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Abstract—This paper presents that the effect of single aperture 

size of metallic enclosure on electrical shielding effectiveness 

(ESE) at 0 – 1 GHz frequency range has been investigated by 

using both Robinson’s analytical formulation and artificial neural 

networks (ANN) methods that are multilayer perceptron (MLP) 

networks and a radial basis function neural network (RBFNN). 

All results including measurement have been compared each 

other in terms of aperture geometry of metallic enclosure. The 

geometry of single aperture varies from square to rectangular 

shape while the open area of aperture is fixed. It has been 

observed that network structure of MLP 3-40-1 in modeling with 

ANN modeled with fewer neurons in the sense of overlapping of 

faults and data and modeled accordingly. In contrast, the RBFNN 

3-150-1 is the other detection that the network structure is 

modeled with more neurons and more. It can be seen from the 

same network-structured MLP and RBFNN that the MLP 

modeled better. In this paper, the impact of dimension of 

rectangular aperture on shielding performance by using RBFNN 

and MLP network model with ANN has been studied, as a 

novelty. 

 
Keywords—electromagnetic shielding, electromagnetic 

compatibility, apertures, multilayer perceptron, radial basis 

function networks 

I. INTRODUCTION 

LECTROMAGNETIC interference has emerged as a 

major problem with the complexity of electronic circuits. 

Especially, sensitive electronic equipment may be damaged by 

this interference. Shielding is one of the major effective 

methods to reduce the levels of emissions and improve the 

immunity of electronic equipment. Shielded enclosures and 

enclosure components usually have apertures for maintenance, 

cooling and ventilation that they have different pattern and size 

for control panels, heat dissipation, cables, and other purposes. 

These apertures decrease the shielding performance and the 

integrity of the shielded enclosures due to the electromagnetic 

energy leakage. Also the dielectric mediums have 
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electromagnetic emission excitation characteristics. So, it is 

important to optimize shielding parameters of enclosures. 

Shielding effectiveness (SE) performance depends on the 

frequency, conductivity, permeability and thickness of the 

sheet enlightened by a plane wave. The enclosure thickness, 

permittivity, permeability and conductivity are the basic 

parameters of shielding materials. Most popular and 

conventional way to determine SE is given as: 
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where Er is the reference electric field magnitude in the 

absence of an enclosure and Ee is the electric field magnitude 

in the presence of an enclosure [1]. This is an interconnecting 

path that causes coupling between electromagnetic energy 

source and sensitive electronic receiver system. 

 

There are various numerical studies about shielding 

effectiveness such as Finite Element Methods (FEM) [2], 

Finite Difference Time Domain (FDTD) [3-6], Transmission 

Line Matrix (TLM) [7-9], and Moment of Method (MoM) [10-

16] and etc. In these numerical methods, it is possible to meet 

the differences in the solutions for special regions which 

depend on in spatial, frequency solution, computation time and 

precise simulation. The major disadvantage of these methods is 

necessity of more advanced computer resources such as HDD 

space and RAM etc. Also computations take many hours/days 

to reach an acceptable solution. 

The other method used in this study is about Artificial Neural 

Networks (ANN) [17-18]. ANN is also a universal 

approximation method used in electromagnetic researches. But 

there are not many studies about shielding effectiveness using 

ANN. A reliability-based design optimization approach for 

designing electromagnetic shielding structure using neural 

networks and real-coded genetic algorithm is proposed [19]. A 

new method is presented for shielded magnetic field level 

estimation at power frequencies by means of a NN technique 

which uses experimental data to train and test [20]. There is an 

attempt to apply ANN in order to estimate the shielded 

magnetic field for multilayer shielding application [21]. An 

analytical, a finite element and a NN method are compared 

with each other to calculate the shielding efficiency of 

cylindrical ferromagnetic materials with measurement data 

[22]. ANN, rather than full wave analysis, combines with the 
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numbered measurements to predict the EM field in the 

concerned region inside a metallic enclosure [23]. NN is 

applied to identify various enclosures of apertures which 

radiate electromagnetic fields. SE of rectangular enclosure has 

been investigated using the FDTD, software CST and NN 

method [24]. 

In this paper, the effect of aperture size of metallic enclosure 

on ESE has been investigated by using both Robinson’s 

analytical model and ANN methods that are multilayer 

perceptron (MLP) networks and a radial basis function neural 

network (RBFNN). All results including measurement have 

been compared each other in terms of aperture geometry of 

metallic enclosure. Variation of ESE dependence on aperture 

length/ width ratio and aperture area in terms of wavelength 

has been investigated with the assumption of enclosures. The 

incident plane wave can only have one polarization and 

direction of travelling which is usually worst case as far as SE 

is concerned. 

