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Abstract—This paper presents an original method of designing 

some special reversible circuits. This method is intended for the 

most popular gate set with three types of gates CNT (Control, 

NOT and Toffoli). The presented algorithm is based on two types 

of cascades with these reversible gates. The problem of 

transformation between two reversible functions is solved. This 

method allows to find optimal reversible circuits. The paper is 

organized as follows. Section 1 and 2 recalls basic concepts of 

reversible logic. Especially the two types of cascades of reversible 

function are presented. In Section 3 there is introduced a problem 

of analysis of the cascades. Section 4 describes the method of 

synthesis of the optimal cascade for transformation of the given 

reversible function into another one. 

 
Keywords —reversible logic, reversible circuits, reversible gate, 

CNT set of the gates 

I. INTRODUCTION 

HE conventional Boolean function synthesis starts with a 

universal gate library and the target of this process is to 

finding logic circuits that implement this function. These 

circuits need to meet the criterion of minimization, e.g., the 

circuits need to consist of a minimal number of the gates. 

Usually the number of output bits is relatively small compared 

with the number of input bits (Fig. 1a). However, there are 

applications, e.g. digital signal processing, computer graphics, 

cryptography and so on, which require an equal number of 

input and output bits (Fig. 1b). These circuits could be lossless 

information circuits as well as reversible ones if mapping of 

the vector input into the vector output is mutually 

unambiguous. 

 

 

Fig. 1. a) Irreversible circuit, b) reversible circuit  
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Landauer showed that the loss of information implies energy 

loss [1]. The result of this theorem is the possibility of 

construction of the energy lossless circuits. The condition of 

this design is reversibility. The other conditions are: no fan-

outs and no feed-backs [2].  

A function with n inputs and n outputs is called reversible if 

is bijective, i.e., if each input pattern uniquely maps to an 

output pattern, and vice versa [21]. Each of the Boolean 

functions included in the reversible function has the same 

number of the 0-s and 1-s minterms. This is a mutual 

unambiguity of the function. 

Applications of the reversible circuits can be found in the 

emerging fields of the quantum computation and low-power 

computation. The quantum computations require the use of the 

reversible gates. These gates can be built using various 

technologies such as the semiconductor CMOS [3,4], optical 

[5] and thermodynamic ones [6] and so on. In order to build 

the gates researchers must overcome many difficulties.  

The other area of development is the logic synthesis of 

reversible circuits. The base of the synthesis are the types of 

the gates used in this procedure. There are many types of the 

gates as: NOT, Controlled NOT, Toffoli, Fredkin, Kerntopf  

gates and others [7,8,9,10]. One of the most popular set of the 

gates is the CNT set (Controlled NOT, NOT and Toffoli 

gates). 

The result of the synthesis procedure is the circuit consisting 

of the gates cascade from a given library set (Fig. 2). These 

gates are serially connected creating the chain called cascade. 

 

 

Fig. 2. The cascade of the reversible gate  

In general case this cascade transforms the input vector into 

the output vector. This transformation can be described by true 

table similarly to the true table for Boolean function (Tab. I).  

There are many methods of synthesis of the reversible 

functions. The main target of these methods is to find the 

circuits which transform the given function (input of this 

circuit) into the identical function (output of this circuit) using 

a minimal number of gates. This circuit is called optimal. 

Usually there exist many optimal circuits for the given 

function. 
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TABLE I  

TRUE TABLE OF THREE VARIABLE REVERSIBLE FUNCTION 

X2X1X0 Y2Y1Y0 

000 000 

001 001 

010 010 

011 100 

100 011 

101 101 

110 110 

111 111 

 

Researchers try to find the computer aided methods which 

could find the optimal circuits for any reversible functions. For 

the three-variable reversible function the problem is solved by 

the transformation method [11,12], ESOP method [13,14] or 

BBD method [15]. But for the functions of more variables the 

algorithms are very time and memory space consuming 

[16,17,18,19,20,21,22]. 

In this paper we will assume that the solutions for any 

functions are known. This assumption is real because in this 

paper will concern the three-variable functions and many 

methods are efficient enough to find optimal solutions in a 

simple way. The presented method is scalable for the functions 

with bigger number of the variables. For example there is the 

algorithm to find optimal circuits for four-variables functions 

[18]. 

