
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2019, VOL. 65, NO.2 , PP. 267-276

Manuscript received September 28, 2018; revised April, 2019. DOI: 10.24425/ijet.2019.126310

 Abstract—In a rectilinear route, a moving sink is restricted to

travel either horizontally or vertically along the connecting edges.

We present a new algorithm that finds the shortest round trip

rectilinear route covering the specified nodes in a grid based

Wireless Sensor Network. The proposed algorithm determines the

shortest round trip travelling salesman path in a two-dimensional

grid graph. A special additional feature of the new path discovery

technique is that it selects that path which has the least number of

corners (bends) when more than one equal length shortest round

trip paths are available. This feature makes the path more suitable

for moving objects like Robots, drones and other types of vehicles

which carry the moving sink. In the prosed scheme, the grid points

are the vertices of the graph and the lines joining the grid points

are the edges of the graph. The optimal edge set that forms the

target path is determined using the binary integer programming.

 Keywords—Minimum bend Shortest Paths, Travelling

salesman problem, Binary integer programming, Edge orientation

index, Vertex Bend Index, Vertex-Edge Incident Matrix

I. INTRODUCTION

 TRADITIONAL Wireless Sensor Network uses static sensor

nodes and a static sink that collects data from the sensors

over multi-hop transmission. But, when the sensors are sparsely

distributed in a large geographic area, the network may not be

fully connected because of the limited communication range of

the sensor nodes. Then the sensors far away from the static sink

may not be able to send their data to the sink. In such a scenario,

a mobile sink is used to collect data from the sensors [1-5] by

physically moving around the WSN. Here, it is assumed that the

geographical region occupied by the sensors is suitable for the

physical travel of the mobile sink and it can physically approach

the area formed by the communication range of the individual

sensors. In general the mobility and the scheduling of a mobile

sink are deterministically controlled. The mobile sink provides

a higher degree of flexibility for the efficient functioning of the

WSN.

A. Moving Sink Closed Path

In general, the Mobile Sink (MS) starts from a home station, say,

Base Station (BS), travels around the WSN visiting the sensors

nodes, collects data and returns back to the home station. This

 Sanu Thomas is with Faculty of School of Technology and Applied

Sciences, Mahathma Gandhi University, Kottayam, Kerala, India. (e-mail:
thomas.sanu@gmail.com).

 Thomaskutty Mathew is with Faculty of School of Technology and Applied

Sciences, Mahathma Gandhi University, Kottayam, Kerala, India. (e-mail:
drtkmathew@gmail.com)

forms a round trip tour. This process is repeated periodically

depending on the nature of the application. The travel of the MS

that visits different sensor nodes is similar to that of a travelling

Salesman visiting the specified cities. Therefore the round trip

path of the MS should be the shortest one that covers all the

specified sensors.

Thus the determination of the Moving Sink Closed Path (MSCP)

is same as solving the Travelling Salesman Problem (TSP). The

TSP applied to the MS is called the Moving Sink Problem

(MSP).

B. Rectilinear Route

In this paper, we consider a grid based WSN where the sensor

nodes are placed at selected grid points. The main constraint for

the MS is that it has to travel along the horizontal and vertical

grid lines only and thus the MS path is a rectilinear route. More

detailed descriptions are given later.

C. Minimum bend paths

Bends or corners are unavoidable along the travel path due to

the topological constraints. The presence of bends or corners

along the path reduces the velocity of MS and increases the

energy consumed by the MS. Therefore, the number of bends

has to be minimized for efficient travel of the MS.

D. Objective and methodology

The objective is to solve the MSP with minimum number of

bends along the rectilinear path as the additional constraint. We

use the Binary Integer Programming to solve this bi-objective

optimization problem.

E. Organization of the paper

Section II gives a brief discussion about the related work by

other authors. Section III describes the system model and the

deployment of sensor nodes on the grid graph. Section IV

contains the details about the MS path selection problem.

Section V describes the associated constraints and their

algebraic formats. Section VI formulates the binary integer

program to solve the MS optimal path problem. Section VII

gives the simulation results. Section VIII gives comparison with

other methods. Section IX contains the conclusion.

II. RELATED WORK

V. G. Deineko , B. Klinz , A. Tiskin , G. J. Woeginger [6]

have solved the Travelling salesman problems by dynamic

programming. It is a modified and improved version of

exhaustive search. It’s time complexity is approximately

Minimum Bend Shortest Rectilinear Route

Discovery for a Moving Sink in a Grid Based

Wireless Sensor Network

Sanu Thomas, and Thomaskutty Mathew

A

268 SANU THOMAS, AND THOMASKUTTY MATHEW

factorial. Here, the computational speed is increased using

dynamic programming.

A. Maheshwari, J. R. Sack, and H. N. Djidjev [7] have

provided a comprehensive survey on minimum bend paths. They

have described several sequential and parallel methods for

determining the shortest minimum bend paths.

C. D. Yang, O. Z. Lee and C. K. Wong [8] have used path-

preserving graphs, obtained the shortest path in the staircase

form and then they manipulated it by pushing and dragging to

reduce the bends along that path. The method presented in [8] is

a multi-stage process and relatively a slow method than our

proposed method. In our method successive push and drag

manipulations are absent.

K. L. Clarkson, S. Kapoor, and P. M. Vaidya, [9] create an

extended graph called visibility graph and use it to determine the

shortest path. But this method does not take care of minimum

bend criterion.

S. Basagni, A. Carosi, C. Petrioli [10] have used Mixed

Integer Linear Programming (MILP) to solve for the shortest

path tour for the mobile sink in a WSN with conservation of

energy as the main goal. Here, the minimization of the number

of bends along the path is not discussed.

D. P. Wagner, R. S. Drysdale, C. Stein [11] have described

determination of the minimum bend path using successive

search method for getting 0-bend path, 1-bend path, 2-bends

path and so on. The method is similar to the exhaustive search

method and the time taken to get the final result is relatively very

high.

M. Diaby [12] has solved the TSP in polynomial time.

Basically he uses network flow linear model to solve TSP. He

has also included a non-linear programming method to solve the

TSP.

G. Pataki [13] has used linear integer programming to solve

the TSP. He has applied branch and bound technique to arrive at

the solution.

