
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2019, VOL. 65, NO. 1, PP. 33-38

Manuscript received December 13, 2018; revised January, 2019. DOI: 10.24425/123562

Abstract—This paper presents an original method of designing

some special reversible circuits. This method is intended for the

most popular gate set with three types of gates CNT (Control,

NOT and Toffoli). The presented algorithm is based on two types

of cascades with these reversible gates. The problem of

transformation between two reversible functions is solved. This

method allows to find optimal reversible circuits. The paper is

organized as follows. Section 1 and 2 recalls basic concepts of

reversible logic. Especially the two types of cascades of reversible

function are presented. In Section 3 there is introduced a problem

of analysis of the cascades. Section 4 describes the method of

synthesis of the optimal cascade for transformation of the given

reversible function into another one.

Keywords —reversible logic, reversible circuits, reversible gate,

CNT set of the gates

I. INTRODUCTION

HE conventional Boolean function synthesis starts with a

universal gate library and the target of this process is to

finding logic circuits that implement this function. These

circuits need to meet the criterion of minimization, e.g., the

circuits need to consist of a minimal number of the gates.

Usually the number of output bits is relatively small compared

with the number of input bits (Fig. 1a). However, there are

applications, e.g. digital signal processing, computer graphics,

cryptography and so on, which require an equal number of

input and output bits (Fig. 1b). These circuits could be lossless

information circuits as well as reversible ones if mapping of

the vector input into the vector output is mutually

unambiguous.

Fig. 1. a) Irreversible circuit, b) reversible circuit

The authors are from the Institute of Computer Science, Warsaw University

of Technology, Poland (e-mail: ask@ii.pw.edu.pl, kgr@ii.pw.edu.pl).

Landauer showed that the loss of information implies energy

loss [1]. The result of this theorem is the possibility of

construction of the energy lossless circuits. The condition of

this design is reversibility. The other conditions are: no fan-

outs and no feed-backs [2].

A function with n inputs and n outputs is called reversible if

is bijective, i.e., if each input pattern uniquely maps to an

output pattern, and vice versa [21]. Each of the Boolean

functions included in the reversible function has the same

number of the 0-s and 1-s minterms. This is a mutual

unambiguity of the function.

Applications of the reversible circuits can be found in the

emerging fields of the quantum computation and low-power

computation. The quantum computations require the use of the

reversible gates. These gates can be built using various

technologies such as the semiconductor CMOS [3,4], optical

[5] and thermodynamic ones [6] and so on. In order to build

the gates researchers must overcome many difficulties.

The other area of development is the logic synthesis of

reversible circuits. The base of the synthesis are the types of

the gates used in this procedure. There are many types of the

gates as: NOT, Controlled NOT, Toffoli, Fredkin, Kerntopf

gates and others [7,8,9,10]. One of the most popular set of the

gates is the CNT set (Controlled NOT, NOT and Toffoli

gates).

The result of the synthesis procedure is the circuit consisting

of the gates cascade from a given library set (Fig. 2). These

gates are serially connected creating the chain called cascade.

Fig. 2. The cascade of the reversible gate

In general case this cascade transforms the input vector into

the output vector. This transformation can be described by true

table similarly to the true table for Boolean function (Tab. I).

There are many methods of synthesis of the reversible

functions. The main target of these methods is to find the

circuits which transform the given function (input of this

circuit) into the identical function (output of this circuit) using

a minimal number of gates. This circuit is called optimal.

Usually there exist many optimal circuits for the given

function.

The Transforming Method Between Two

Reversible Functions
Andrzej Skorupski, and Krzysztof Gracki

T

34 A. SKORUPSKI, K. GRACKI

TABLE I

TRUE TABLE OF THREE VARIABLE REVERSIBLE FUNCTION

X2X1X0 Y2Y1Y0

000 000

001 001

010 010

011 100

100 011

101 101

110 110

111 111

Researchers try to find the computer aided methods which

could find the optimal circuits for any reversible functions. For

the three-variable reversible function the problem is solved by

the transformation method [11,12], ESOP method [13,14] or

BBD method [15]. But for the functions of more variables the

algorithms are very time and memory space consuming

[16,17,18,19,20,21,22].

