
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2019, VOL. 65, NO. 1, PP. 25–31
Manuscript received August 23, 2018; revised January, 2019. DOI: 10.24425/123561

Weak RSA Keys Discovery on GPGPU
Przemysław Karbownik, Paweł Russek, and Kazimierz Wiatr

Abstract—We address one of the weaknesses of the RSA
ciphering systems i.e. the existence of the private keys that are
relatively easy to compromise by the attacker. The problem can
be mitigated by the Internet services providers, but it requires
some computational effort. We propose the proof of concept
of the GPGPU-accelerated system that can help detect and
eliminate users’ weak keys. We have proposed the algorithms
and developed the GPU-optimised program code that is now
publicly available and substantially outperforms the tested CPU
processor. The source code of the OpenSSL library was adapted
for GPGPU, and the resulting code can perform both on the GPU
and CPU processors. Additionally, we present the solution how
to map a triangular grid into the GPU rectangular grid – the
basic dilemma in many problems that concern pair-wise analysis
for the set of elements. Also, the comparison of two data caching
methods on GPGPU leads to the interesting general conclusions.
We present the results of the experiments of the performance
analysis of the selected algorithms for the various RSA key length,
configurations of GPU grid, and size of the tested key set.

Keywords—cryptography, Internet security, intrusion preven-
tion, accelerated computing, caching methods, big numbers
computing

I. INTRODUCTION

CRYPTOGRAPHIC algorithms used in practice become
unsafe when they are not properly engaged. In some

situations, the vulnerabilities become detected a long time after
the algorithm came into common service. Susceptibility of the
solution may lay in the cryptographic algorithm or software;
nevertheless, providers of the computer infrastructure should
commence certain steps to protect users’ privacy. Therefore
efficient tools should be developed to help mitigate such
security deficiencies. In this document, we address above
approach and report our efforts to built proof of concept of a
system for weak cryptographic keys detection.

The Rivest, Shamir, & Adleman (RSA) algorithm was in-
troduced in 1977, and it is today the most popular asymmetric
cryptographic algorithm. To secure communication, it uses a
pair of keys: the public key for message coding, and private
key for decoding. The protection delivered by RSA comes
from the complexity of big numbers factorization. In 2012,
Lenstra et al. [1] published the results of the check of the
openly accessible public RSA keys, and they found that the
0.2% of keys failed to provide the expected level of security.

Paweł Russek has been supported by AGH University of Science and
Technology Statutory Activity, grant no 11.11.230.017. Kazimierz Wiatr
has been supported by National Science Centre (NCN), grant no DEC-
2011/01/B/ST6/03024.

Przemysław Karbownik graduated from the Faculty of Computer Science,
Electronics and Telecommunication at AGH Univeristy of Science and Tech-
nology, Cracow, Poland (przemyslaw.karbownik@gmail.com).

Paweł Russek and Kazimierz Wiatr work at AGH UST in Department of
Electronics at Faculty of Computer Science, Electronics and Telecommuni-
cation AGH; and in Academic Computing Centre ‘Cyfronet’ AGH, Poland
(russek@agh.edu.pl, wiatr@agh.edu.pl).

One of the highlighted problems was that the modulus compo-
nents of some public keys shared common prime factors. Thus,
they could be easily factorized compromising the keys. The
source of the problem is not in the RSA algorithm but in the
fact the keys were generated incorrectly i.e. by malfunctioning
prime generators that do not have enough entropy and output
same numbers repeatedly.

Identifying the keys with moduli that share factors involves
collecting a big set of public keys and performing a greatest
common divisor (GCD) search for all pairs of the keys.
The efficient algorithm to perform bulk GCD computation
was, however, proposed by Bernstein [2], and it was used
by Heninger et al. [3] to identify factorable public keys for
≈ 0.50% of network hosts. Heninger’s approach invoked
CPU that was an apparent approach for the control-intensive
algorithm of Bernstein. The naı̈ve approach involve doing
GCD search for each distinct key pairs independently, and
it more suitable for accelerated computing [4] [5].