 Several works have been carried out on different versions of

TSP and minimum bend paths. But the combination of these two

has not been discussed by any author. Therefore, the minimum

bend shortest rectilinear path discovery method for the moving

sink is an innovative one in WSN.

III. SYSTEM MODEL

In a WSN, the sensor nodes can be deployed randomly or

deterministically. In random deployment, some areas may get

over populated and other regions may receive less number of

sensor nodes causing unequal coverage. Also, the location of

sensor nodes is not under the control of the network designer.

Therefore, in the proposed scheme, we adopt grid based

deployment where the locations of the sensors can be fixed

accurately and the network topology can be designed

appropriately to suit the present application. Grid based WSN’s

are efficiently replicable and scalable.

In our scheme, the WSN layout is modeled as a uniform grid

graph as shown in Fig. 1. The grid cells are squares of the same

size throughout. Horizontal and vertical edges are displayed in

green and magenta respectively. The sensor nodes are sparsely

deployed at specified grid points and shown in blue. All grid

points need not be occupied by the sensor nodes. The

unoccupied grid points can be used for future expansion.

The size of the layout is taken as W×H where W is the width

and H is the height expressed in terms of the grid points. Thus

the total number of grid points is (W×H). A planar undirected

graph G(V, E) is formed by this grid. The grid points are the

vertices of the graph and the grid lines are the edges of the graph.

The total number of grid points (vertices) in the grid graph

represented by N is N= W*H = |V|. From the grid graph layout,

we can see that the number of vertical edges between adjacent

nodes is (H−1)*W and similarly, the number of horizontal edges

is (W−1)*H. Thus the total number of edges between the

adjacent vertices in the graph represented by M is M =

(W−1)*H+(H−1)*W = |E|. The edge set of the graph is denoted

as,

 E = [e(1), e(2),…, e(j), …, e(M)]

For convenient representation and usage, the jth edge e(j) is given

the identification number j itself. The enumerating order could

be any suitable one. But once numbered, the edges should stick

to them consistently throughout. Thus E is given by,

 E = [1, 2,…, j, …, M] (1)

A. Vertex numbering

For the purpose of description, the N vertices of the graph

are numbered from 1 to N, column-wise. The bottom left corner

is the starting point and the top right corner is the ending point

as shown in Fig. 1. The vertices of the graph are identified by

these numbers. The vertex set of the graph is V ={1: N}. For

convenience, the ith vertex is designated as v(i). Here, the id of

v(i) is i itself.

A special property of this numbering scheme is that, for a

vertical edge, the ids of its end points differ exactly by 1,

whereas the ids of end points of any horizontal edge differ

exactly by H. Let an edge e(j) be represented by its two end

points ep(1) and ep(2) as.

e(j) = {ep(1)→ep(2)} (2)

Then we can determine the orientation of that edge by examining

the difference | ep(1)−ep(2)| as,

 𝑒(𝑗) is {
 vertical if |𝑒𝑝(1) − 𝑒𝑝(2)| = 1

 horizontal if |𝑒𝑝(1) − 𝑒𝑝(2)| = 𝐻
 (3)

This property will be very useful as explained later. For

example, in Fig.1, for the edge (3→11), the difference is (11−3)

= 8 = H. Therefore (3→11) is horizontal. On the other hand

consider the edge (68→67). The difference is 1 and therefore,

the edge is vertical.

B. Vertex connectivity

 Here, we use 4-connectivity for all the vertices. That means

a non-border vertex is connected to its immediate 4 neighbors,

one along north, next one along east, another one along south

and last one along west. Therefore, a non-border vertex has 4

incident edges. The degree of a vertex is the number edges

incident on that vertex. Hence, the degree of a non-border vertex

is four. A boundary-corner vertex has two neighbors whereas a

non-corner border vertex has three neighbors. For example, in

Fig. 1, vertex 38 is connected 39 (north), 46 (east), 37(south) and

29 (west). But no direct connectivity exists between vertex 38

and 40 because, they are non-adjacent. The lengths of all the

edges connecting the adjacent vertices are normalized and set to

1. Thus our graph is an orthogonal graph. The length between

MINIMUM BEND SHORTEST RECTILINEAR ROUTE DISCOVERY FOR A MOVING SINK IN A GRID BASED WIRELESS SENSOR NETWORK 269

the non-adjacent vertices is set to ∞. The vertex-edge

connectivity information is represented by the vertex-edge

incidence matrix. This matrix can be obtained from the

adjacency matrix.

C. Vertex-Edge Incidence Matrix

 The Vertex-Edge (VE) incidence matrix of size NxM gives

the information about the end point vertices of each edge. Matrix

VE has N rows that correspond to the vertices of the graph and

M columns that correspond to the edges of the graph. The

element of VE at row i and column j is set as,

𝑣𝑒(𝑖, 𝑗) = {
1, if edge 𝑗 is incident on vertex 𝑖

 0, otherwise
 (4)

for i =1 to N and j = 1 to M.

D. Properties of VE

1) VE is a binary matrix of size NxM.

In the grid graph of Fig.1, each edge is incident on exactly two

specific vertices which are the end points of that edge.

Therefore,

2) The number of ones in every column of VE is always 2.

3) From definition (4), we see that the index locations of 1’s in

row i represent the edges incident on vertex i.

4) Row sum, ∑ 𝑣𝑒(𝑖, 𝑗) 𝑀
𝑗=1 gives the total number of edges

incident on vertex i. This total number of edges incident

on vertex i is the degree of vertex i. Therefore, the degree

of vertex i for for i = 1 to N is given by,

Degree(𝑖) = ∑ 𝑣𝑒(𝑖, 𝑗)

𝑀

𝑗=1

 (5)

Example 1: A simple graph having 9 vertices and 12 edges is

shown in Fig. 2. The edge numbers are shown inside the square

brackets. The VE matrix for this graph is shown in Table I.

From Table I, It can be seen that the edges of vertex v(4) are

given by the locations of 1’s in row 4. They are [3, 5, 8]. The

degree of v(4) = degree(4) = sum of row 4 is 3 as can be verified

in Fig. 2. For vertex v(5), degree(5) = sum of row 5 is 4 which

can be seen in Fig. 2. In this way, we can calculate the degree of

every vertex from Table I and it can be verified in Fig. 2.