In this paper we will assume that the solutions for any

functions are known. This assumption is real because in this

paper will concern the three-variable functions and many

methods are efficient enough to find optimal solutions in a

simple way. The presented method is scalable for the functions

with bigger number of the variables. For example there is the

algorithm to find optimal circuits for four-variables functions

[18].

II. REVERSIBLE GATES AND FUNCTION

The classical synthesis problem of reversible functions

concerns the transformation of the given function F into

identical function I (Fig..2). The solution of this problem is a

cascade of reversible gates containing a minimal number of

gates. In this paper there will be used the CNT set of the gates

containing 12 gates with three variables each. Four gates with

XOR gate on line Y0 are shown in Fig. 3.

X2

X1

X0

a)

c) d)

b)

X2

X1

X0

Y2

Y1

Y2

Y2

Y1

Y0

Y2

Y1

Y0

Y2

Y1

Y0

X2

X1

X0

X2

X1

X0

Fig.3. Four reversible gates with XOR on line Y0: a) T0, b) C0-2,

c) C0-1, d) N0

The gates from Fig. 3 implement the reversible function:

 Y2 = X2

 Y1 = X1

 Y0 = X0  ab where:

 a = X2 and b = X1 Fig. 3a

 a = X2 and b= 1 Fig. 3b

 a = 1 and b= X1 Fig. 3c

 a = 1 and b= 1 Fig. 3d

The remaining eight gates are defined in the same manner:

four with XOR on line Y2 (T2, C2-1, C2-0, N2) and four on

line Y1 (T1, T1-2, T1-0, N1).

The implementation of the given reversible function F is the

cascade of reversible gates [20]. There are two types of

cascades shown in Fig. 4. It should be noted that these

cascades differ in terms of the gates order.

Fig. 4. Cascades with 6 reversible gates

The cascade in Fig. 4a (Type 1) transforms the function F

into I (I is the identical function - left side of the true table in

Table II) and the cascade in Fig. 4b (Type 2) transforms

function I into the given function F.

Let be given the reversible function of three variables

presented in Table II.

TABLE II

EXAMPLE OF THREE VARIABLE REVERSIBLE FUNCTION

No. X2X1X0 Y2Y1Y0

0 000 000

1 001 001

2 010 010

3 011 100

4 100 011

5 101 101

6 110 110

7 111 111

The function from Table II could be presented as minterms

permutation i.e. <0,1,2,4,3,5,6,7>. This is a sequence of the

vectors Y2Y1Y0 in the order relating to the vectors X2X1X0.

Only two vectors (100 and 011) are in improper places relative

to the identical function. Each gate in the cascade of type 1

swapped the proper pairs of minterms. In Table III there are

collected the gates names and suitable minterms of the

function I swapped when the given gate is used.

For example, if on the input of the gate C1-2 there is the

function F then on the output of this gate there will be the

function Fr(C1-2) where the function Fr(C1-2) has swapped

minterms from row 4 with 6 and 5 with 7 of the true table. The

index r indicates that rows are swapped.

If F = <0,1,2,4,3,5,6,7> will be the input function of the

gate C1-2, the output function of this gate

THE TRANSFORMING METHOD BETWEEN TWO REVERSIBLE FUNCTIONS 35

Fr(C1-2) = <0,1,2,4,6,7,3,5>. This output function results from

the swap of the minterms 3 (row 4) with 6 (row 6) and 5

(row 5) with 7 (row 7).

Each gate in the cascade of type 2 also swapped the proper

pairs of minterms. In general there are different minterms than

those for the cascade of type 1. In this case there are swapped

the minterms with the values presented in the second column

of Table III.

For example, if on the input of the gate C1-2 there is the

function F=<0,1,2,4,3,5,6,7> then on the output of this gate

there will be the function Fv(C1-2)=<0,1,2,6,3,7,4,5> where

the function Fv(C1-2) has swapped minterms 4 with 6 and 5

with 7 relating to the function F. The index v indicates the

value swapped operation.

