs : {000, 001,010,011, 100, 101,110,111} —
{-34+3+1-1,-3 =1 +1 43,43 =3 +1 —1,—1 —3 +1 +3,
+1+4+3-1-3,-3+3 -1+4+1,+3 +1 -1 —-3,+3 —3 —1 +1}.

These new mappings, DPM3, DPM,, DPM; and DPMg were
constructed as follows: DPM3 and DPM, were constructed
using the type of DPM algorithm used for DPMj, but these
algorithms are different from the one specifically used to gen-
erate DPMs. DPM5 was constructed by simply interchanging
the positions of the last two permutation sequences in DPM;.
DPMg was constructed using our new construction of DPMs,
similary to DPM;. To verify that the mappings are distance-
preserving, the reader can create the D and E matrices for
each mapping as was done in Example 1.

Fig. 4 shows the simulation results comparing the following:
the six different mappings (DPM;-DPMg); uncoded 4-PAM;
the theoretical bound on conventional soft-decision decoding
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of 4-PAM where the (R = 1/3, K = 4, dgee = 10)
convolutional code is employed. The mappings (DPM; and
DPMg) obtained from our new construction have equal per-
formance and their performance is the best against all other
mappings. Our mappings, DPM; and DPMg also show a 5.5
dB coding gain when compared with the conventional soft-
decision decoding of the (R = 1/3, K = 4, dgee = 10)
convolutional coded data.

From Fig. 4 it can be seen that the higher the SOPD,
the better the mapping’s performance. This shows that the
SOPD is a good metric for judging the performance of the
mappings. However, when considering the SODD and SRM
in Table I and the corresponding performance results in Fig.
4 of the mappings, it is evident that the SODD and SRM
cannot be used to judge the performance of the mappings,
especially for high signal-to-noise ratio (SNR). However, a
close observation of SODD in Table I and the corresponding
performance results in Fig. 4 of the mappings reveal that
actually the SODD is good metric for low SNR: for example,
DPM, and DPMj5 in Table I have SOPDs of 650.5 and 647.1,
respectively. While DPM, has a higher SOPD than that of
DPMs, it has a lower SODD of 251.9 (versus an SODD of
DPM; of 265.8). Fig. 4 shows that DPM; performs better
than DPM, at SNR below 4.5dB; It can also be observed in
Table I that DPM5 and DPMg which have the same SODD
of 265.8, have the same performance at SNR below 1dB in
Fig. 4. Having said this about the SODD metric, the SOPD is
a metric of choice because the bit-error rate (BER) vs SNR
performance curves in communications become asymptotically
accurate as the BER approaches zero (which corresponds to
increasing SNR). Therefore in terms of asymptotic BER, the
SOPD is a metric of choice over all the other metrics.

Looking at the E matrices for DPM; and DPM; in (3)
and (7), respectively we can see that the minimum Euclidean
distance is the same, 2.8. It is interesting that even though
DPM; and DPM; have the same minimum Euclidean distance,
their performance in Fig. 4 is different. This difference in
performance is due to their different SOPD.

TABLE I
MAPPINGS AND THEIR SUM OF DISTANCES: SUM OF THE HAMMING
DISTANCES OF E, SUM OF THE EUCLIDEAN DISTANCES OF E' AND SUM OF
THE PRODUCT OF DISTANCES FROM D AND E (SOPD).

Mapping Sum of the Sum of the Sum of the Sum of the
Resultant Euclidean  difference of product of
Magnitudes  Distances distances distances
(SRM) (SODD) (SOPD)
DPM; 376.0 361.8 265.8 665.5
DPM, 194.2 290.2 194.2 531.5
DPM3 302.2 283.8 187.3 506.8
DPM,4 362.1 347.9 251.9 650.5
DPM5 376.7 361.8 265.8 647.1
DPMgs 376.0 361.8 265.8 665.5

The sum of the Hamming distances of the E' matrices was
considered as a metric for assessing the performance of the
mappings in [8], and was found to be a good metric. The
same idea can be applied to the mappings in this article to
obtain the sum of the Euclidean distances of the E matrices.
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However, the sum of the Euclidean distances of FE fails to
capture the accurate performance of the mappings (that are
using the Euclidean distances in their £ matrices). This failure
of the sum of the Euclidean distances of £ as an accurate
metric for judging the performance of the mappings is evident
when looking at the sum of the Euclidean distances of the
FE matrices of DPM; and DPMj5 in Table I, together with the
performances of DPM; and DPMj5 in Fig. 4. DPM; and DPMj
have the same sum of Euclidean distances, 361.8, but Fig. 4
shows that DPM; performs better than DPMj;. Having said
that, however, the sum of the Euclidean distances of the F
matrix still closely tracks the performance of the mappings,
for mappings that are too different in terms of bit error rate
performance.

To further show the consistency of the SOPD as a metric
for assessing the performance of DPMs, we present other
performance results in Fig. 5, where we use a different
convolutional code (R = 1/3, K = 3, dgee = 6) than the
one used for the results in Fig. 4. The system set-up in Fig.
5 is the same as the one used to get the results in Fig. 4; the
only thing that was changed was the convolutional code.

—©— Uncoded 4PAM
... Soft-decision decoded
4PAM upper bound
+DPM' (SOPD=665.5) |

—>¢— DPM, (SOPD=531.5)
—©—DPM_ (SOPD=506.8)
—— DPM, (SOPD=650.5)

Bit Error Rate

Eb/No, dB

Fig. 5. Performance comparison results of four different mappings: DPM1,
DPMsy, DPM3 and DPMy4. Uncoded 4-PAM and convolutional encoded soft-
decision decoded 4-PAM results are also displayed. An (R =1/3, K = 3,
dfree = 6) convolutional code was used.

In Fig. 5 we have used a subset of the mappings used for
Fig. 4, and the same trend of performance as in Fig. 4 is
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observed. We show results for only DPM;, DPM,, DPM3 and
DPM, because they suffice to show the relationship between
the performance of the mappings and SOPD.

VI. CONCLUSION

A distance-preserving mapping construction for mapping
binary sequences to permutation sequences for 4-PAM con-
stellation was presented. A mapping from our construction
was presented and resulted in the best performance compared
to mappings from the conventional DPM procedure. We have
shown that the sum of the product of distances (SOPD) is a
good metric for assessing the performance of the mappings.
We have also shown that both the sum of the Euclidean dis-
tances and the minimum Euclidean distance are not appropri-

ate metrics for assessing the performance of mappings. Having
found mappings that outperform conventional mappings, we

still need to find a general construction for M-ary PAM and
proof that mappings from our construction are optimal.
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