Paper is organized as follows: Section 2 exhibits test and 

measurement set up. Section 3 mentions ANN and its 

peripherals. Section 4 includes ANN, analytical and 

measurement results of ESE of metallic enclosure with single 

aperture. It also contains the comparison of theory and 

measurement results. Section 5 concludes the manuscript. 

II. TEST AND MEASUREMENT SETUP 

SE measurements have been performed in a standard 

anechoic chamber having a dimension of 4×4×8 m. Signal 

generator operating between DC and 41 GHz and spectrum 

analyzer have been used as radio equipment. 6 cm long 

monopole antenna has been used for low frequency band, and 

ultra-wide band microstrip and standard gain horn antenna 

have been preferred for high frequency measurements. Both 

transmitting and receiving antennas have been attached to 

dielectric rope at 30 cm above the wooden reference table for 

avoiding any interference. Three different enclosures were 

selected for ESE measurements. Details of those enclosures are 

given at Table I. 

 
TABLE I 

DIMENSION OF ENCLOSURES AND APERTURES USED IN EXPERIMENT AND 

SIMULATION 

Aperture 

Case No 

a 

(mm) 

b 

(mm) 

d 

(mm) 

l 

(mm) 

w 

(mm) 

Area= 

l×w 

(mm2) 

Case 1 800 160 160 75 75 5625 

Case 2 800 160 160 150 37.50 5625 

Case 3 800 160 160 300 18.75 5625 

 
 

Measurements have been carried out between 10 MHz - 9 

GHz. 10 MHz measurement intervals has been chosen for 10 

MHz – 1 GHz low frequency band and 100 MHz for 1 – 9 

GHz high frequency band. Each measurement has been 

repeated 20 times for each frequency and means values have 

been used to reduce measurement errors. Measurement setup 

details are shown in Fig.1. 

 

  

(a) (b) 

  

(c) (d) 
 

Fig. 1. Measurement Setup: (a) Reference measurement 

(Absence of enclosure) (b) Measurement with enclosure 

(Presence of enclosure) (c) Measurements conducted by 

network analyzer (d) Enclosures having different apertures 

dimensions 

III. MULTILAYER PERCEPTRON 

The general structure of multilayer perceptron (MLP) networks 

is as shown in Fig. 5. MLP is linked to the forward and is 

usually a structure consisting of an input, an output, and one or 

more hidden (intermediate) layers [25]. Here, only the most 

common three-layered MLP, which is based on applications, 

has been shaped. The input layer allows the input data to be 

multiplied with the weight values and sent to the hidden layer 

without using any activation function. Hidden layers send 

information to the next layer by activating the information with 

appropriate weights from the input layer. In the end, the output 

layer processes the information coming from the hidden layers 

and sets the output values that the network learns against the 

input data applied from the input layer to the network. 
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Fig. 2. General structure of MLP 

 

As can be seen in Fig. 2, W ij
1  weight is the connection between 

i’th neuron at the first hidden layer and j’th input at the input 

layer. Also bi expresses the polarized value of the i’th neuron 

in the first hidden covert layer. Z i
1  express the output of the 1st 

neuron of the 1st hidden layer. In this case, Z i
1  can be defined 

as in Eq. (2) and the output of a neuron in the output layer can 

be also defined as in Eq. (3). 
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MLP network uses a trained learning strategy. Both samples 
and required outputs obtained by samples are given to 
network. The network generates a solution space representing 
the problem space by making generalizations from the samples 

shown. To learn the network, there is a need of a set of 
samples called training set. In this set, there are both inputs and 
outputs to be produced in response to inputs for each sample of 
the network. MLP consists of two phases, forward and 
backward calculation. Forward calculation is the calculation 
phase of the network output. The backward calculation is the 

phase of changing the weights in order to minimize the error at 
the output. The universal approximation theory for MLPs was 
developed [26]. According to this theory, there is a three-layer 
MLP that provides approximation of the desired accuracy for 
any non-linear, continuous, multidimensional function.  There 
is no precise information on how many neurons to use in the 

layers here. The experiential approach that appropriates to the 
function data for the approximation of the desired accuracy is 
the shortest solution. It has been experienced that more 
neurons will be required in the hidden layer of the stage of 
nonlinear functions and the size of the function. When 
developing ANN model, the goal is to find the optimal value 

of the weights matrix as the closest approximation to the input-
output relationship of the problem. This is only done by 
training. In the training data set applied to the network (xk, dk) 
xk indicates input data and dk indicates the targeted output 
values. If k = 1, 2 ... P is taken, then P represents the number of 
training data pairs. Network performance during training 

depends on assessing the difference between the network 
output and the targeted values. So, this difference is also called 
error and can be defines as in Eq. (4). 

