Compact thermal models of semiconductor devices – a review
Abstract
In the paper the problem of modelling thermal properties of semiconductor devices with the use of compact models is presented. This class of models is defined and their development over the past dozens of years is described. Possibilities of modelling thermal phenomena both in discrete semiconductor devices, monolithic integrated circuits, power modules and selected electronic circuits are presented. The problem of the usefulness range of compact thermal models in the analysis of electronic elements and circuits is discussed on the basis of investigations performed in Gdynia Maritime University.References
P.A. Mawby, P.M. Igic and M.S. Towers: Physically based compact device models for circuit modelling applications, Microelectronics Journal, Vol. 32, No. 5-6, 2001, pp. 433-447.
V. Szekely: A New Evaluation Method of Thermal Transient Measurement Results. Microelectronics Journal, Vol. 28, No. 3, 1997, pp. 277-292.
J. Zarębski: Modelowanie, symulacja i pomiary przebiegów elektrotermicznych w elementach półprzewodnikowych i układach elektronicznych. Prace Naukowe Wyższej Szkoły Morskiej w Gdyni, Gdynia, 1996.
Z. Lisik: Zjawiska w strukturach półprzewodnikowych – metody ich modelowania. Wydawnictwo Politechniki Łódzkiej, Łódź 2005
W. Janke, Zjawiska termiczne w elementach i układach półprzewodnikowych, WNT, Warszawa, 1992
A. S. Bahman, K. Ma, P. Ghimire, F. Iannuzzo, F. Blaabjerg,: A 3D Lumped Thermal Network Model for Long-term Load Profiles Analysis in High Power IGBT Modules. IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 4, No. 3, 2016, pp. 1050 - 1063. doi.org/10.1109/JESTPE.2016.2531631
V. Szekely, M.Rencz, B. Courtois: Thermal investigations of IC's and microstructures, Microelectronics Journa,l Vol. 28, No 3, 1997, pp. 205-207.
C.J.M. Lasance, A. Poppe: Thermal Management for LED Applications. Springer Science+Business Media, New York, 2014.
A. Poppe: Multi-domain compact modeling of LEDs: An overview of models and experimental data, Microelectronic Journal, Vol. 46, 2015, pp. 1138-1151.
Ł. Starzak, M. Zubert, M. Janicki, T. Torzewicz, M. Napieralska, G. Jabloński, A. Napieralski: Behavioral approach to SiC MPS diode electrothermal model generation, IEEE Transactions on Electron Devices, Vol. 60, No. 2, 2013, pp. 630-638.
Infineon Technologies web-site http://www.infineon.com.
M.K. Kazimierczuk: Pulse-width Modulated DC-DC Power Converters, John Wiley &Sons, Ltd, 2008
J. Singh: Semiconductor Devices. Basic Principles, John Wiley & Sons, 2001.
R. Barlik, M. Nowak: Energoelektronika. Elementy, podzespoły, układy. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2014.
A. Castellazzi, Y.C. Gerstenmaier, R. Kraus and G.K.M. Wachutka: Reliability analysis and modeling of power MOSFETs in the 42-V-PowerNet, IEEE Transactions on Power Electronics, Vol. 21, 2006, No. 3, pp. 603-612.
A. Castellazzi, R. Kraus, N. Seliger, D. Schmitt-Landsiedel: Reliability analysis of power MOSFET’s with the help of compact models and circuit simulation. Microelectronics Reliability, Vol. 42, 2002, pp.1605-1610.
M. Ciappa, F. Carbognami, P. Cora, W. Fichtner: A novel thermomechanics-based lifetime prediction model for cycle fatigue failure mechnisms in power semiconductors. Microelectronics Reliability, Vol. 42, 2002, pp.1653-1658
N. Narendran, Y. Gu: Life of LED-based white light sources. Journal of Display Technology, Vol. 1, No. 1, 2005, pp. 167- 171.
Y. Yener, S. Kakac: Heat Conduction.Taylor &Francis, 2008.
A. Nowakowski: Badanie procesów termicznych w przyrządach półprzewodnikowych. Zesz. Nauk. Polit. Gdańskiej, Elektronika Vol. 60, No. 389, 1984.
A. Napieralski: Komputerowe projektowanie układów półprzewodnikowych mocy ze szczególnym uwzględnieniem ich właściwości termicznych. Zeszyty Naukowe Politechniki Łódzkiej, Vol. 562, Łódź 1988.
M. Zubert: Wielowymiarowe i wielodomenowe modelowanie I symulacja zjawisk fizycznych w nowoczesnych strukturach półprzewodnikowych. Praca doktorska, Politechnika Łódzka, 1998.