II. REVERSIBLE GATES AND FUNCTION 

The classical synthesis problem of reversible functions 

concerns the transformation of the given function F into 

identical function I (Fig..2). The solution of this problem is a 

cascade of reversible gates containing a minimal number of 

gates. In this paper there will be used the CNT set of the gates 

containing 12 gates with three variables each. Four gates with 

XOR gate on line Y0 are shown in Fig. 3. 
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Fig.3. Four reversible gates with XOR on line Y0:     a) T0, b) C0-2, 

c) C0-1, d) N0 

The gates from Fig. 3 implement the reversible function: 
 

         Y2 = X2 

         Y1 = X1 

         Y0 = X0  ab where: 

         a = X2 and b = X1  Fig. 3a 

         a = X2 and b= 1  Fig. 3b 

         a =  1  and b= X1  Fig. 3c 

         a =  1  and b= 1  Fig. 3d 

 

The remaining eight gates are defined in the same manner: 

four with XOR on line Y2 (T2, C2-1, C2-0, N2) and four on 

line Y1 (T1, T1-2, T1-0, N1).  

The implementation of the given reversible function F is the 

cascade of reversible gates [20]. There are two types of 

cascades shown in Fig. 4. It should be noted that these 

cascades differ in terms of the gates order. 

 

 

Fig. 4. Cascades with 6 reversible gates  

The cascade in Fig. 4a (Type 1) transforms the function F 

into I (I is the identical function - left side of the true table in 

Table II) and the cascade in Fig. 4b (Type 2) transforms 

function I into the given function F.  

Let be given the reversible function of three variables 

presented in Table II. 

TABLE II  

EXAMPLE OF THREE VARIABLE REVERSIBLE FUNCTION 

No. X2X1X0 Y2Y1Y0 

0 000 000 

1 001 001 

2 010 010 

3 011 100 

4 100 011 

5 101 101 

6 110 110 

7 111 111 

 

The function from Table II could be presented as minterms 

permutation i.e. <0,1,2,4,3,5,6,7>. This is a sequence of the 

vectors Y2Y1Y0 in the order relating to the vectors X2X1X0. 

Only two vectors (100 and 011) are in improper places relative 

to the identical function. Each gate in the cascade of type 1 

swapped the proper pairs of minterms. In Table III there are 

collected the gates names and suitable minterms of the 

function I swapped when the given gate is used. 

For example, if on the input of the gate C1-2 there is the 

function F then on the output of this gate there will be the 

function Fr(C1-2) where the function Fr(C1-2) has swapped 

minterms from row 4 with 6 and 5 with 7 of the true table. The 

index r indicates that rows are swapped.  

If F = <0,1,2,4,3,5,6,7> will be the input function of the  

gate C1-2, the output function of this gate  
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Fr(C1-2) = <0,1,2,4,6,7,3,5>. This output function results from 

the swap of the minterms 3 (row 4) with 6 (row 6) and 5 

(row 5) with 7 (row 7). 

Each gate in the cascade of type 2 also swapped the proper 

pairs of minterms. In general there are different minterms than 

those for the cascade of type 1. In this case there are swapped 

the minterms with the values presented in the second column 

of Table III. 

For example, if on the input of the gate C1-2 there is the 

function F=<0,1,2,4,3,5,6,7> then on the output of this gate 

there will be the function Fv(C1-2)=<0,1,2,6,3,7,4,5> where 

the function Fv(C1-2) has swapped minterms 4 with 6 and 5 

with 7 relating to the function F. The index v indicates the 

value swapped operation. 

TABLE III  

SWAPPED MINTERMS FOR REVERSIBLE GATES 

Gate Swapped rows/values 

T0 6,7 

C0-1 2,3 & 6,7 

C0-2 4,5 & 6,7 

N0 0,1 & 2,3 & 4,5 & 6,7 

T1 5,7 

C1-0 1,3 & 5,7 

C1-2 4,6 & 5,7 

N1 0,2 & 1,3 & 4,6 & 5,7 

T2 3,7 

C2-0 1,5 & 3,7 

C2-1 2,6 & 3,7 

N2 0,4 & 1,5 & 2,6 & 3,7 

 

Definition 1. 

The invers cascade C’ relating to the given cascade C is the 

cascade with opposite setting of the gates.  

 

For example, the invers cascade to cascade G1, G2, G3, G4 

is the cascade with gates order: G4, G3, G2, G1. 

Definition 2. 

The function F’ is called the invers function to function F if 

the function F’ is implemented by the invers cascade to the 

cascade implemented by the function F. 