2

1 1

1
( )

2

P K

ij ij

i j

E y d
= =

= −  (4) 

where the error is defined for the network with K output 
neurons. As seen in Eq. (4), K value is a function of the inter-
layer input, weights and polarization values. By adjusting the 
weight and polarity (biasing) values and catching the most 
suitable ones, the error approaches zero and the network 
performance approaches the best. This is the most fundamental 

learning algorithm for MLP which has been done for 
systematic training of ANN [27]. Briefly, it is a method of 
using the error obtained from the Eq. (4) towards to input 
(backward) at the output when the input weight and 
polarization values are updated. The generalized "delta rule" is 
another name for the back propagation algorithm in the 

literature. The back propagation algorithm is based on the 
steepest descent rule, in which weights are shifted in the 
direction of the negative gradient in the weight space [28]. 

Generally, weights are updated after each training pattern 
(training step or training epoch) is applied. This is called on-

line training. This approach is often used in situations where 
different applications are frequently used and the system to be 
trained is constantly behaving differently. In this method, the 
network is in continuous learning mode. The cost of this type 

of learning is very high and is not mostly preferred. Batch 
training is the most common training mode. Instead of 
updating the weights at every step of the inputs, it is important 
to update the weights of the network according to the result 
values obtained after applying the input training set to the 
network. Thus, the direction to take the error to the real 

minimum can be well predicted as it will be moved according 
to the cumulative result. As a result, we can get rid of the 
problem of sticking to the local minimum. Derivative based 
optimization methods are usually used to optimize the 
objective function generated in ANN applications. These 
methods find a search direction by taking derivatives of the 

objective function with respect to the variables.  The found 
direction is towards the smallest point of the objective 
function. Derivative-based methods can generally be grouped 
according to their use of first and second derivative 
knowledge. Some of them are rapid descent, Newton, Gauss-
Newton, conjugate gradient, scaled conjugate gradient, 

Levenberg-Marquardt methods. 

IV. RADIAL BASIS FUNCTION NEURAL NETWORKS (RBFNN) 

RBFNN performs the mapping process in a similar way to 
ANN [29]. But the structure and the function of the units are 

different. RBFNN consists of three layers: input, hidden layers 
and output layer. The neurons in the hidden layer and output 
layers are different. Neurons in the hidden layer that use non-
linear radial-based activation functions perform local mapping. 
In other words, using hyper spheres, it divides the pattern 
space into pieces. The functions are located at the center of the 

detection regions in feature space. Each property spans the 
hidden layer neuron containing a space-sensing region, a 
radial-based function. Here, the artificial neural cells in the 
hidden layer do not use the weighted shape of the inputs. The 
outputs of these cells are determined by the distance between 
ANN inputs and the center of the basic function and the hidden 

layer processor neuron structure is shown in Fig. 3. 

 

Fig. 3. Processor member of RTFSA hidden layer [28] 
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There are three components for the radially symmetric hidden 
layer processor element: the first one is a center vector in the 
input space. This vector is stored as the weight vector between 
the input and hidden layers. The second is the distance 

measure to determine how far an input vector is from the 
center. Typically, this criterion is taken as the standard 
Euclidean distance. The last one is an activation function 
structure that determines the output value of the processor 
element, which is univariate and receives the distance function 
output as input. In other words, the output of the hidden layer 

processor element is only a function of the distance between 
the center input vectors. This function is ANN structure used 
in multivariable interpolation approaches. The processor 
elements in the first layer do not use the weighted shape of the 
inputs. The last layer of RBFNN constructions is linear and 
produces a weighted total output from the outputs of the first 

layer. The general structure of RBFNN can be seen on Fig. 4. 

 

Fig. 4. The general structure of RBFNN 
 

If input vector is close to the center of one of the detection 
fields, the hidden layer will stimulate the neuron. The input 
vector is located between the centers of two perception areas. 
If the region width σ of both perception centers is included, 

both hidden layer neurons corresponding to this region will be 
partially stimulated. In the case where input vector is located 
far from the perception areas, no hidden layer neurons are 
stimulated and the RBFNN output will be equal to the bias 
values of the neurons in the output layer. There is local 
mapping in RBFNN. Only input values near the perception 

regions can provide for the stimulation of hidden layers. 
Unlike MLP, global mapping is the opposite, and all inputs 
form the output value. The choice of radial based functions and 
their width parameters is important to construct efficient 
RBFNN. Width does not cover all perception regions, but 
should not cover all input space with a function. This means 

that not all hidden layer neurons are stimulated for a single 
input vector. 