Our interest in General-Purpose Computing on Graphics
Processing Units (GPGPU) was the main reason we had
chosen this platform to propose the solution for the factorable
RSA keys detection. The practice of accelerated computing
leads to the selection of the algorithms that are regular and
display a clear outer loop; therefore, we have identified the
naı̈ve procedure as a natural way to attack the problem. A
similar concept was earlier exploited by Scharfglass et al.
[6] and Fujita and Koji [7]. Interestingly, the solutions and
conclusions that are presented in this paper unfold beyond
the problem of weak RSA key discovery, and it applies to
the processing of integer pairs when they belong to the large
set of big numbers. It should be also mentioned that authors
do not come across any GPU implementation of Bernstein’s
algorithm in literature, and this method is perhaps their future
endeavour for the GPGPU.

II. PROBLEM STATEMENT

In this section, we provide a simple background to the prob-
lem of the weak RSA key discovery. The RSA algorithm will
be outlined, and the tree versions of the Euclidian algorithm
for GCD search will be proposed.

A. RSA algorithm

The RSA algorithm is a public-key (asymmetric) crypto-
graphic scheme used to secure communication between the
two foreign parties. Before the asymmetric cryptography was
first introduced in 1976 [8], a private communication relied
on a secret (key) shared by the communication peers. In
so-called symmetric cryptography the same key is used for
the encryption and decryption process; therefore, the key has
to be exchanged in privacy before communication starts. In

26 P. KARBOWNIK, P. RUSSEK, K. WIATR

opposite, the security of the public key cryptography systems
rely on mathematical problems that currently admit no efficient
solution.

The computational difficulty of a big number factorization is
a foundation of the RSA system. The tree basic procedures of
RSA are given in Algorithm 1. In RSA, a communication party
creates the private and public keys using the KeysGeneration
procedure. It publishes the public key and keeps the private
key in secret. Later, it uses the private key to decrypt data that
has been encrypted by other party with the public key; i.e.
data can be read by the private key owner only.

Mathematical operations in RSA involve modular arith-
metic, where numbers “wrap around” upon reaching a certain
value. For example, the result of a ∗ b mod N is the residue
of a∗b

N . As it can be seen in the RSAencode procedure (Alg.1),
message encoding is a modulo exponentiation operation with
the public key exponent e and modulus n. The modulo
operations are not trivially reversible, as one cannot easily
perform the backward trial. Still, the RSAdecode procedure
allow the private key owner to decode the message m by
cd mod n operation, where c is the cipher text, d is the private
key exponent, and n is modulus. The RSA works because d
is the modular inverse of e (mod ϕ(n)), and both d and ϕ(n)
are unknown to the attacker as long as n is not factorized
(n = p ∗ q). The modulus n is a big number and its bit-width
determines the RSA key length e.g. 1024-bit keys can be used
in practice.

Algorithm 1 RSA algorithm
1: procedure KEYSGENERATION
2: p, q ← big prime numbers
3: n← p ∗ q
4: ϕ(n)← (p− 1) ∗ (q − 1) . calculate the value of the

Euler function for n
5: e← any coprime number of ϕ(n); 1 < e < ϕ(n)
6: d← e−1 (mod ϕ(n)) . i.e. e ∗ d (mod ϕ(n)) ≡ 1
7: privateKey ← (n, d); publicKey ← (n, e)
8: return {privateKey, publicKey}

9: procedure RSAENCODE(messageText, publicKey) .
publicKey : (n, e)

10: m← convert messageText to a number; m < n
11: c← me(mod n) . c is a ciphertext
12: return c

13: procedure RSADECODE(messageText, privateKey) .
privateKey : (n, d)

14: m← cd(mod n) . cd ≡ (me)
d ≡ m (mod n)

15: messageText← restore messageText from m
16: return messageText

B. Euclidian algorithm

The use of the poor prime number generator leads to imper-
fect randomness in the selection of p and q. Consequently, in a
large set of the public keys, an attacker can detect pairs of keys
whose moduli share the factor. In order to find the common

factor of the moduli A and B, one has to use a GCD algorithm.
For a pair of numbers, various versions of the Euclidean GCD
algorithm exist. In the classic Euclidean method, one performs
consecutive subtract operations. It should be noticed that gcd
of A and B; where A > B, is similar to the gcd of A − B
and B. The graphical justification of this property is given in
Figure 1. Thus, one can substitute A with A − B and still
keep the final result. The Euclidian algorithm is presented in
Figure 2a. At each step, we subtract the smaller value from
the larger one, and the subtraction continues until one of the
values is zero.