Corollary 1. 

Let be the cascade Type 1 where Fin(G1)=F and Fout(GN)=I. 

To calculate the function Fout(Gi) on the output of the gate Gi 

when on the input of this gate is the function Fin(Gi) we should 

use the formula: 

Fout(Gi) = Fr(Fin(Gi)) 

where Fr(Fin(Gi)) is the input function Fin(Gi) of the gate Gi 

with swapping minterms from proper rows determined by the 

gate Gi. 

Corollary 2. 

Let be the invers cascade (Type 2) where Fin(G1)=I. To 

calculate the function Fout(Gi) on the output of the gate Gi 

when on the input of this gate is the function Fin(Gi) we should 

use the formula: 

Fout(Gi) = Fv(Fin(Gi)) 

where Fv(Fin(Gi)) is the input function Fin(Gi) of the gate Gi 

with swapping minterms from proper rows determined by the 

gate Gi. In this case Fout(GN) = F. 

Corollary 3. 

Let be the cascade Type 1 where Fin(G1)=I. To calculate the 

function Fout(Gi) on the output of the gate Gi when on the input 

of this gate is the function Fin(Gi) we should use the formula: 

Fout(Gi) = Fv(Fin(Gi)) 

where Fv(Fin(Gi)) is the input function Fin(Gi) of the gate Gi 

with swapping minterms from proper values determined by the 

gate Gi. In this case Fout(GN)=F. 

Corollary 4. 

Let be the invers cascade (Type 2) where Fin(G1)=F and 

Fout(GN)=I. To calculate the function Fout(Gi) on the output of 

the gate Gi when on the input of this gate is the function 

Fin(Gi) we should use the formula: 

Fout(Gi) = Fr(Fin(Gi)) 

where Fr(Fin(Gi)) is the input function Fin(Gi) of the gate Gi 

with swapping minterms from proper rows determined by the 

gate Gi. 

Example 1. 

Let be the function F=<4,1,3,6,0,5,2,7>. The optimal cascade 

Type 1 C=(N2,T0,C2-0) implements the function F. From 

Corollary 1 when the cascade Type 1 and the input function 

F=<4,1,3,6,0,5,2,7> will be used then: 

The output of the gate N2 is the function: 

 Fr(N2)=<0,5,2,7,4,1,3,6>. 

The output of the gate T0 is the function: 

Fr(N2,T0)=<0,5,2,7,4,1,6,3>. 

The output of the gate C2-0 is the function: 

Fr(N2,T0,C2-0)=<0,1,2,3,4,5,6,7>. 

From Corollary 2 when the invers cascade (Type 2) and the 

input function I=<0,1,2,3,4,5,6,7> will be used then: 

The output of the gate C2-0 is the function: 

Fr(C2-0)=<0,5,2,7,4,1,6,3>. 

The output of the gate T0 is the function: 

Fr(C2-0,T0)=<0,5,2,7,4,1,3,6>. 

The output of the gate N2 is the function: 

Fr(C2-0,T0,N2)=<4,1,3,6,0,5,2,7>. 

From Corollary 3 when the cascade Type 1 and the input 

function I=<0,1,2,3,4,5,6,7> will be used then: 

The output of the gate N2 is the function: 

I(v(N2)=<4,5,6,7,0,1,2,3>. 

The output of the gate T0 is the function: 

Iv(N2,T0)=<4,5,7,6,0,1,2,3>. 

The output of the gate C2-0 is the function: 

Iv(N2,T0,C2-0)=<4,1,3,6,0,5,2,7>. 

From Corollary 4 when the invers cascade (Type 2) and the 

input function F=<4,1,3,6,0,5,2,7> will be used then: 

The output of the gate C2-0 is the function: 

Fv(C2-0)=<4,5,7,6,0,1,2,3>. 

The output of the gate T0 is the function: 

Fv(C2-0,T0)=<4,5,6,7,0,1,2,3>. 

The output of the gate N2 is the function: 

Fv(C2-0,T0,N2)=<0,1,2,3,4,5,6,7>. 
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Definition 3. 

The serial connection of the two cascades C1 and C2 will be 

called concatenation of these cascades C1○C2 where the input 

of the cascade C2 is controlled by the output of the cascade 

C1. 

Let us assume that the cascade C2 is a one-gate cascade. 

Using the below Lemma 1 it is possible to determine the 

function implemented by the two cascades C1○C2. 

Lemma 1. 