T. Raszkowski, A. Samson, M. Zubert: Influence of temperature and heat flux time lags on the temperature distribution in modern GAAFET structure based on Dual-Phase-Lag thermal model. Microelectronics Reliability, Vol. 86, 2018, pp. 10-19.
M. Zubert, T. Raszkowski, A. Samson, P. Zając: Methodology of determining the applicability range of the DPL model to heat transfer in modern integrated circuits comprised of FinFETs, Microelectronics Reliability, Vol. 86, 2018, pp. 139-153.
P. Zając, A. Napieralski: Novel thermal model of microchannel cooling system designed for fast simulation of liquid-cooled ICs. Microelectronics Reliability, Vol. 86, 2018, pp. 245-258
K. Górecki, J. Zarębski: Nonlinear compact thermal model of power semiconductor devices, IEEE Transactions on Components and Packaging Technologies, Vol. 33, No. 3, 2010, pp. 643-647.
K. Nemeth: On the analysis of nonlinear resistive networks considering the effect of temperature. IEEE Journal Solid-State Circuits, Vol. SC-11, No. 4, 1976, p. 550
K.F. Fukahori, P.R. Gray: Computer simulation of integrated circuits in the presence of electrothermal interactions. IEEE Journal Solid-State Circuits, Vol. SC-11, No. 6, 1976, p. 834
W. Janke, G. Blakiewicz: Semi analytical recursive algorithms for convolution calculations, IEE Proc.- Circuits Devices Syst., vol. 142, No. 2, 1995.
J. Zarębski, K. Górecki, Properties of some convolution algorithms for the thermal analysis of semiconductor devices. Applied Mathematical Modelling, Vol. 31, No. 8, 2007, pp. 1489 – 1496.
J. Zarębski, K. Górecki: Modelling CoolMOS Transistors in SPICE. IEE Proceedings on Cicuits, Devices and Systems, Vol. 153, No. 1, 2006, pp. 46-52.
K. Górecki, P. Górecki, J. Zarębski: Measurements of parameters of the thermal model of the IGBT module. IEEE Transactions on Instrumentation and Measurement in press, doi: 10.1109/TIM.2019.2900144.
P.E. Bagnoli, C. Casarosa, M. Ciampi, E. Dallago: Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization. IEEE Trans. on Power Electronics, I. Fundamentals and Theory, Vol. 13, No. 6, 1998; pp. 1208-19.
K. Górecki, J. Zarębski, „Estymacja parametrów modelu termicznego elementów półprzewodnikowych”, Kwartalnik Elektroniki i Telekomunikacji, Vol. 52 No. 3, 2006, pp. 347-360.
A. Bahman, K. Ma, F. Blaabjerg: A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules. IEEE Transactions on Power Electronics, vol. 33, no. 3, 2017, pp. 2518 - 2530. 10.1109/TPEL.2017.2694548.
K. Górecki, J. Zarębski: Paths of the heat flow from semiconductor devices to surrounding. Proceedings of the 19th Internationa Conference Mixed Design of Integrated Circuits and Systems MIXDES 2012, Warszawa, 2012, pp. 313-318.
J. Zarębski, K. Górecki: A SPICE Electrothermal Model of the Selected Class of Monolithic Switching Regulators. IEEE Transactions on Power Electronics, Vol. 23, No. 2, 2008, pp. 1023 – 1026.
J. Zarębski, K. Górecki: SPICE-Aided Modelling of the UC3842 Current Mode PWM Controller with Selfheating Taken into Account. Microelectronics Reliability, Vol. 47, No. 7, 2007, pp. 1145-1152.
K. Górecki: The electrothermal macromodel of switching voltage regulators from L4970 family. International Journal of Numerical Modelling Electronic Networks, Devices and Fields, Vol. 21, No. 6, 2008, pp. 455-473.
R. Perret, Power electronics semiconductor devices. John Wiley & Sons, Hoboken, 2009.
K. Górecki: Modelling mutual thermal interactions between power LEDs in SPICE. Microelectronics Reliability, Vol. 55 No. 2, 2015, pp. 389-395.
K. Górecki, D. Bisewski, J. Zarębski, R. Kisiel, M. Myśliwiec: High-temperature properties of Schottky diodes made of silicon carbide. Proceedings of 23rd International Conference Mixed Design of Integrated Circuits and systems MIXDES 2016, Łódź, 2016, p. 382-386.
K. Górecki, P. Ptak: Modelling mutual thermal coupling in LED module. Microelectronics International, Vol. 32, No. 3, 2015, pp. 152-157.
A. Poppe, C.J.M. Lasance: On the standardization of thermal characterization of LEDs, 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium SEMI-THERM, San Jose, 2009, pp.151- 158.