TABLE I

VE MATRIX FOR EXAMPLE 1

 E D G E S

V
E

R

T
I

C

E
S

 1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1 1 0 1 0 0 0 0 0 0 0 0 0

2 1 1 0 1 0 0 0 0 0 0 0 0

3 0 1 0 0 0 1 0 0 0 0 0 0

4 0 0 1 0 1 0 0 1 0 0 0 0

5 0 0 0 1 1 0 1 0 1 0 0 0

6 0 0 0 0 0 1 1 0 0 0 1 0

7 0 0 0 0 0 0 0 1 0 1 0 0

8 0 0 0 0 0 0 0 0 1 1 0 1

9 0 0 0 0 0 0 0 0 0 0 1 1

E. Participating Edges and Participating Degree of a vertex

 Assume that the MS path is formed. All the edges of a vertex

may not be included in the MS path. Those edges of vertex v(i)

that lie on the MS path are referred as the participating edges. If

a vertex does not lie along the MS path, all the incident edges of

that vertex will not participate in forming the path and therefore,

the number of participating edges of that vertex is zero, The set

formed by the participating edges of v(i) is represented by the

symbol PE(i). Parameter i refers to the vertex v(i) on which

these edges incident, Thus, set PE(i) gives the ids of the

participating edges incident on v(i).

 The count of participating edges of v(i) is denoted as the

Participating Degree PD(i) of v(i). Thus PD(i) = |PE(i)|. For

example, in Fig. 2, the full edge set of v(5) is [4, 5, 7, 9] and the

full degree of v(5) is 4. Let the MS path pass through v(5) as

H
 =

 8

W = 10

Fig. 1. WSN as a Grid graph. Width = W = 10 grid points

Height = H = 8 grid points

Fig. 2. Grid graph with 9 vertices and 12 edges

270 SANU THOMAS, AND THOMASKUTTY MATHEW

shown in red. Then, the participating edge set of v(5) is, PE(5)

=[7, 9] and the participating degree is, PD(5) = 2.

 On the other hand, non-participating edges of v(5) are [4, 5].

In general, for a given vertex v(i), the PD(i) is less than or equal

to its full degree.

F. Admission Control Variable for edjes

 In solving the MSP problem, the admissibility of edge j as a

participating edge is decided by the binary admission control

variable x(j) associated with edge j, for j = 1 to M. The

admissibility condition is given by,

edge 𝑗 is {
 admissible if 𝑥(𝑗) = 1

 blocked if 𝑥(𝑗) = 0
 (6)

Thus x(j) is the binary decision variable associated with edge j.

The sequence of all x(i)’s forms the Admission Control Vector

X as,

 X = [x(1), x(2),…,x(j),…,x(M)] (7)

1) Participating Degree Calculation using the VE matrix

 From (4), we know that ve(i, j) = 1 gives the incident edge j

on vertex i. To indicate its participation in the MS path

formation, we use the product ve(i, j)*x(j). Now from (4) and (6)

we see that, both ve(i, j) and x(j) have to be 1 for e(j) to be a

member of the MS path. Then the corresponding Participating

Incident Edge Count (PIEC) can be expressed as,

𝑃𝐼𝐸𝐶(𝑖, 𝑗) = {
1 if 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) = 1
 0, otherwise

 (8)

In (8), PIEC(i, j) = 1 means, e(j) is incident at v(i) and also

participating in the MSP. Otherwise e(j) is ignored. Since,

𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) is a binary variable, Equation (8) can be rewritten

as,

 PIEC(i, j) = 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) (9)

 Since, the participating degree PD(i) of v(i) is the sum of

PIEC(i, j)’s from all j’s, PD(i) can be expressed as,

𝑃𝐷(𝑖) = ∑ 𝑃𝐼𝐸𝐶(𝑖, 𝑗)

𝑀

𝑗=1

 (10)

From (10) and (9),

𝑃𝐷(𝑖) = ∑ 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗)

𝑀

𝑗=1

 (11)

The PD(i) given by (11) is used to specify the constraints on the

participating degree of v(i).

IV. MOVING SINK PROBLEM

The purpose of the MS is to exchange data with sensors by

physically visiting the location of the nodes. The following are

the constraints imposed on the MS.

A. constraints

1) The MS should start the present tour at the starting node

which may be the access point or the BS of the WSN.

2) It should visit every sensor node vertex exactly once in

the present tour and should return to the starting node

at the end of the present tour.

3) The intermediate non-sensor vertices should not repeat

along the path travelled by MS.

4) The total travel distance (length) should be minimum.

Constraints 1 to 4 above are the standard requirements similar to

that of the Travelling Salesman Problem. A repeated node

(except the starting node) along the path creates sub-cycles and

should be avoided. Additional constraints are imposed in our

scheme to provide efficient movement of the MS as follows.

5) It should travel only along the grid lines of the graph.

This constraint forces the MS tour path to be a

rectangular polygon. (Here, the assumption is that

proper physical paths are available for the MS to move

along the grid lines).

 The MS Closed Path along the grid lines is

abbreviated as MSCP.

6) The number of bends along the path should be

minimum. In the proposed grid graph, the bends are at

900 and the MS has to spend additional energy and time

to negotiate the bends. Travel with Minimum bends

saves the energy and time for the MS.

The closed path travelled which satisfies the above constraints

is referred as the Minimum Bend Shortest Closed Path

(MBSCP). Determination of MBSCP satisfying these

constraints is termed as the Moving Sink Problem (MSP).

B. Objective

 The objective is to solve the MSP by determining MBSCP

for the given graph. That is to find out the set of edges to be

traversed by the MS to generate MBSCP.

C. Approach towards the Solution

 The method adopted by us to solve the MSP is similar to

solving TSP [12] in the sense that the proposed method also uses

the Binary Integer Programming [13] as adopted in solving the

standard TSP. But our main contribution is to convert the

minimum bend constraint into a linear one and then adopt the

binary integer programming technique.

V. FORMULATION OF CONSTRAINTS

 We express the constraints of section IV in a proper algebraic

form suitable for the Binary Integer Programming solver. To

achieve this, we consider the various attributes of the MBSCP.