TABLE III

SWAPPED MINTERMS FOR REVERSIBLE GATES

Gate Swapped rows/values

T0 6,7

C0-1 2,3 & 6,7

C0-2 4,5 & 6,7

N0 0,1 & 2,3 & 4,5 & 6,7

T1 5,7

C1-0 1,3 & 5,7

C1-2 4,6 & 5,7

N1 0,2 & 1,3 & 4,6 & 5,7

T2 3,7

C2-0 1,5 & 3,7

C2-1 2,6 & 3,7

N2 0,4 & 1,5 & 2,6 & 3,7

Definition 1.

The invers cascade C’ relating to the given cascade C is the

cascade with opposite setting of the gates.

For example, the invers cascade to cascade G1, G2, G3, G4

is the cascade with gates order: G4, G3, G2, G1.

Definition 2.

The function F’ is called the invers function to function F if

the function F’ is implemented by the invers cascade to the

cascade implemented by the function F.

Corollary 1.

Let be the cascade Type 1 where Fin(G1)=F and Fout(GN)=I.

To calculate the function Fout(Gi) on the output of the gate Gi

when on the input of this gate is the function Fin(Gi) we should

use the formula:

Fout(Gi) = Fr(Fin(Gi))

where Fr(Fin(Gi)) is the input function Fin(Gi) of the gate Gi

with swapping minterms from proper rows determined by the

gate Gi.

Corollary 2.

Let be the invers cascade (Type 2) where Fin(G1)=I. To

calculate the function Fout(Gi) on the output of the gate Gi

when on the input of this gate is the function Fin(Gi) we should

use the formula:

Fout(Gi) = Fv(Fin(Gi))

where Fv(Fin(Gi)) is the input function Fin(Gi) of the gate Gi

with swapping minterms from proper rows determined by the

gate Gi. In this case Fout(GN) = F.

Corollary 3.

Let be the cascade Type 1 where Fin(G1)=I. To calculate the

function Fout(Gi) on the output of the gate Gi when on the input

of this gate is the function Fin(Gi) we should use the formula:

Fout(Gi) = Fv(Fin(Gi))

where Fv(Fin(Gi)) is the input function Fin(Gi) of the gate Gi

with swapping minterms from proper values determined by the

gate Gi. In this case Fout(GN)=F.

Corollary 4.

Let be the invers cascade (Type 2) where Fin(G1)=F and

Fout(GN)=I. To calculate the function Fout(Gi) on the output of

the gate Gi when on the input of this gate is the function

Fin(Gi) we should use the formula:

Fout(Gi) = Fr(Fin(Gi))

where Fr(Fin(Gi)) is the input function Fin(Gi) of the gate Gi

with swapping minterms from proper rows determined by the

gate Gi.

Example 1.

Let be the function F=<4,1,3,6,0,5,2,7>. The optimal cascade

Type 1 C=(N2,T0,C2-0) implements the function F. From

Corollary 1 when the cascade Type 1 and the input function

F=<4,1,3,6,0,5,2,7> will be used then:

The output of the gate N2 is the function:

 Fr(N2)=<0,5,2,7,4,1,3,6>.

The output of the gate T0 is the function:

Fr(N2,T0)=<0,5,2,7,4,1,6,3>.

The output of the gate C2-0 is the function:

Fr(N2,T0,C2-0)=<0,1,2,3,4,5,6,7>.

From Corollary 2 when the invers cascade (Type 2) and the

input function I=<0,1,2,3,4,5,6,7> will be used then:

The output of the gate C2-0 is the function:

Fr(C2-0)=<0,5,2,7,4,1,6,3>.

The output of the gate T0 is the function:

Fr(C2-0,T0)=<0,5,2,7,4,1,3,6>.

The output of the gate N2 is the function:

Fr(C2-0,T0,N2)=<4,1,3,6,0,5,2,7>.

From Corollary 3 when the cascade Type 1 and the input

function I=<0,1,2,3,4,5,6,7> will be used then:

The output of the gate N2 is the function:

I(v(N2)=<4,5,6,7,0,1,2,3>.

The output of the gate T0 is the function:

Iv(N2,T0)=<4,5,7,6,0,1,2,3>.

The output of the gate C2-0 is the function:

Iv(N2,T0,C2-0)=<4,1,3,6,0,5,2,7>.