The classic GCD performs poorly because it needs many
iterations; however, it can speed up significantly if another
property of gcd is observed: when A is even and A > B, gcd
of A and B is also gcd of A

2 and B. The division operation
makes the algorithm reaches zero faster. Additionally, in
processor; the division by two can be substituted by fast and
simple arithmetic shift right operation. While designing the
efficient GCD procedure, it is also worth to remember that
gcd(A2 ,

B
2) =

gcd(A,B)
2 , if both A and B are even.

The binary Euclidean algorithm, also known as Stein’s algo-
rithm [9], exploits all of the presented properties of GCD. We
assessed different GCD methods for our experiments with the
GPU processor. As a result, we have chosen three schemes for
the exhaustive study: the classic Euclidean, binary Euclidean,
and fast Euclidean algorithms. The classic Euclidean (Fig. 2a
performs badly but it is a good point of reference. Selection
of the other two methods was driven by their compelling
performance.

The binary Euclidean, presented in Figure 2c, is inspired
by Stein’s algorithm; however, it features the clear-cut outer
loop in our approach. The outer loop makes the candidate a
good pick for the hardware acceleration. The diagram (Fig.
2c) plainly explains how the algorithm works. Please note the
S variable that is doubled each time both A and B are even
and, therefore, halved simultaneously. The S value is used to
produce the final algorithm result: S ∗A.

The fast Euclidean algorithm, given in Figure 2b, can be
seen as a simplification of the binary algorithm. Only the A
variable is tested for its parity. This forces the algorithm to
perform more loop iterations to complete when compared to
its binary counterpart; but also, it makes its program code
simpler and less control-intensive. In GPU’s Single Program
Multiple Data (SPMD) execution model, the reduction of the
conditional statements in a code leads to the more efficient
execution of the simultaneous threads. In SPMD, the execution
of the conditional body of the threads that meets the condition
force the rest of the threads to stall. This is the reason;
for GPUs, we prefer programs that do not branch much.
Therefore, the fast Euclidean algorithm is a good candidate
for our experiments.

III. GPU IMPLEMENTATION

A. Mapping of the problem

In our GPU implementation, we assumed each thread to per-
form the GCD algorithm for one pair of the key moduli. The
key pairs create a 2D grid with elements in rows and columns.

WEAK RSA KEYS DISCOVERY ON GPGPU 27

Fig. 1. Graphical justification of the Euclidian algorithm

Naturally, this grid can be seen as the GPU computing grid,
and it is enough to assign one grid node to one GPU thread.
However, the pairs are a combination of the two keys i.e. the
order of the keys does not matter, and the pair {key1, key2}
is similar to the pair {key2, key1} for example. Therefore, the
active nodes form a triangle within the 2D grid. This poses
some challenge in GPU implementation where threads form a
rectangle grid. The problem is depicted in Figure 3. The pair
of keys is denoted as (a, b) in this document, and only pairs
where a > b; a ∈ {0, 1, . . .} are active during computation
(they are filled in gray in Figure 3).

A basic approach to cover the triangular key grid with
the thread grid is to use the square computing grid of size
n × n; where n is a number of keys in the set, and put
the key triangle into the thread grid square. In this case, any
GPU thread terminates immediately if a ≥ b – they are a
dummy. This is not a good solution in our opinion, because
the dummy threads; even if they do not compute, consume
the GPU resources. Every thread requires a certain number
of registers, and the GPU compiler has to allocate registers
for them. The threads consume the shared memory space for
their registers, and it limits the maximum number of the block
threads, as the shared memory size is fixed for a given GPU.
The higher number of threads per block is the main source of
better GPU power utilization (see CUDA occupancy calculator
[10]), and it is worth an effort to avoid the dummy threads that
take resources but do not compute.

In the proposed method, we fit the key pairs into a rectangle
that is half the size of the above square. Please note that the
number of the active key pairs is

k =
n ∗ (n− 1)

2
. (1)

To meet the quantity of the active key pairs (Eq. 1), the
thread grid can be formed as the (n− 1)× n

2 rectangle, if n
is even value; or the n−1

2 × n rectangle, if n is odd value.
Following this idea, we introduce the mapping of the key grid
into the GPU grid that is given in Figure 4. For generality,
let’s introduce p variable, and p = 1 or p = 0 for the even
and odd values of n respectively. Accordingly, the GPU grid
size is

n− (1− p)

2
× n− p.