 In the grid graph, MSCP is represented as a set of connected

vertices forming the closed path It can also be represented by a

set of participating edges that forms the closed path connecting

all the sensor nodes. A typical MSCP on a grid graph would look

as shown in Fig. 3, where MSCP is shown in red and the sensor

nodes in blue.

 The set of vertices that belong to MSCP is represented by the

set MSCP_V which is a subset of V. Similarly the set of edges

which make up the MSCP is represented by the set MSCP_E

which is a subset of E. Thus, MSCP_V is the vertex set and

MSCP_E is the edge set of MSCP.

MINIMUM BEND SHORTEST RECTILINEAR ROUTE DISCOVERY FOR A MOVING SINK IN A GRID BASED WIRELESS SENSOR NETWORK 271

A. Sensor Node Vertex Set

 Let K be the number of sensor nodes deployed in the given

grid based WSN. These sensor nodes are located at K grid points

(vertices) of the graph. Let the vertex set occupied by the sensor

nodes be represented as,

𝑆 = [𝑠1, 𝑠2, … , 𝑠𝑢 , … 𝑠𝐾] (12)

Thus su ∈ S, where S is a subset of V. In the example of Fig. 3,

the sensor nodes are marked in blue and S = [1, 8, 11, 22, 28]

and K = 5. These vertices are the locations of the sensor nodes.

Remaining vertices are non-sensor vertices. Since V is the entire

set of vertices of the graph, the non-sensor vertices form the

subset {V−S}. Thus, we have,

 S = Sensor node vertex set

 {V−S} = Non-sensor node vertex set

B. Participating Degree of vertices belonging to the vertex set

S

 The MSCP has to compulsorily pass through all the vertices

in S. Consider a segment of MSCP passing through su which

belongs to S. For example take the segment [17→11→10] from

Fig. 3, where v(11) belongs to S. The path MSCP has to visit su

exactly once. That is, the path should enter the vertex su only

once and leave also only once. Thus the Participating Degree

PD(su) of su (in the example case, v(11)) has to be 2. This rule

holds true for all the sensor node vertices of S. This requirement

can be expressed as,

 PD(su) = 2 ∀ 𝑠𝑢 ∈ 𝑺 (13)

This means,

 PD(i) = 2 ∀ i ∈ 𝑺 (14)

From (14) and (11)

∑ 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) = 2

𝑀

𝑗=1

 for 𝑖 ∈ 𝑺 (15)

Subset S is given and fixed. The basic constraint is that the

MSCP to be determined must pass through all the vertices of S

exactly once. This constraint, represented by (15), is basically a

constraint on x(j)’s which are the decision variables.

C. Participating Degrees of vertices of subset {V−S})

 Consider a vertex v(i) ∈ {V−S} which is same as i ∉ S. (In

the example of Fig. 3, vertices belonging to {V−S} are marked

in green). Vertex v(i) may or may not lie on the MSCP. (For

example, in Fig. 3, v(2) lies on the MSCP whereas v(13) does

not, even though both the vertices belong to {V−S}). Let us

consider both the cases.

Case 1) Vertex v(i) lies on the MSCP, that is i ∈ MSCP_V.

In this case, MSCP passes through v(i) exactly once. Then, as

explained earlier in the case of subset S, the PD(i) of v(i) is 2.

That is,

∑ 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) = 2

𝑀

𝑗=1

 ∀ 𝑖 ∈ 𝑴𝑺𝑪𝑷_𝑽 (16)

Case 2) Vertex v(i) does not lie on MSCP.

In this case, MSCP does not pass through the v(i). Since the path

neither enters nor leaves v(i), the Participating Degree PD(i) is

0. This constraint is expressed as,

∑ 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) = 0

𝑚

𝑗=1

 ∀ 𝑖 ∉ 𝑴𝑺𝑪𝑷_𝑽 (17)

D. Admission Control Variable for vertices.

For each vertex v(i), let us introduce the binary decision variable

y(i) such that,

 y(𝑖) = {
1 𝑖𝑓 𝑣𝑒𝑟𝑡𝑥 𝑖 ∈ 𝑴𝑺𝑪𝑷_𝑽
0 𝑖𝑓𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 ∉ 𝑴𝑺𝑪𝑷_𝑽

 ∀𝑖 ∈ 𝑽 (18)

 From (16), (17) and (18), we see that Equation (16) holds true

when y(i) = 1 and Equation (17) holds when y(i) = 0. Therefore,

in the light of (18), Equations (16) and (17) can be represented

by a single Equation as,

∑ 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) = 2 ∗ 𝑦(𝑖)

𝑚

𝑗=1

 ∀𝑖 ∈ 𝑽 (19)

From (18), we see that the value of y(i) decides whether v(i) is

to be included in MSCP_V or not. Therefore y(i)’s form another

set of decision variables to be determined by the optimization

solver. The y(i)’s form the second decision vector Y, {the first

decision vector being X given by (7)}, as,

Y = [y(1), y(2),…,y(i),…,y(N)] (20)

From (18), we see that the ones of Y represent MSCP_V. The

optimal solution should satisfy the constraint (15) and (19).

E. Edge subset formats

 A subset of edges in a graph can be represented in two

formats. The conventional format and index format (bit mask

format). In conventional format, the edge id’s (edge numbers

when edges are numbered) are used as the members of the

subset. For example, consider the MSCP shown in Fig. 2. The

MSCP is the path represented by MSCP_V=[1, 2, 3, 4, 5, 6, 7,

8] and is shown in red.

Fig. 3. A typical closed path with 16 participating nodes

272 SANU THOMAS, AND THOMASKUTTY MATHEW

The edge subset of MSCP is represented by MSCP_E. The

conventional format is represented as MSCP_EC. In Fig. 2,

MSCP_EC is,

 MSCP_EC = [1, 2, 3, 6, 7, 8, 9, 10]

Here, the edges are arranged in the ascending order. The

members of MSCP_EC are the corresponding edge numbers.

1) Index format of edge subset representation

The index format representation of MSCP_E is designated as

MSCP_EI (symbol I is appended to indicate the index format).