Architecture in RBFNN shown in Fig. 5, depending on M 

hidden layer neurons and N input data (xi), the net output is 

calculated by the Eq. (5-7). 
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Fig. 5. Gaussian radial basis function 

 

X=[x1 x2 … xN]T is the multidimensional input vector, c is the 

center vector that is the same size as the input vector and σ is 

the standard deviation.  In order to train hidden processor 

elements (pattern units), the center weights of ck and σk must 

be specified. Like the universal approximation theory for 

MLP, the universal approximation theory for RBFNN has been 

developed [31]. According to this theory, a RBFNN network 

with a sufficient number of hidden layer neurons approximates 

any nonlinear function with sufficient accuracy. The training 

parameters for RBFNN are cik, σik and wkj vectors. It is very 

important to select initial values for the cik center weight values 

and classification algorithms (learning without training) are 

generally preferred. Then the training parameters are updated 

with gradient-based training algorithms. ei is the error between 

target value and RBFNN output. The error function to be 

minimized depending on the training parameters can be 

selected as follows in Eq. (8). 
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where the output function y = f (x) is a function of the hidden 

layer activation function which is in terms of center weight 

vector, radial basis function widths (standard deviation), 

covariance matrix and input vector can be defined with Eq. (9). 
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(9)

 Here, Σj covariance matrix is the diagonal matrix of 
2
j  

variance values and only the first diagonal has elements when 

it carries the square and symmetric properties. 

V. RESULTS 

ANN consisting of forward feed multilayer perception (MLP) 

type, hidden layer, three inputs and one output is used. The 

overall ANN block diagram designed for modeling is given in 

Fig. 6. 
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Fig. 6. ANN Model of ESE 

 

The aperture sizes (length and width) indicated in Table 1 are 

two inputs in network. The frequency of the TE-mode 

electromagnetic wave propagating from the transmitter is fed 

as also input parameters. ESE is defined as the output variable. 

There are 40 neurons in the hidden layer and the hyperbolic 

tangent is defined as the sigmoidal function activation 

function. Neurons in the output layer were activated by linear 

function. The range of values in the input variables is as 

follows: width and length of aperture Wϵ{75 mm, 150 mm, 

300 mm} and Lϵ{18,75 mm, 37,5 mm, 75 mm}, respectively. 

The frequency (10 MHz, 990 MHz) has been selected by linear 

division and finally ESE is selected in range of (-23, 72). A 

total of 297 data samples have been used in the study. The data 

set has been formed from the measurement results. The study 

data has been divided into 70% training, 15% validation and 

15% test data. In Table II, there are different training 

algorithms for the training and test data described above. The 

number of steps that these algorithms achieve in their training 

and test performance is seen in this table. 

Table II 

Performance Table for Different Training Algorithms for MLP at the Same 

Training and Test Data for Analytical (Robinson) Data 

Training 

Algorithm 

Minimum 

Training 

Error 

Number of 

Steps 

Time 

(sec) 

Levenberg-Marquart 
GM 

3.830697e+000 27 1.419 

Quasi-Newton GM 1.035030e+001 1000 120.120 

Fletcher-Powell 8.426685e+000 37 2.153 

Gradient (Steepest) 
descent 

2.014155e+004 6 0.499 

Powell-Beale 1.097700e+001 28 1.732 

Comparative scaling 

GM 
1.005586e+001 65 3.416 

 

Gradient based Levenberg-Marquardt (LM) back propagation 

algorithm has been preferred for the smallest test error and 

fastest training. Also the optimum number of hidden layers and 

neuron numbers have been selected. The performance function 

of the forward-feed MLP, average of the squares of the errors 

(MSE), and number of training steps (training epoch) have 

been given in Fig. 7. Comparison of ESE results with MLP and 

analytical (Robinson) model is shown in Fig. 8 and 

comparison of ESE results with MLP and measurement is 

illustrated in Fig. 9. 