Figures 4a and 4b presents mapping for the even and odd n
respectively. In short, the part of the triangle grid that lays
outside the rectangle of the width n−(1−p)

2 (striped locations)
is placed in the free rectangle area (white locations).

Now, we can use the 2D thread grid, where each GPU
thread is denoted by its (x, y) coordinates. The formulas are
necessary to determine the unique (a, b) pair of keys for the
given (x, y) thread identifier. To get its dedicated key pair
(a, b), the thread can use simple formulas:

a =

{
x+ p if (x+ p) > y

k − x− 1 if (x+ p) ≤ y

b =

{
y if (x+ p) > y

k − y − 2 + p if (x+ p) ≤ y.

B. Caching of the keys

Looking at the grids in Figure 4, one sees the grid blocks
that split the thread grid into regions. Along the grid size,
the size of the block is an execution parameter of the GPU
program. Same block threads can share data that is kept in
the block’s Shared Memory (SM). Threads read SM very fast;
therefore, in the good GPU programming practice, it is used to
cache the common block data. Usually during GPU program
execution, data is first copied from the GPU Global Memory
to SM, and then computation continues efficiently reading
data from SM – this is often called arbitrary data caching.
Unfortunately, only the threads executed within one block can
share data kept in the same SM. Each grid block has its own
SM, and its size is limited (e.g. GPU, used by the authors,
offered 64 kB).

Studying the key pairs (a, b) associated with the nodes of
the GPU block (x, y) (Fig.4), we conclude that threads in the
same block process only a certain subset of the keys. If we
neglect the fact that the part of the grid was moved to reshape
the initial triangular grid; we can say that all threads in the
same row share a – the first pair’s key, and all threads in the
same column use in common b – the second key of the pair.
Thus, the corresponding key ranges for the block’s columns
and rows can be transferred to the block’s SM prior to the
major processing. Our case is a little bit different because the
key grid has been re-arranged, and we has to consider the
two different keys for each row and the two different keys for
each column. This is, however, the case only for the blocks
that span the area along the grid binding. One can employ
the threads of the first and last block column to transfer two
necessary ranges of a, and the threads of the first and last row
to transfer two necessary b ranges. This is how the arbitrary
caching was implemented in our experiment.

The second scenario, tested in the presented experiments,
is the automatic caching. In GPU, the local memory can act
also as a conventional L1 cache during program execution. In
this case, data read from the Global Memory is automatically
stored for reuse. The local memory is configurable to be
adapted for Shared Memory, L1 Cache, or both – the local
memory is divided between SM and L1 in different proportion
(i.e. 16/48, 32/32, 48/16 kB, for our GPU).

Quite a lot of the local memory is necessary for the RSA
keys analysis. For example; for 4096-bit keys, in the 32×32
blocks configuration, it is necessary to cache 64 kB of data
(2×(32+32)×4096 bits) – this exceeds our GPU capabilities,

28 P. KARBOWNIK, P. RUSSEK, K. WIATR

TABLE I
CHARACTERISTICS OF THE USED CPU AND GPU PROCESSOR

Processor Intel Xeon E5-2630v3 Nvidia Kepler GK210
Release date Q3 2014 Q3 2014
Technology 22 nm 28 nm
#Cores 8 2496
TDP 85 W 150 W
Clock freq. 2.4 GHz 875 MHz

as we should remember that the shared memory is also used
to keep threads’ register data.

IV. TESTS AND RESULTS

A. Experiment setup

Source codes of the OpenSSL library helped to prepare the
software that was developed to perform presented experiments.
Particularly, the procedures for big number arithmetic become
the base for the RSA key processing. Nevertheless, we have
introduced some modifications to the original OpenSSL func-
tions to make them less control-intensive and, therefore, better
suited for the GPU calculations. Also, scripts from OpenSSL
library were used to create three sets of RSA keys (1024-bit,
2048-bit, and 4096-bit key sets).

We have implemented procedures for the three mentioned
in Section II-B GDC algorithms: the original, binary, and fast.
Significantly, the C-coded source code of the GCD and big
number functions is common for the CPU and GPU platforms.
The program was compiled by the ‘nvcc’ v9.0 compiler, and
the CUDA framework with Compute Capability 3.5 was used.

The software, developed and used in the performance tests
that follow, is available for the reader in the public Git
repository [11].