MSCP_EI is a binary vector of length M. The jth element of

MSCP_EI is set to 1 if edge j is a member of MSCP_EI, else it

is set to 0. That is the jth element of MSCP_EI, represented by

mscp_ei(j) is set as,

𝑚𝑠𝑐𝑝_𝑒𝑖(𝑗) = {
1 𝑖𝑓 𝑒𝑑𝑔𝑒 𝑗 ∈ 𝐌𝐒𝐂𝐏_𝐄𝐂
0 𝑖𝑓 𝑒𝑑𝑔𝑒 𝑗 ∉ 𝐌𝐒𝐂𝐏_𝐄𝐂

 ∀𝑗 ∈ 𝑬 (21)

For example, in Fig. 2,

MSCP_EI = [1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0]

The number of 1’s in MSCP_EI is same as the number of edges

in MSCP_EC. Therefore, the number of edges in MSCP_EC

represented by L, is given by,

L= sum(MSCP_EI) (22)

For example, In Fig.2,

L = sum(MSCP_EI) = sum([1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0]) = 8

In Matlab notation, MSCP_EC can be obtained from MSCP_EI

as,

 MSCP_EC = find(MSCP_EI) (23)

In the index format representation, the main (full) set is the

binary vector of all 1’s.

F. Length of MSCP

The edge set of MSCP, represented by MSCP_EC, is a

subset of E. In our optimization method, the edges of MSCP_EC

are selected based on the calculated value of the admission

control variable x(j)’s as follows.

𝑗 ∈ 𝑴𝑺𝑪𝑷_𝑬𝑪 𝑖𝑓 𝑥(𝑗) = 1

𝑗 ∉ 𝑴𝑺𝑪𝑷_𝑬𝑪 𝑖𝑓 𝑥(𝑗) = 0
} (24)

Thus x(j) acts as the admission criterion to include edge j as a

member of MSCP_EC. From (21) and (24) we see that

mscp_ei(j) and x(j) are same for ∀𝑗 ∈ 𝑬. Therefore

 MSCP_EI = X (25)

Therefore, from (25) and (22), the length of MSCP in terms of

the number of edges is,

𝐿 = 𝑠𝑢𝑚(𝑋) = ∑ 𝑥(𝑗)

𝑀

𝑗=1

Since L is a function of the decision variable X, we use L(X)

instead of just L. Therefore the above equation is rewritten as,

𝐿(𝑋) = sum(𝐗) = ∑ 𝑥(𝑗) (26)

𝑀

𝑗=1

In solving MSP, the first objective function is L(X).

G. Minimum Bend Paths

Consider two different paths starting from vertex 1 and ending

with vertex 16 as shown in Fig. 4. Path P1 and P2 are made up

of vertices as,

P1 = [1, 2, 6, 7, 11, 12, 16]

P2 = [1, 5, 9, 13, 14, 15, 16]

Both P1 and P2 have the same length 6. But the number of bends

in P1 and P2 are different. P1 has 5 bends while P2 has only one

bend. Now, consider the positions of vertical and horizontal

edges in P1 and P2. Horizontal edges in green are represented

by ‘g’ and vertical edges in magenta are represented by ‘m’.

Then, in terms of horizontal and vertical edges,

P1 = [m, g, m, g, m, g]

P2 = [g, g, g, m, m, m]

Now, consider any two adjacent edges along the path. A bend

occurs if the two adjacent edges have different orientations (one

horizontal and the other vertical) and there is no bend if the two

adjacent edges have the same orientation (both horizontal or

both vertical). To distinguish the horizontal and vertical edges

we introduce the Edge Orientation Index which is a numerical

representation of the edge orientations. The numerical

representation provides an easy way to calculate the number of

bends along the MSCP.

H. Edge Orientation Index

Edge Orientation Index (eoi) of edge j is defined as

𝑒𝑜𝑖(𝑗) = {
+1 if edge 𝑗 is vertical
−1 if edge 𝑗 is horizontal

 ∀ 𝑗 ∈ 𝑬 (27)

That is, the orientation of vertical edges is represented by +1

whereas that of the horizontal edges by −1. For example, the

eoi’s are marked along the edges of Fig. 4.

I. Edge Orientation Index Vector for the entire grid graph

The orientation of edge e(j) is given by (3) and is known for

the edges in the given grid graph. Then from (27) we can

Fig. 4. Two different paths having the same length,

but different number of bends

MINIMUM BEND SHORTEST RECTILINEAR ROUTE DISCOVERY FOR A MOVING SINK IN A GRID BASED WIRELESS SENSOR NETWORK 273

calculate the eoi’s for all the edges of the graph. The collection

of eoi’s form the Edge Orientation Index Vector (EOIV) as,

 EOIV = [eoi(1), eoi(2),…,eoi(j), …, eoi(M)] (28)

The size of EOIV is 1xM and it is a vector of +1’s and −1’s. For

example, the EOIV vector for the graph of Fig. 2, is given in

Table II.The first row gives the edge number

TABLE II

EOIV FOR THE GRID GRAPH OF FIG. 2.

E 1 2 3 4 5 6 7 8 9 10 11 12

EOIV +1 +1 −1 −1 +1 −1 +1 −1 −1 −1 +1 +1

J. Formation of bends along a closed path

 Consider a vertex v(i) lying along MSCP. Now the

participating edges are those edges of v(i) which lie on MSCP.

Here the participating degree PD(i) = 2. The two participating

edges incident on the vertex can form four possible

combinations of bends and two bend-free combinations as

shown in Fig. 5.

From Fig. 5, we see that for the two participating incident edges

forming a bend (corner), the eoi’s are [−1, +1] or [+1, −1]. But,

for a bend-free vertex (junction), the eoi’s are [−1, −1] or

[+1,+1]. An important conclusion from these observations is, a

vertex with two incident edges, the sum of eoi’s is 0 if the vertex

hosts a bend. Else the sum of eoi’s is ±2. This fact is used to

detect the presence of a bend at a vertex. The absolute value of

the sum of the eoi’s of the two incident edges decides the

existence of a bend at that vertex.

 Consider vertex v(i) which is a member of MSCP_V. Let the

two relevant participating incident edges forming the set be

represented as PE(i) = [e(i,1) and e(i,2)]. Edge Orientation

Indices of these two edges are represented as eoi{e(i, 1)}and

eoi{e(i, 2)}. Then, the absolute value, abs(eoi{(e(i, 1)} + eoi{e(i,

2)}) decides the presence of a bend at that vertex. This deciding

value is called the Vertex Bend Index (vbi) of that vertex.