From Corollary 4 when the invers cascade (Type 2) and the

input function F=<4,1,3,6,0,5,2,7> will be used then:

The output of the gate C2-0 is the function:

Fv(C2-0)=<4,5,7,6,0,1,2,3>.

The output of the gate T0 is the function:

Fv(C2-0,T0)=<4,5,6,7,0,1,2,3>.

The output of the gate N2 is the function:

Fv(C2-0,T0,N2)=<0,1,2,3,4,5,6,7>.

36 A. SKORUPSKI, K. GRACKI

Definition 3.

The serial connection of the two cascades C1 and C2 will be

called concatenation of these cascades C1○C2 where the input

of the cascade C2 is controlled by the output of the cascade

C1.

Let us assume that the cascade C2 is a one-gate cascade.

Using the below Lemma 1 it is possible to determine the

function implemented by the two cascades C1○C2.

Lemma 1.

If the function F is implemented by the cascade C Type 1

then the cascade C○GX implements the function Fv(GX).

Proof. If on the output of the last gate GX in the cascade

C○GX there is the identical function I, then on the input of this

gate there is the function Iv(GX). Assuming that on the inputs

of the all gates Gi of the cascade C there are the functions Fi.

The result of the concatenation of the gate GX to the cascade C

all these functions Fi will be the functions Fiv(GX). One of

these gates is the first gate in the cascade and on its input there

will be the function F1v(GX).

Example 2.

Let be two cascades:

First cascade C1=(N2,T0,C2-0) and the second one-gates

cascade T1. The first cascade C1 implements the function

F=<4,1,3,6,0,5,2,7>. The gate T1 swaps the minterms 5 and 7.

The function implemented by the cascade N2,T0,C2-1,T1 will

be Fv(T1)= <4,1,3,6,0,7,2,5>.

The generalization of the Lemma 1 leads to Lemma 2.

Lemma 2.

If the function F1 is implemented by the cascade C1 and the

function F2 is implemented by the cascade C2 then the cascade

C1○C2’ implements the function F=F1v(C2’).

Proof. This Lemma 2 is illustrated in the Fig. 5 where is

showed cascade C1○C2’. If the first three gates (cascade

C1=G1,G2,G3) implement the function F1 then on the output

of the gate G3 there is the identical function. The function F2

is implemented by cascade C2=G7,G6,G5,G4. The next four

gates in cascade C1○C2’ are the invers cascade to C2. From

Corollary 2 on the output of this cascade there is the function

F2 (Fig. 5). If we will use four times the result of the Lemma 1

we receive sequentially:

- joining only the gate G4 to cascade C1 the function F1

change into the function F1v(G4),

- joining the gate G5 to cascade C1○G4 the function F1v(G4)

change into the function F1v(G4,G5),

- joining the gate G6 to cascade C1○G4○G5 the function

F1v(G4,G5) change into the function F1v(G4,G5,G6),

- joining the gate G7 to cascade C1○G4○G5○G6 the function

F1v(G4,G5,G6) change into the function

F1v(G4,G5,G6,G7)=F1v(C2’).

If on the output of the cascade C1○C2’ is identical function I

then on the input of this cascade C1○C2’ is the function

F1v(C2’), where F1 is the function implementing by cascade

C1.

Fig. 5. The concatenation of two cascades

Example 3.

Let be two cascades:

1. C1=(N2,T0,C2-0) the optimal cascade of the function F1,

where F1=<4,1,3,6,0,5,2,7>.

2. C2=(C1-2,T1,C0-1,C2-0) the optimal cascade of the

function F2, where F2=<0,5,7,2,3,1,4,6>.

The cascade C1○C2’ implements the function

F1v(C2-0,C0-1,T1,C1-2). This function is <6,5,4,7,0,1,32>

and on the output of the cascade there will be the identical

function I.

III. ANALYSIS OF THE REVERSIBLE CIRCUITS

The main target of the analysis of the reversible circuits is to

find of the reversible function realized by the given cascade.

Let be given the cascade of the reversible gates:

C = G1, G2, …, GN.

Lemma 3.