The very first of our performance tests targeted the compar-
ison of the GPU vs. CPU. Our choice of the computing plat-
forms was done to make the judgment as fair as possible; but
it was also determined by the particular hardware availability.
Consequently, we used the acceleration platform accessible in
the Academic Computing Centre ‘Cyfronet’[12]. The selected
server, based on the Intel Xeon E5-2630v3 CPU, hosted the
Nvidia K80 GPU card. The main characteristics of the selected
processors are summarized in Table I. Notably, both chips were
released to the market at the same time; though, CPU has been
fabricated in the more advanced semiconductor technology.
The technology advantage of the Intel makes conclusions that
favour the CPU architecture over the GPU distorted, but it is
not the other way round. On the other hand, the perspective of
the user who purchases processor is bond to the launch date
rather than to the technology. What is also striking, the clock
frequency of the CPU is ∼2.7 times higher compared to the
GPU, but its Thermal Design Power (TDP) – i.e. maximum
power a device dissipates, is ∼1.7 times lower. This is exactly
the opposite one could expect, and this is perhaps a credit to
both Intel’s newer technology and the higher switching activity
of the GPU gates.

V. RESULTS

As a performance measure, we have decided to use the
average execution time of the GCD for the single key pair.

The experiments were conducted for various sizes of the key
set: n. Accordingly,d the number of the key pairs p is given
by Formula 1. The algorithm execution time T includes the
GCD procedure only, and it excludes the key set construction
– i.e. reading key text files from a disk storage, formatting,
and loading data into the memory are not accounted. In the
GPU case, we decided to start assessment when the data is
already in the GPU global memory. As we copy n keys only,
the host to card data transfer time is insignificantly short as
compared to the compute time. Thus, the average execution
time of the key pair (called pair time) is

t =
T

p
.

We have started the series of our experiments measuring
the performance of the three GCD algorithms on the CPU and
GPU; however, the original euclidian algorithm was used as an
impractical reference only. Also, according to the GPU good
practice, we maximized the block size and selected maximum
value allowable for K80 i.e. 32 × 32 = 1024 threads per
block. Two caching strategies for GPU (see Section III-B)
were tried: the GPU-cache and GPU-shmem which denote the
automatic and arbitrary caching respectively. The key size in
the experiment was 1024 bit. As it can be seen in Figure 5,
the binary and fast algorithms significantly outperformed the
original one in all cases. Also, they work noticeably faster
on the GPU than on the CPU. For the original algorithm,
the gain of GPU vs. CPU is not that much. The reason,
perhaps, is because no serious attention was paid to the
efficient implementation of the original algorithm on GPU.
Consequently, as we have found the GPU to be better suited for
the weak key discovery, the rest of the presented experiments
regard GPU only.

In the next experiment, the an a-priori assumption to
maximize the block size was challenged. We performed the
variable block size tests for the various algorithms with the
three different key sizes (1024, 2048, 4096-bit). The results
are given in Figure 6 and 7 for the automatic and arbitrary
caching strategies. The fast conclusion can be drawn that the
optimal block size is 4 × 4 = 16 threads per block. Only
arbitrary caching with the 8 × 8 = 64 block size and 4096-
bit key is an exception. The saturation of the execution time
at the low value of threads per block is somehow confirmed
by [10]. The reason originates in a high register utilization
of our algorithms i.e 48 registers per thread. Such a high
register requirement prevents full GPU utilization because
the ‘maximum number of active threads’ (2048 in the case
of CUDA 3.5) cannot be reached due to the local memory
shortage – particularly #threads ∗#registers has to fit the
local memory register space. According [10], the ‘maximum
number of active threads’ does not exceed 1280 for our
kernels, and this value is reached for 98 threads per blocks
only. Nevertheless, 16 threads per block proved to perform
fastest in practice.