Then the vbi(i) of v(i) is defined as,

𝑣𝑏𝑖(𝑖) = 𝑎𝑏𝑠(𝑒𝑜𝑖{𝑒(𝑖, 1)} + 𝑒𝑜𝑖{𝑒(𝑖, 2)}) (29)

Then, a bend at v(i) depends on vbi(i) as,

 Bend at 𝑣(𝑖) does {
 exist if 𝑣𝑏𝑖(𝑘) = 0

not exist if 𝑣𝑏𝑖(𝑘) = 2
 (30)

Equation (30) means,

No. of bends at 𝑣(𝑖) = {
1 if 𝑣𝑏𝑖(𝑘) = 0

0 if 𝑣𝑏𝑖(𝑘) = 2
 (31)

From (31), we can express the number of bends at v(i),

represented by nbv(i) as,

𝑛𝑏𝑣(𝑖) =
2 − 𝑣𝑏𝑖(𝑖)

2
= 0.5 ∗ (2 − 𝑣𝑏𝑖(𝑖)) (32)

K. Total number of bends in MSCP

The MSCP passes through the vertex set MSCP_V. The

corresponding edge set MSCP_EC is determined according (24)

and MSCP_ EI is same as the admission control vector X as

given in (25). Number of bends, nbv(i), at an individual vertex

is given by (32). Therefore the total number of bends in MSCP

is given by the summation of nbv(i)’s for those i’s belonging to

MSCP_V. That is, the Total Number of Bends (TNB) can be

expressed as,

𝑇𝑁𝐵 = ∑ 𝑛𝑏𝑣(𝑖)

𝑖∈𝑴𝑺𝑪𝑷_𝑽

 (33)

Here, nbv(i) is the number of bends at vertex v(i) as given by

(32). Substituting for nbv(i) in (33) from (32), we get,

𝑇𝑁𝐵 = ∑ 0.5 ∗ (2 − 𝑣𝑏𝑖(𝑖))

𝑖∈𝑀𝑆𝐶𝑃_𝑉

The RHS is simplified to get,

𝑇𝑁𝐵 = ∑ 1

𝑖∈𝑴𝑺𝑪𝑷_𝑽

 − 0.5 ∗ ∑ 𝑣𝑏𝑖(𝑖)

𝑖∈𝑴𝑺𝑪𝑷_𝑽

This can be rewritten as,

𝑇𝑁𝐵 = |𝑴𝑺𝑪𝑷_𝑽| − 0.5 ∗ ∑ 𝑣𝑏𝑖(𝑖)

𝑘∈𝑀𝑆𝐶𝑃_𝑉

 (34)

From (18) and (20),

|𝑴𝑺𝑪𝑷_𝑽| = sum(𝒀) (35)

From (34) and (35),

𝑇𝑁𝐵 = sum(𝒀) − 0.5 ∗ ∑ 𝑣𝑏𝑖(𝑖)

𝑘∈𝑀𝑆𝐶𝑃_𝑉

 (36)

Since vertices outside MSCP_V have no incident edges, they do

not contribute to vbi(i). Hence, when i in (36) is extended to all

edges of the grid, ∑ 𝑣𝑏𝑖(𝑖)𝑖∈𝑀𝑆𝐶𝑃𝑉
 remains same. Therefore

when the range of i is extended to I ∈ 𝑽 the RHS of (36) remains

same. Therefore, (36) can be rewritten as,

𝑇𝑁𝐵 = sum(𝒀) − 0.5 ∗ ∑ 𝑣𝑏𝑖(𝑖)

𝑁

𝑖=1

 (37)

L. Determination of Vertex Bend Index, vbi(i)

 From (29), 𝑣𝑏𝑖(𝑖) = 𝑎𝑏𝑠(𝑒𝑜𝑖{𝑒(𝑖, 1)} + 𝑒𝑜𝑖{𝑒(𝑖, 2)}). To

determine vbi(i), we should find e(i, 1) and e(i, 2) which are the

edges incident on v(i) and also lie on the MSCP. The resulting

participating edge set PE(i) is,

 PE(i) = [e(i, 1), e(i, 2)] (38)

+1

+1

+1 +1

+1

+1

−1 −1

−1 −1 −1 −1

Fig. 5. Formation of bends at a vertex

274 SANU THOMAS, AND THOMASKUTTY MATHEW

Here [e(i, 1), e(i, 2)] belong to the edge set MSCP_EC and

also incident on v(i). This condition is represented as,

 PE(i) ⊆ MSCP_EC (39)

Now, represent the set relation (39) in the index format as,

 PEI(i) ⊆ MSCP_EI (40)

Here, PEI(i) is the index format representation of PE(i).

For example in Fig. 2, for vertex v(5), the value of PE(5) =
[7, 9] and PEI(5) = [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0].

From (40) and (25),

 PEI(i) ⊆ X (41)

Full set of the edges of v(i) are given by the 1’s of row i of

edge-vertex matrix EV. (See property 3 of EV matrix, Section

III. D). Thus row i represented by EV(i, :) gives the set of all

edges of vertex v(i). Therefore, PEI(i) is a sub set of EV(i, :).

This constraint is expressed as,

PEI(i) ⊆ EV(i, :) (42)

Both (41) and (42) are to be satisfied by PEI(i). Therefore, it is

given by the intersection of the two sets X and EV(i, :) as,

PEI(i) = X ∩ EV(i, :) (43)

In (43), all the terms are the subsets of E and are in the index

form. Since X and EV(i :) are in the binary vector format with

1’s representing the set elements, the intersection X∩ EV(i, :)
can be represented by the logical AND of them as,

 X ∩ EV(i, :) = X ⋀ EV(i, :) (44)
The logical operation can be converted to arithmetic
operation as,

 X ⋀ EV(i, :) = X .* EV(i, :) (45)
The RHS of (44) is the Matlab notation for the element wise
product of two vectors.
From (43), (44) and (45),

PEI(i) = X . * EV(i, :) (46)
For the example of Fig. 2, the values X, EV(5, :) and PEI(5) are

shown in Table III.
TABLE III.