The reversible function F implemented by the C cascade

should be calculated as the Iv(G1,G2,…,GN) or as the

Ir(GN,…,G2,G1).

Proof

There are the cascade C = G1, G2, …, GN. The invers

cascade C’= GN, ….., G2, G1. From Corollary 2 if on the

input of the invers cascade C’ will be the function I then on the

output of the last gate GN will be the function F when we will

use the formula:

Fout(GN) = Fr(Fin(GN))

From Corollary 3 if on the input of the cascade C will be the

function I then on the output of the last gate GN will be the

function F when we will use the formula:

Fout(GN) = Fv(Fin(GN))

To illustrate the Lemma 3 consider the four gates cascades

presented in Fig. 6.

The cascade in Fig. 6a corresponds to the Corollary 1, in

Fig. 6b to the Corollary 2, in Fig. 6c to the Corollary 3 and in

Fig. 6d to the Corollary 4.

The cascades in Fig. 6b and Fig. 6c transforms the identical

function I into the function F according to Lemma 3.

The functions at points marked with the same numbers have

the same values.

THE TRANSFORMING METHOD BETWEEN TWO REVERSIBLE FUNCTIONS 37

Fig. 6. The four cascades for given function F

IV. TRANSFORMATION METHOD

Let be given the two cascades implementing the function FA

with the gates GA1, GA2, GA3, GA4 and the function FB with

the gates GB1, GB2, GB3 (Fig. 7). The target is to find an

optimal cascade which transforms the function FA into the

function FB.

Fig. 7. Two cascades for functions FA and FB

In order to receive the cascade which transforms the function

FA into the function FB we should concatenate these two

cascades as it is shown in Fig 8.

The cascade from Fig. 8 contains connections between two

groups of the gates in bilateral directions. If we use the invers

cascade to the cascade with the gates GBi, we obtain the

cascade as in Fig. 9. If on the input of the gate GA1 there will

be the function FA then on the output of the gate GB3 there

will be the function FB.

Fig. 8. The cascade transforming functions FA into FB

Fig. 9. The cascade from Fig. 4 with output I

In order to receive the function implemented by this cascade

must be calculate the function FAv(GB1,GB2,GB3). If this

function is on the input of the gate GA1 (on the cascade from

Fig. 9) then on the output of the gate GB3 there will be the

identical function I. This cascade is not an optimal cascade for

the transformation the function FA into the function FB. But if

the optimal cascade implementing the function FAv is known

then this cascade also transforms the function FA into FB.

Example 4.

Let be given two reversible functions:

FA=<0,5,7,2,3,1,4,6> and FB= <4,1,3,6,0,5,2,7>.

The one of the optimal cascades implementing function FA is

the cascade C1-2,T1,C0-1,C2-0 and implementing function FB

is N2,T0,C2-0.

 The first step of the algorithm is the concatenation of the

two cascades FA and FB’. There will be built the cascade

C1-2,T1,C0-1,C2-0,C2-0,T0,N2. If on the input of this cascade

there will be the function FA then on the output of this cascade

there will be the function FB (Lemma 2). But this cascade is

not optimal to this transformation.

 The second step is to calculate the function

FAv(C2-0,T0,N2). It is the function <4,5,7,6,2,1,0,3>. This

function could be implemented by two optimal cascades:

C1=(C1-2,T1,N2,T0) and C2=(T1,C1-2,N2,T0)

This both cascades are the optimal cascades which transforms

the function FA into the function FB. The first of these two

solutions is shown in Fig. 10.

Fig. 10. The optimal cascade for example 4

Example 5.

Let be given the same two functions as in the previous

example:

FA=<0,5,7,2,3,1,4,6> and FB=<4,1,3,6,0,5,2,7>.

In this example there will be found the optimal cascade

transforming the function FB into the function FA. First we

build the concatenation of the two cascades as in Fig. 11.

38 A. SKORUPSKI, K. GRACKI

Fig. 11. The new cascade for example 4

The cascade in Fig. 10 transforms the function FB into the

function FA. In order to find the optimal cascade we should

calculate the function FBv(GB3,GB2,GB1). It is the function

<6,5,4,7,0,1,3,2>. This function could be implemented by two

optimal cascades:

C1= (T0,N2,C1-2,T1) and C2=(T0,N2,T1,C1-2)

This both cascades are the optimal cascades which transforms

the function FB into the function FA. The first of these two

solutions is shown in Fig. 12.