As it can be seen in Figure 7, the arbitrary caching experi-
ment with 4096-bit keys ends at the 24 × 24 block size. The
reason is that for the bigger block sizes the necessary space
of the aggregated shared and register memory is higher than

WEAK RSA KEYS DISCOVERY ON GPGPU 29

(a) Euclidian algorithm

(b) Fast Euclidian algorithm

(c) Binary Euclidian algorithm

Fig. 2. Euclidian algorithms

Fig. 3. The grid of the key pairs

(a) Even lattice size

(b) Odd lattice size

Fig. 4. Performance of the Euclidean algorithms; 16 (4×4) threads per block,
different size of the key set

available 4,9152 Bytes of the local memory. The required size
of shared memory for arbitrary caching is 2 ∗k ∗ l, where k is
a block size, and l is a key length in bytes. In our experiment,
2 ∗ 24 ∗ 512 = 24, 576 Bytes of the shared memory is a limit
that is reached for the 24 × 24 blocks when the key length is
4096 bits.

In the last examination, we compared an efficiency of the
algorithms for various sizes of the key set. As indicated by
the previous tests, the chosen blocks’ dimension was 4 ×
4. The obtained results, given in Figure 8, show that the
maximum performance can be reached when the key set

30 P. KARBOWNIK, P. RUSSEK, K. WIATR

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 1000 2000 3000 4000 5000

P
a
i
r

t
i
m
e
[
u
s
]

Number of keys

1024-bit keys

Binary, L1-cache
Fast, L1-cache
Binary, ShMem

Fast, ShMem

(a) 1024-bit keys

 24

 26

 28

 30

 32

 34

 36

 38

 40

 1000 2000 3000 4000 5000

P
a
i
r

t
i
m
e
[
u
s
]

Number of keys

2048-bit keys

Binary, L1-cache
Fast, L1-cache
Binary, ShMem

Fast, ShMem

(b) 2048-bit keys

 130

 140

 150

 160

 170

 180

 190

 1000 2000 3000 4000 5000

P
a
i
r

t
i
m
e
[
u
s
]

Number of keys

4096-bit keys

Binary, L1-cache
Fast, L1-cache
Binary, ShMem

Fast, ShMem

(c) 4096-bit keys

Fig. 8. Performance of the Euclidean algorithms; 16 (4×4) threads per block,
different size of the key set

 1

 10

 100

 1000

Oryginal Binary Fast

Euclidean algorithms performance
(pair time[us])

CPU
GPU-cache

GPU-shmem

Fig. 5. Performance of the Euclidean algorithms on the GPU and CPU
processors; 1024-bit key, 1024 threads per block

 1

 10

 100

 1000

 2 4 5 8 16 32

P
a
i
r

t
i
m
e
[
u
s
]

Grid block size

Performance of the euclidean algorithms
Automatic Caching

Binary, 1024-bit

Fast 1024-bit

Binary, 2048-bit

Fast, 2048-bit

Binary, 4096-bit

Fast, 4096-bit

Fig. 6. Performance of the Euclidean algorithms on GPU for a different
number of block threads. Automatic caching

 1

 10

 100

 1000

 2 4 5 8 16 32

P
a
i
r

t
i
m
e
[
u
s
]

Grid block size

Performance of the euclidean algorithms
Arbitrary Caching

Binary, 1024-bit

Fast, 1024-bit

Binary, 2048-bit

Fast, 2048-bit

Binary, 4096-bit

Fast, 4096-bit

Fig. 7. Performance of the Euclidean algorithms on GPU for a different
number of block threads. Arbitrary caching

contains more than 2000 keys. This applies to all tested cases
(1024, 2048, and 4096-bit keys; binary and fast algorithms;
arbitrary and automatic caching). For the 5000 keys and 4 ×
4 blocks, the key times reached the values given in Table II.
The configuration in this attempt provided the best pair times
measured in all our experiments (denoted in bold).

WEAK RSA KEYS DISCOVERY ON GPGPU 31

TABLE II
EXECUTION TIME OF THE KEY PAIR FOR THE 4×4 BLOCKS AND THE SET

OF 5000 KEYS (BEST VALUES ARE GIVEN IN A BOLD FONT)

Algorithm

Key length Binary Fast
Shmem Cache Shmem Cache

1024-bit 6.8 µs 5.5 µs 4.9 µs 4.0 µs
2048-bit 36 µs 35 µs 26 µs 25 µs
4096-bit 171 µs 169 µs 128 µs 131 µs

According to Table II, the fast Euclidean algorithm outper-
formed the binary algorithm for all key lengths. Interestingly,
the automatic caching performed significantly better (25%
gain) than arbitrary caching for 1024-bit keys, and it performed
near equally well for 2048-bit keys. This is a remarkable result
because arbitrary caching is known to be the best choice in
the GPU computing. To explain this phenomenon, we can
notice, that in our arbitrary caching strategy the amount of
reserved local memory is not optimal. Instead of two, we
assume four subsets of keys for all grid blocks because some
of the blocks are located across the seam (where the moved
and unmoved nodes are adjacent). This strategy is not optimal
for blocks that require only two key subsets (these located in
moved or unmoved region only) and put automatic caching in
a favorable position. For longer keys, arbitrary planned local
memory allocation returns shorter execution times which agree
with our educated guess.