VALUES OF X, EV(5,:), PEI(5) AND EOI(5)

 1 2 3 4 5 6 7 8 9 10 11 12

X 1 1 1 0 0 1 1 1 1 1 0 0

EV(5, :) 0 0 0 1 1 0 1 0 1 0 0 0

PEI(5) 0 0 0 0 0 0 1 0 1 0 0 0

2) Determination of eoi’s of e(i, 1) and e(i,2)

 The Edge Orientation Index Vector, EOIV for the given

graph is known and is given by (28). EOIV gives the orientation

of all the edges of the full edge set E. That is, eoi(j) gives the

orientation of edge e(j) whose index location is j in E for all j’s

from j = 1 to M. But we have to select only those two eoi’s of

edges which are specified by PEI(i). The position of these two

edges e(i, 1), e(i, 2) are given by PEI(i) in the index form. To

select the corresponding eoi’s, we use the bit-mask technique as,

 [eoi {e(i,1)}. eoi {e(i, 2)}]= PEI (i).*EOIV (47)

The element wise multiplication selects those eoi’s of EOIV
for which the index locations e(i, 1) and e(i, 2) are ones in
PEI(i),. Thus the respective eoi’s are stored in PEI(i).*EOIV.
Let us designate the LHS of (47) by EOI(i) as,

EOI(i) =[eoi {e(i, 1)}. eoi {e(i, 2)}] (48)

Then, from (47) and (48),

 EOI(i) = PEI(i).*EOIV (49)

From (46) and (49),

EOI(i) = PEI(i).*EOIV = X.*EV(i, ;).*EOIV (50)

Here, EOI(i) is a binary vector of size 1xM.

 In (50), EOIV and EV(i, :) are known and constants for
the given grid graph. Vector X is the decision variable to be
determined by the optimization solver. Equation (50)
expresses the Edge Orientation information in terms of X.
For the example of Fig. 2, for k = 5,

 X = [1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0],

From Table I,

EV(5, :) = [0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0]

From Table II,

EOIV = [+1, +1, −1, −1, +1, −1, +1, −1, −1, +1, −1, +1]

From (50)

EOI(5) = [1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0], *

 [0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0]. *

 [+1, +1, −1, −1, +1, −1, +1, −1, −1, +1, −1, +1]

EOI(5) = [0, 0, 0, 0, 0, 0, +1, 0, −1, 0, 0, 0] .

From (29), we know that,

𝑣𝑏𝑖(𝑖) = 𝑎𝑏𝑠(𝑠𝑢𝑚([𝑒𝑜𝑖{𝑒(𝑖, 1)}, 𝑒𝑜𝑖{𝑒(𝑖, 2)}]))

From (29) and (47),

𝑣𝑏𝑖(𝑖) = 𝑎𝑏𝑠(sum(𝑷𝑬𝑰(i).∗ 𝑬𝑶𝑰𝑽)) (51)

From (51) and (50)

𝑣𝑏𝑖(𝑖) = 𝑎𝑏𝑠(𝑠𝑢𝑚(𝐗.∗ 𝐄𝐕(𝑖, :).∗ 𝐄𝐎𝐈𝐕)) (52)

Substituting for vbi(i) in (37) from (52), we get,

𝑇𝑁𝐵 =

sum(𝒀) − 0.5 ∗ ∑ 𝑎𝑏𝑠(𝑠𝑢𝑚(𝑿.∗ 𝑬𝑽(𝑖, :).∗ 𝑬𝑶𝑰𝑽))

𝑁

𝑖=1

 (53)

Since TNB is a function of X and Y, it is represented as,

𝑇𝑁𝐵(𝑿, 𝒀) =

sum(𝒀) − 0.5 ∗ ∑ 𝑎𝑏𝑠(𝑠𝑢𝑚(𝑿.∗ 𝑬𝑽(𝑖, :).∗ 𝑬𝑶𝑰𝑽)) (54)

𝑁

𝑖=1

From (54), we see that TNB(X,Y) is a linear function of decision

variables X and Y. The derivation of formula (54) is the main
contribution of this work.

MINIMUM BEND SHORTEST RECTILINEAR ROUTE DISCOVERY FOR A MOVING SINK IN A GRID BASED WIRELESS SENSOR NETWORK 275

 In solving for MBSCP, we have to minimize both the total

length L(X) of the MBSCP given by (26) and also minimum

bend term TNB(X,Y) as given by (54). Thus MBSCP is a Bi-

objective Minimization.

VI. FORMULATION OF MBSCP.

The scalarized objective function for solving the MBSCP

designated by F(x) is taken as,

Minimize F(X) = L(X) + 𝜆*TNB(X,Y) (55)

The scalarizing parameter 𝜆 is experimentally determined to

give the best result. The optimization problem is, to

minimize F(X) given by (55) subjected to the constraints

specified by (15) and (19) which are repeated here. The

constraints are,

∑ 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) = 2

𝑀

𝑗=1

 for 𝑖 ∈ 𝑺

∑ 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) = 2 ∗ 𝑦(𝑖)

𝑚

𝑗=1

 ∀𝑖 ∈ 𝑽

over i = 1 to N. Here x(j)’s and y(i)’s are the binary decision

variables for edges and vertices respectively. These are

determined by the Binary Integer Program solver. The

process of finding the optimal MBSCP in this way is referred

as the MBSCP method.

A. Selection of the scalarizing parameter 𝜆

 Scalariziation converts the bi-objective optimization into

single weighted objective one. When 𝜆 = 0, only minimum

length objective is satisfied. TNB will be relatively high.

When 𝜆 increases, more weightage is given to the minimum

bends criterion and TNB decreases. However, certain upper

bound exists for 𝜆 and if it is increased beyond that threshold,

the MBSCP does not converge. A judicious value for 𝜆 is

chosen experimentally by solving MBSCP for different values

of 𝜆. In our examples, we found that 𝜆 = 0.3 minimizes TNB

with fast convergence. Minimization of F(X)) is carried out

using the binary integer programming.

VII. SIMULATION RESULTS

Example1.