K. Górecki,: Measurements of thermal resistance of power LEDs. Microelectronics International, Vol. 31, No. 3, 2014, pp. 217-223.
K. Górecki, P. Ptak: New method of measurements transient thermal impedance and radial power of power LEDs. IEEE Transactions on Instrumentation and Measurement in press, doi: 10.1109./TIM.2019.2894043.
K. Górecki, J. Zarębski and D. Bisewski: “An influence of the selected factors on the transient thermal impedance model of power MOSFET”, Informacije MIDEM – Journal of Microelectronics, Electronic Components and Materials, Vol. 45, No. 2, 2015, pp. 110-116.
J. Zarębski, K. Górecki: A Method of Measuring the Transient Thermal Impedance of Monolithic Bipolar Switched Regulators. IEEE Transactions on Components and Packaging Technologies, Vol. 30, No. 4, 2007, pp. 627 – 631.
D. Bisewski, M. Myśliwiec, K. Górecki, R. Kisiel, J. Zarębski: Examinations of selected thermal properties of packages of SiC Schottky diodes. Metrology and Measurement Systems, Vol. 23, No. 3, 2016, pp. 451-459.
J. Zarębski, K. Górecki: A new method for the measurement of the thermal resistance of the monolithic switched regulator LT1073. IEEE Transactions on Instrumentation and Measurement, Vol. 56, No. 5, 2007, pp. 2101-2104.
K. Górecki, P. Górecki: The analysis of accuracy of selected methods of measuring the thermal resistance of IGBTs. Metrology and Measurement Systems, Vol. 22, No. 3, 2015, pp. 455-464.
D.L. Blackburn, F.F. Oettinger: Transient Thermal Response Measurements of Power Transistors. IEEE Transactions on Industrial Electronics and Control Instrumentation, 1976, Vol. IECI-22, No. 2, pp. 134-141.
K. Górecki, J. Zarębski: Modeling the influence of selected factors on thermal resistance of semiconductor devices, IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 4, No. 3, 2014, pp. 421-428.
K. Górecki, P. Górecki: A new form of the non-linear compact thermal model of the IGBT. 12th IEEE International Conference on Compatibility, Power Electronics and Power Engineering CPE-POWERENG 2018, Doha, 2018, paper QF-004383.
P. Górecki, K. Górecki: Non-linear compact thermal model of IGBTs, 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition., Warszawa, 2017, doi: 10.23919/EMPC.2017.8346910
Y. Avenas, L. Dupont, Z. Khatir: Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters – a review. IEEE Transactions on Power Electronics, Vol. 27, No. 6, 2012, pp. 3081-3092.
Z. Lisik: Pomiar rezystancji cieplnej bipolarnych tranzystorów mocy Darlingtona. Kwart. Elektr. i Telekomunikacji, Vol. 40, No. 3, 1994, s. 369.
D.L. Blackburn: Temperature Measurements of Semiconductor Devices – A Review, 20th IEEE Semiconductor Thermal Measurement and Management Symposium SEMI-THERM, San Jose, 2004, pp. 70-80.
J.W. Sofia, Analysis of thermal transient data with synthesized dynamic-models for semiconductor-devices. IEEE Transactions on Components Packaging and Manufacturing Technology Part A, Vol. 18, No. 1, 1995, pp. 39-47.
F.F. Oettinger, D.L. Blackburn, S. Rubin: Thermal characterization of power transistors, IEEE Transactions on Electron Devices, Vol. 23, No. 8, 1976, pp. 831-838.
K. Górecki, J. Zarębski: Badanie wpływu wybranych czynników na parametry cieplne tranzystorów mocy MOS. Przegląd Elektrotechniczny, Vol. 85, No. 4, 2009, pp. 159-164.
K. Górecki, B. Dziurdzia, P. Ptak: The influence of a soldering manner on thermal properties of LED modules. Soldering & Surface Mount Technology, Vol. 30, No. 2, 2018, pp. 81-86.
P. Górecki, K. Górecki, J. Zarębski, Thermal model of the IGBT module. Journal of Physics: Conference Series, Vol. 1033, 2018, 012001, pp. 1-7, doi: 10.1088/1742-6596/1033/1/012001.
M. Janicki, P. Kawka, G. De Mey and A. Napieralski, IGBT Hybrid Module Thermal Measurements and Simulations. 8-th International Conference Mixed Design of Integrated Circuits and Systems MIXDES 2001, Zakopane, 2001, p. 249.
K. Górecki, M. Rogalska, J. Zarębski: Parameter estimation of the electrothermal model of the ferromagnetic core, Microelectronics Reliability, Vol. 54, No. 5, 2014, pp. 978-984.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.