VI. STATE-OF-THE-ART AND CONTRIBUTION

The weak RSA key detection with GPGPU has been pre-
viously studied by Scharfglass et al. [6] and Fujita et al.
[7]. Particularly, the second work reports GPU speed that
outperforms our results. On the other hand, the former authors
do not provide their source code; and, therefore, their solution
cannot be further developed or simply used by others. We
believe that approach to publish the program sources better
serves scientific community. Our code, given in [11], can be
further developed and improved by whoever wants to do it. For
example, the big number libraries are a subject of an additional
effort for GPU optimization in our opinion.

Additionally, our method that fits a triangular grid of
pairwise computations into a rectangular GPU-like grid can
be exploited beyond RSA key analysis. Also, adopted for the
GPU, big number SSH library is also useful in wider context
of computational problems e.g. prime number generation.

Moreover, our reports unveils interesting phenomenons
where the automatic caching outperforms arbitrary one, and

the smaller number of thread blocks outperforms the higher
one. These results are worth dissemination to the GPU com-
munity as they revise the common practice.

VII. CONCLUSIONS

In our experiments, GPU has confirmed its dominance,
over CPU, for integer data processing in easily parallelized
and compute intensive tasks. The fast Euclidean algorithm
has performed the best; although, in theory, it required more
operations than the binary one. This confirmed the experience
that GPU-oriented algorithms should pose the reduced number
of conditional and branching instructions.

The GPU automatic caching was found to be an efficient
mechanism that provides good performance with a simpler
GPU code – no additional programmer effort is necessary to
implement arbitrary caching in order to achieve significantly
better performance results.

REFERENCES

[1] A. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and
C. Wachter, “Ron was wrong, whit is right,” IACR, Tech. Rep., 2012.

[2] D. J. Bernstein, “How to find smooth parts of integers,”
URL: http://cr. yp. to/papers. html# smoothparts. ID
201a045d5bb24f43f0bd0d97fcf5355a. Citations in this document,
vol. 20, 2004.

[3] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman, “Mining
your ps and qs: Detection of widespread weak keys in network devices.”
in USENIX Security Symposium, vol. 8, 2012, p. 1.

[4] M. Wielgosz, G. Mazur, M. Makowski, E. Jamro, P. Russek, and
K. Wiatr, “Analysis of the basic implementation aspects of hardware-
accelerated density functional theory calculations,” Computing and In-
formatics, vol. 29, no. 6, pp. 989–1000, 2012.

[5] P. Russek and K. Wiatr, “The enhancement of a computer system for
sorting capabilities using fpga custom architecture,” Computing and
Informatics, vol. 32, no. 4, pp. 859–876, 2014.

[6] K. Scharfglass, D. Weng, J. White, and C. Lupo, “Breaking weak 1024-
bit rsa keys with cuda,” in Parallel and Distributed Computing, Appli-
cations and Technologies (PDCAT), 2012 13th International Conference
on. IEEE, 2012, pp. 207–212.

[7] T. Fujita, K. Nakano, and Y. Ito, “Bulk gcd computation using a gpu to
break weak rsa keys,” in Parallel and Distributed Processing Symposium
Workshop (IPDPSW), 2015 IEEE International. IEEE, 2015, pp. 385–
394.

[8] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[9] J. Stein, “Computational problems associated with racah algebra,” Jour-
nal of Computational Physics, vol. 1, no. 3, pp. 397–405, 1967.

[10] “Cuda occupancy calculator,” https://developer.download.nvidia.com,
accessed: 2018-08-16.

[11] “Weak keys discovery git repository,”
https://git.plgrid.pl/scm/p̃lgrussek/weak keys discovery.git, accessed:
2018-08-17.

[12] “Ack cyfronet agh,” http://www.cyfronet.krakow.pl, accessed: 2018-08-
18.