Fig. 12. The new cascade for example 5

Summarizing the presented method of searching for a

solution to the problem of finding the optimal cascade

transforming the reversible function FX into the other function

FY the algorithm contains two steps:

1. Calculation FYv

2. Indicating the optimal cascade for the function FYv.

The first step was described above. During this step the

designer use the data base with optimal circuits for the given

function. This problem is easy to overcome for functions of the

three variables. This problem is much more difficult when the

number of the variables increase. The same problem must be

solved during the second step.

V. CONCLUSIONS

The main aim of this paper is to present the design of optimal

reversible cascade which enables implementation of the

transformation between two given functions. The presented

examples illustrate the algorithm for the synthesis of the

reversible functions of the three variables. But this algorithm is

scalable for more variables.

In this paper was presented also the method of the reversible

circuits analysis. Was showed how to find the reversible

function implemented by the given cascade.

REFERENCES

[1] R. Landauer, Irreversibility and heat generation in the computing

process. IBM Journal of Research and Development , 5(3):183–191, July
1961.

[2] M. Nielsen, I. Chuang, Quantum Computation and Quantum

Information. Cambridge University Press, 2000.
[3] B. Desoete, A. De Vos, M. Sibinski, T. Widerski, Feynman’s reversible

gates implemented in silicon, 6th International Conference MIXDES,

pages 496–502, 1999.
[4] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J.

T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A.

Morello, A. S. Dzurak, A two-qubit logic gate in silicon, Nature, 526,
410–414, October 2015

[5] P. Picton, Opoelectronic, multivalued, conservative logic, International

Journal of Optical Computing, 2:19–29, 1991.
[6] R. C. Merkle, K. E. Drexler, Helical logic, Nanotechnology, 7:325–339,

1996.

[7] E. Fredkin T. Toffoli. Conservative logic. International Journal of
Theoretical Physics, 21:219–253, 1982.

[8] R. Feynman. Quantum mechanical computers. Optic News, 11:11–20,

1985.
[9] T. Toffoli. Reversible computing. Tech memo MIT/LCS/TM-151, MIT

Lab for Comp. Sci, 1980.

[10] P. Kerntopf, Maximally efficient binary and multi-valued reversible
gates, International Workshop on Post-Binary ULSI Systems, pp. 55–58,

Warsaw, Poland, May 2001.

[11] K. Iwama, Y. Kambayashi, S. Yamashita, Transformation rules for
designing CNOT-based quantum circuits, Design Automation

Conference, New Orleans, Louisiana, USA, June 10-14 2002.

[12] D. M. Miller, D. Maslov, W. Dueck, A transformation based algorithm
for reversible logic synthesis, Proceedings of the Design Automation

Conference, pages 318–323, June 2003.

[13] K. Fazel, M. A. Thornton, J. E. Rice, ESOP-based Toffoli Gate Cascade

Generation, Proc. IEEE Pacific Rim Conference on Communications,

Computers and Signal Processing, pp. 206 –209, 2007.

[14] M. H. A. Khan, M. A. Perkowski, Multi-output ESOP Synthesis with
Cascades of New Reversible Gate Family, Proc Int. Symp. On

Representations and Methodology of Future Comp. Technology,
pp.43-55,2003.

[15] R. Wille, R. Drechsler, BDD-based synthesis of reversible logic for large

functions, Design Automation Conf. , pp. 270–275, 2009.
[16] M. Hawash, M. Perkowski, N. Alhagi, Synthesis of Reversible Circuits

with No Ancilla Bits for Large Reversible Functions, Proc. ISMVL,

2010, p. 1-7.
[17] D. Wang, S. Sun, H. Chen, Matrix-based algorithm for 4-qubit

reversible logic circuits synthesis, Energy Procedia, vol. 13, pp. 365-371,

2011.
[18] O. Golubitsky, D. Maslov, A study of optimal 4-bit reversible Toffoli

circuits and their synthesis, IEEE Transactions on Computers, vol. 61,

no. 9, 2012,. pp. 1341-1353.