If the function F is implemented by the cascade C Type 1 

then the cascade C○GX implements the function Fv(GX). 

Proof. If on the output of the last gate GX in the cascade 

C○GX there is the identical function I, then on the input of this 

gate there is the function Iv(GX). Assuming that on the inputs 

of the all gates Gi of the cascade C there are the functions Fi. 

The result of the concatenation of the gate GX to the cascade C 

all these functions Fi will be the functions Fiv(GX). One of 

these gates is the first gate in the cascade and on its input there 

will be the function F1v(GX). 

Example 2. 

Let be two cascades: 

First cascade C1=(N2,T0,C2-0) and the second one-gates 

cascade T1. The first cascade C1 implements the function 

F=<4,1,3,6,0,5,2,7>. The gate T1 swaps the minterms 5 and 7. 

The function implemented by the cascade N2,T0,C2-1,T1 will 

be Fv(T1)= <4,1,3,6,0,7,2,5>. 

 

The generalization of the Lemma 1 leads to Lemma 2.  

Lemma 2. 

If the function F1 is implemented by the cascade C1 and the 

function F2 is implemented by the cascade C2 then the cascade 

C1○C2’ implements the function F=F1v(C2’).  

Proof. This Lemma 2 is illustrated in the Fig. 5 where is 

showed cascade C1○C2’. If the first three gates (cascade 

C1=G1,G2,G3) implement the function F1 then on the output 

of the gate G3 there is the identical function. The function F2 

is implemented by cascade C2=G7,G6,G5,G4. The next four 

gates in cascade C1○C2’ are the invers cascade to C2. From 

Corollary 2 on the output of this cascade there is the function 

F2 (Fig. 5). If we will use four times the result of the Lemma 1 

we receive sequentially: 

- joining only the gate G4 to cascade C1 the function F1 

change into the function F1v(G4), 

- joining the gate G5 to cascade C1○G4 the function F1v(G4) 

change into the function F1v(G4,G5), 

- joining the gate G6 to cascade C1○G4○G5 the function 

F1v(G4,G5) change into the function F1v(G4,G5,G6), 

- joining the gate G7 to cascade C1○G4○G5○G6 the function 

F1v(G4,G5,G6) change into the function 

F1v(G4,G5,G6,G7)=F1v(C2’). 

 

If on the output of the cascade C1○C2’ is identical function I 

then on the input of this cascade C1○C2’ is the function 

F1v(C2’), where F1 is the function implementing by cascade 

C1. 

 

 

 

 

Fig. 5. The concatenation of two cascades 

Example 3. 

Let be two cascades: 

1. C1=(N2,T0,C2-0) the optimal cascade of the function F1, 

where F1=<4,1,3,6,0,5,2,7>. 

2. C2=(C1-2,T1,C0-1,C2-0) the optimal cascade of the 

function F2, where F2=<0,5,7,2,3,1,4,6>. 

The cascade C1○C2’ implements the function 

F1v(C2-0,C0-1,T1,C1-2). This function is <6,5,4,7,0,1,32> 

and on the output of the cascade there will be the identical 

function I. 

III. ANALYSIS OF THE REVERSIBLE CIRCUITS 

The main target of the analysis of the reversible circuits is to 

find of the reversible function realized by the given cascade. 

Let be given the cascade of the reversible gates: 

C = G1, G2, …, GN. 

Lemma 3. 

The reversible function F implemented by the C cascade 

should be calculated as the Iv(G1,G2,…,GN) or as the 

Ir(GN,…,G2,G1). 

Proof 

There are the cascade C = G1, G2, …, GN. The invers 

cascade C’= GN, ….., G2, G1. From Corollary 2 if on the 

input of the invers cascade C’ will be the function I then on the 

output of the last gate GN will be the function F when we will 

use the formula: 

Fout(GN) = Fr(Fin(GN)) 

From Corollary 3 if on the input of the cascade C will be the 

function I then on the output of the last gate GN will be the 

function F when we will use the formula: 

Fout(GN) = Fv(Fin(GN)) 

 

To illustrate the Lemma 3 consider the four gates cascades 

presented in Fig. 6. 

The cascade in Fig. 6a corresponds to the Corollary 1, in 

Fig. 6b to the Corollary 2, in Fig. 6c to the Corollary 3 and in 

Fig. 6d to the Corollary 4. 

The cascades in Fig. 6b and Fig. 6c transforms the identical 

function I into the function F according to Lemma 3. 