Here, W = 8 and H= 9. The number of vertices are N = 72

and the number of edges are M = 127. The number of sensor

nodes is 17 and the sensor node vertex set S is,

S = [1, 8, 11, 22, 28, 32, 34, 38, 42, 47, 48, 52, 54, 57, 58, 60, 63];

Sensor node vertices are marked in blue.

The optimal MBSCP is determined for 𝜆 = 0, 0.15 and 0.3.

The Length of the path and TNB are shown in Table IV.

The corresponding MBSCP paths are shown in red in Fig. 6,

Fig. 7 and Fig. 8 respectively. From simulation result of Table

IV, an important observation is that the length of the optimal

MBSCP remains same as 𝜆 varies.

TABLE IV.

VALUES OF LENGTH AND TNB OF THE MSCP

Scalarizer 𝜆 Length of MBSCP TNB of MBSCP

0.00 38 22

0.15 38 20

0.30 38 16

VIII. COMPARISON WITH OTHER METHODS

Clarkson’s method [9] determines the minimum bend shortest

rectilinear path. Therefore, initially, the MSCP is solved without

considering the minimum bend criterion. Once the target points

of the path are obtained, Clarkson’s method is applied to

determine the minimum bend shortest paths between successive

points on the path. Another method by Basagni [10] uses MILP

to get the optimal MSCP. But in [10], minimum bend criterion

is not discussed. Therefore an additional method is needed to

minimize the number bends. Compared to Clarkson’s and

Bagsani’s two stage processes, MBSCP is a single stage

integrated process and therefore takes less time.

The comparison of time consumed by Clarkson’s and Bagsani’s

method with the proposed minimum bend shortest closed path,

MBSCP is shown in Fig. 9. Here, the number of grid points N,

is incremented in multiples of 50. In each case,

the number of sensor nodes K, present is set to 10 % of N. The

location of the sensor node grid points are selected randomly

over the grid graph.

From Fig. 9, it can be seen that for smaller number of grid points,

MBSCP is better compared to the other two methods. At higher

number of nodes, all of them have almost the same execution

time.

Fig. 6. Optimal MSP with 𝜆 = 0 and TNB = 22

276 SANU THOMAS, AND THOMASKUTTY MATHEW

Fig. 9. Execution time versus N, the number of nodes

IX. CONCLUSION

 A new technique is presented to determine the minimum

bend shortest rectilinear path for a moving sink in a Wireless

Sensor Network. The total number of bends along the path is

expressed as a linear function of the decision variables. Then the

linear integer program is used to solve the optimization problem.

In this method, both the shortest path and the minimum bend

criterion are met simultaneously. This integrated approach is a

novel and unique solution to solve the moving sink path problem

in a wireless sensor network.

REFERENCES

[1] C. Tunca, S. Isik, M. Y. Donmez and C. Ersoy, "Distributed Mobile Sink

Routing for Wireless Sensor Networks: A Survey," in IEEE

Communications Surveys & Tutorials, vol. 16, no. 2, pp. 877-897, Second

Quarter 2014. DOI: 10.1109/SURV.2013.100113.00293.

[2] M. Di Francesco, S. K. Das, and G. Anastasi, “Data collection in wireless

sensor networks with mobile elements: A survey,” ACM Trans. Sensor
Networks, vol. 8, no. 1, pp. 1–31, 2011. DOI: 10.1145/1993042.1993049.

[3] W. Liang, J. Luo, and X. Xu, “Prolonging network lifetime via a controlled

mobile sink in wireless sensor networks,” in Global Commu -nications
Conf. (GLOBECOM 2010), IEEE, 2010, pp. 1 –6. DOI:

10.1109/GLOCOM.2010.5683095.

[4] Z. Wang, S. Basagni, E. Melachrinoudis, and C. Petrioli, “Exploiting sink
mobility for maximizing sensor networks lifetime,” in Proc. of the

38th Annual Hawaii Int. Conf. on System Sciences (HICSS ’05), 2005,

pp.03-06. DOI: 10.1109/HICSS.2005.259.
[5] Huang, Hailong. (2017). Performance Improvement by Introducing

Mobility in Wireless Communication Networks. eprint arXiv:1712.02436,

12/2017, 2017.
[6] V. G. Deineko , B. Klinz , A. Tiskin , G. J. Woeginger “Four-point

Conditions for the TSP,” Journal Discrete Optimization, Vol. 14 Issue C,

November 2014 pp. 147-159. DOI: 10.1016/j.disopt.2014.09.003.

[7] A. Maheshwari, J.R. Sack, and H.N. Djidjev. Link distance problems, in:

J.R. Sack and J. Urrutia, editors, Handbook of Computational Geometry,

pp. 519-558. El- sevier Science Publishers B.V. North Holland,
Amsterdam, 2000.

[8] C.D. Yang, O. Z. Lee and C. K. Wong, “On bends and lengths of rectilinear

paths: A graph-theoretic approach”, Internat. J. Comput. Geom. Appl., 2
(1992), pp. 61−74. DOI: 10.1142/S0218195992000056.

[9] K. L. Clarkson, S. Kapoor, and P. M. Vaidya, “Rectilinear shortest paths

through polygonal obstacles in O(n(log n) 2) time”, In Proc. 3rd Annual
ACM Sympos. Comput. Geom., pp 251−257, 1987. DOI:

10.1145/41958.41985.

[10] S. Basagni, A. Carosi, C. Petrioli, Mobility in wireless sensor networks, in:
Algorithms and Protocols for Ad Hoc and Sensor Networks, John Wiley

& Sons, Inc., 2007.

[11] D. P. Wagner, R. S. Drysdale, C. Stein An O(n 5/2 log n) algorithm for the
rectilinear minimum link-distance problem in three dimensions. Comput.

Geom. Theory Appl. 42(5) (2009) 376–387

[12] Diaby, M., “The Travelling Salesman Problem: A Linear Programming

Formulation”, WSEAS Transactions on Mathematics, issue 6, vol. 6, pp.

745-754, 2007.

[13] Pataki, G., 2003. Teaching Integer Programming formulations using the
traveling salesman problem. SIAM Review 45 (1), 116–123.

Fig. 7. Optimal MSP with 𝜆 = 0.15 and TNB = 20

Fig. 8. Optimal MSP with 𝜆 = 0.3 and TNB = 16