[19] A. Khlopotine, M. Perkowski, P. Kerntopf, Reversible logic synthesis by

iterative compositions, International Workshop on Logic Synthesis,

2002.
[20] M. Soeken, N. Abdessaied, G. De Micheli, Enumeration of reversible

functions and its application to circuit complexity, Conference on

Reversible Computation, 2016, 255–270.
[21] P. Gupta, A. Agrawal, N. K. Jha. An algorithm for synthesis of reversible

logic circuits. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 25, pp. 2317-2330, 2006.
[22] P. Kerntopf. A new heuristic algorithm for reversible logic synthesis.

ACM/IEEE DAC, pages 834-837, 2004.

file:///C:/Users/ASK/Documents/A_2016/REWERS/YBS/A%20two-qubit%20logic%20gate%20in%20silicon%20%20%20Nature%20%20%20Nature%20Publishing%20Group.htm%23auth-1
file:///C:/Users/ASK/Documents/A_2016/REWERS/YBS/A%20two-qubit%20logic%20gate%20in%20silicon%20%20%20Nature%20%20%20Nature%20Publishing%20Group.htm%23auth-2
file:///C:/Users/ASK/Documents/A_2016/REWERS/YBS/A%20two-qubit%20logic%20gate%20in%20silicon%20%20%20Nature%20%20%20Nature%20Publishing%20Group.htm%23auth-3
file:///C:/Users/ASK/Documents/A_2016/REWERS/YBS/A%20two-qubit%20logic%20gate%20in%20silicon%20%20%20Nature%20%20%20Nature%20Publishing%20Group.htm%23auth-4
file:///C:/Users/ASK/Documents/A_2016/REWERS/YBS/A%20two-qubit%20logic%20gate%20in%20silicon%20%20%20Nature%20%20%20Nature%20Publishing%20Group.htm%23auth-5
file:///C:/Users/ASK/Documents/A_2016/REWERS/YBS/A%20two-qubit%20logic%20gate%20in%20silicon%20%20%20Nature%20%20%20Nature%20Publishing%20Group.htm%23auth-6
file:///C:/Users/ASK/Documents/A_2016/REWERS/YBS/A%20two-qubit%20logic%20gate%20in%20silicon%20%20%20Nature%20%20%20Nature%20Publishing%20Group.htm%23auth-6
file:///C:/Users/ASK/Documents/A_2016/REWERS/YBS/A%20two-qubit%20logic%20gate%20in%20silicon%20%20%20Nature%20%20%20Nature%20Publishing%20Group.htm%23auth-7
file:///C:/Users/ASK/Documents/A_2016/REWERS/YBS/A%20two-qubit%20logic%20gate%20in%20silicon%20%20%20Nature%20%20%20Nature%20Publishing%20Group.htm%23auth-8
file:///C:/Users/ASK/Documents/A_2016/REWERS/YBS/A%20two-qubit%20logic%20gate%20in%20silicon%20%20%20Nature%20%20%20Nature%20Publishing%20Group.htm%23auth-9
file:///C:/Users/ASK/Documents/A_2016/REWERS/YBS/A%20two-qubit%20logic%20gate%20in%20silicon%20%20%20Nature%20%20%20Nature%20Publishing%20Group.htm%23auth-10
file:///C:/Users/ASK/Documents/A_2016/REWERS/YBS/A%20two-qubit%20logic%20gate%20in%20silicon%20%20%20Nature%20%20%20Nature%20Publishing%20Group.htm%23auth-11
file:///C:/Users/ASK/Documents/A_2016/REWERS/YBS/A%20two-qubit%20logic%20gate%20in%20silicon%20%20%20Nature%20%20%20Nature%20Publishing%20Group.htm%23auth-11
file:///C:/Users/ASK/Documents/A_2016/REWERS/YBS/A%20two-qubit%20logic%20gate%20in%20silicon%20%20%20Nature%20%20%20Nature%20Publishing%20Group.htm%23auth-12
https://msoeken.github.io/publications.html#c68
https://msoeken.github.io/publications.html#c68