The functions at points marked with the same numbers have 

the same values. 
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Fig. 6. The four cascades for given function F 

IV. TRANSFORMATION METHOD 

Let be given the two cascades implementing the function FA 

with the gates GA1, GA2, GA3, GA4 and the function FB with 

the gates GB1, GB2, GB3 (Fig. 7). The target is to find an 

optimal cascade which transforms the function FA into the 

function FB. 

 

 

Fig. 7. Two cascades for functions FA and FB  

In order to receive the cascade which transforms the function 

FA into the function FB we should concatenate these two 

cascades as it is shown in Fig 8.  

The cascade from Fig. 8 contains connections between two 

groups of the gates in bilateral directions. If we use the invers 

cascade to the cascade with the gates GBi, we obtain the 

cascade as in Fig. 9. If on the input of the gate GA1 there will 

be the function FA then on the output of the gate GB3 there 

will be the function FB. 

 

Fig. 8. The cascade transforming functions FA into FB 

 

 

Fig. 9. The cascade from Fig. 4 with output I 

In order to receive the function implemented by this cascade 

must be calculate the function FAv(GB1,GB2,GB3). If this 

function is on the input of the gate GA1 (on the cascade from 

Fig. 9) then on the output of the gate GB3 there will be the 

identical function I. This cascade is not an optimal cascade for 

the transformation the function FA into the function FB. But if 

the optimal cascade implementing the function FAv is known 

then this cascade also transforms the function FA into FB. 

Example 4. 

Let be given two reversible functions: 

FA=<0,5,7,2,3,1,4,6> and FB= <4,1,3,6,0,5,2,7>. 

The one of the optimal cascades implementing function FA is 

the cascade C1-2,T1,C0-1,C2-0 and implementing function FB 

is N2,T0,C2-0. 

 The first step of the algorithm is the concatenation of the 

two cascades FA and FB’. There will be built the cascade 

C1-2,T1,C0-1,C2-0,C2-0,T0,N2. If on the input of this cascade 

there will be the function FA then on the output of this cascade 

there will be the function FB (Lemma 2). But this cascade is 

not optimal to this transformation. 

 The second step is to calculate the function 

FAv(C2-0,T0,N2). It is the function <4,5,7,6,2,1,0,3>. This 

function could be implemented by two optimal cascades: 

C1=(C1-2,T1,N2,T0) and C2=(T1,C1-2,N2,T0) 

This both cascades are the optimal cascades which transforms 

the function FA into the function FB. The first of these two 

solutions is shown in Fig. 10. 

 

 

Fig. 10. The optimal cascade for example 4 

Example 5. 

Let be given the same two functions as in the previous 

example: 

FA=<0,5,7,2,3,1,4,6> and FB=<4,1,3,6,0,5,2,7>.  

In this example there will be found the optimal cascade 

transforming the function FB into the function FA. First we 

build the concatenation of the two cascades as in Fig. 11. 
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Fig. 11. The new cascade for example 4 

The cascade in Fig. 10 transforms the function FB into the 

function FA. In order to find the optimal cascade we should 

calculate the function FBv(GB3,GB2,GB1). It is the function 

<6,5,4,7,0,1,3,2>. This function could be implemented by two 

optimal cascades: 

C1= (T0,N2,C1-2,T1) and C2=(T0,N2,T1,C1-2) 

This both cascades are the optimal cascades which transforms 

the function FB into the function FA. The first of these two 

solutions is shown in Fig. 12. 

 

 

Fig. 12. The new cascade for example 5 

Summarizing the presented method of searching for a 

solution to the problem of finding the optimal cascade 

transforming the reversible function FX into the other function 

FY the algorithm contains two steps: 

1. Calculation FYv  

2. Indicating the optimal cascade for the function FYv. 

The first step was described above. During this step the 

designer use the data base with optimal circuits for the given 

function. This problem is easy to overcome for functions of the 

three variables. This problem is much more difficult when the 

number of the variables increase. The same problem must be 

solved during the second step. 

V. CONCLUSIONS 

The main aim of this paper is to present the design of optimal 

reversible cascade which enables implementation of the 

transformation between two given functions. The presented 

examples illustrate the algorithm for the synthesis of the 

reversible functions of the three variables. But this algorithm is 

scalable for more variables.  

In this paper was presented also the method of the reversible 

circuits analysis. Was showed how to find the reversible 

function implemented by the given cascade. 
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