 
Fig. 7. MLP's LM training algorithm performance of analytical 

(Robinson) data 

 

 
Fig. 8. Comparison of ESE results with MLP modeling of 3-

40-1 network and analytical (Robinson) model 

 

 

 
Fig. 9. Comparison of ESE results with MLP modeling of 3-

40-1 network and measurement 

 

ANN consisting of RBFNN type, a hidden layer, three inputs 

and one output has been used. In the hidden layer, 40 and 150 

neurons have been tested respectively and the radial-based 

function has been determined as the activation function. 

Neurons in the output layer have been activated by linear 

function. The value range in the input variables is as given 

above. A total of 297 data sets have been used in the study and 

the data set has been created separately from the measurement 

results. The study data has been divided into 50.51% as 

training and 49.49% as test data. 

The root mean square error (RMSE) errors for 40 and 150 

step training and tests for MLP and RBFNN are given in Table 

III. Comparison of ESE results with RBFNN modeling of 3-

150-1 network and analytical (Robinson) model is given in 

Fig. 10 and comparison of ESE results with RBFNN modeling 

of 3-40-1 network and analytical (Robinson) model is shown 

in Fig. 11. 
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TABLE III 

 RMSE VALUES ACCORDING TO ANN TYPE, NETWORK STRUCTURE, 

TRAINING AND TESTS 

ANN DATA 
NETWORK 

STRUCTURE 

THE ROOT MEAN 

SQUARE ERROR 

(RMSE) 

Robinson Measurement 

   MLP Training 3-40-1 2.0615 2.9549 

MLP Test 3-40-1 3.1931 3.3523 

RBFNN Training 3-40-1 6.0254 5.8893 

RBFNN Test 3-40-1 6.1106 5.8621 

RBFNN Training 3-150-1 0.2731 1.0976 

RBFNN Test 3-150-1 1.1971 2.1136 

 

 
Fig. 10. Comparison of ESE results with RBFNN modeling of 

3-150-1 network and analytical (Robinson) mode 
 

 
Fig. 11. Comparison of ESE results with RBFNN modeling of 

3-40-1 network and analytical (Robinson) model 
 

Comparison of ESE results with RBFNN modeling of 3-150-1 

network and measurement is given in Fig. 12 and comparison 

of ESE results with RBFNN modeling of 3-40-1 network and 

measurement is shown Fig. 13. When the related tables and 

figures were examined, it was determined that the network 

structure of MLP 3-40-1 in modeling with ANN modeled with 

fewer neurons in the sense of overlapping of faults and data 

and modeled accordingly. In contrast, the RBFNN 3-150-1 is 

the other detection that the network structure is modeled with 

more neurons and more. It can be seen from the same network-

structured MLP and RBFNN that the MLP modeled better. 

When the analytical and measurement results have been 

investigated as seen in Fig. 8-13, the total open area of 

apertures is fixed as 5625 mm2 and ESE changes with the ratio 

of aperture length/width, the ratios of aperture length/width are 

1, 4 and 16 as seen in Table.1. When the aperture has short 

length with long width, ESE gets higher. When the aperture 

size is modified from 300 × 18.75 mm to 75×75 mm, ESE gets 

roughly18-21 dB higher for Fig. 8-13. 

 
Fig. 12. Comparison of ESE results with RBFNN modeling of 

3-150-1 network and measurement 

 

 

 
 

Fig. 13. Comparison of ESE results with RBFNN modeling of 

3-40-1 network and measurement 

 

This result can be explained as: parallel polarization of the 

electric field is horizontal to travelling plane of the wave. So 

the direction of electric field and the location of aperture 

length have the same direction, which means that when the 

aperture length is higher, high amplitude of electric field gets 

into aperture of enclosure. As a result, ESE changes with 

polarization of plane wave and the direction of electric field 

according to the aperture shape (in this situation, it is aperture 

length). 

VI. CONCLUSION 

It has been concluded that there is a good agreement between 

measurement, analytical and ANN results in order to observe 

the effect of single aperture size of metallic enclosure on ESE 

at 0 – 1 GHz frequency range. MLP modeling of 3-40-1 

network and RFBNN modeling of 3-150-1 network have good 

performance in the case of comparing with analytical and 

measurement results. 

When the aperture has short length with long width, ESE 

gets higher. In this situation, designers are required to identify 

the polarization of incident electric field. For parallel 

polarization decreasing aperture width and for perpendicular 

polarization decreasing aperture length are more effective on 

ESE. First, designers should decrease aperture length for 

parallel polarization. Second, if the polarization is fixed, they 

need locate the aperture on enclosure according to the direction 

of incident angle. Third, producers need locate devices into 

enclosure according to the aperture width/length ratio. It is 

important to note that aperture area has no change in these 

modifications. 
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