
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2019, VOL. 65, NO.3, PP. 367-373

Manuscript received March 22, 2019; revised August, 2019. DOI: 10.24425/ijet.2019.129787

Abstract—This paper proposes an advanced routing method in

the purpose of increasing IoT routing device’s power-efficiency,

which allows to centralize routing tables computing as well as to

push loading, related to routing tables computation, towards the

Cloud environment at all. We introduced a phased solution for the

formulated task. Generally, next steps were performed: stated

requirements for the system with Cloud routing, proposed possible

solution, and developed the whole system’s structure. For a proper

study of the efficiency, the experiment was conducted using the

developed system’s prototype for real-life cases, each represents

own cluster size (several topologies by each size), used sizes are: 5,

7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 and 29. Expectable results for

this research – decrease the time of cluster’s reaction on topology

changes (delay, needed to renew routing tables), which improves

system’s adaptivity.

Keywords—routing algorithm, IoT, IoT device, cloud

environment

I. INTRODUCTION

T latest several decades of constantly increasing demand

for intelligent and compact things, a new term has arisen –

Internet of things, IoT [1]. Internet of things is strictly bounded

with enlarged requirements to devices that can be used. Thus,

for the field of information communication technologies, ICT,

certain tendencies had grown up, arrowed towards solving

myriad issues: simplicity, stiffness, fault tolerance, mobility,

load balancing etc.

Commonly routers are robust and have stable power supplies

(thus they must be statically installed). That is why common

routing methods are expensive by means of computing, storing,

and keeping routing table’s actuality. Hence these routing

methods can’t be used in IoT clusters because of many

redundant actions that drain battery resources. Critical influence

these conditions reach in clusters with full or partial mesh

topologies, which is usually the case for IoT.

II. TRENDS AND PROBLEM STATEMENT

Using classical routing approaches introduces lots of problems

for wireless IoT with its P2P networks [4]. Moreover, the

EEPROM of the IoT device is too small and slow to hold routing

tables. This motivates towards seeking new approaches.

Defying modern tendencies [2], [3], [5], this work proposes a

fundamentally new approach – to centralize routing table’s

computing, which will decrease computational loading, applied

All Authors are with Lviv Polytechnic National University, Ukraine (e-mail:

valentyn.faichuk.tk.2015@edu.lpnu.ua, orest.a.lavriv@edu.lpnu.ua).

to weaker devices in the cluster, and push determined loading

center out of cluster bounds to the Cloud environment.

A. System requirements

In research, you can frequently notify term “cluster” – the

network, composed of a certain number of devices that use their

internally installed voltage sources (batteries) and can

communicate as well as create brand new links when needed.

According to that, the first requirement can now be stated –

effective use of battery resources. The battery is mainly used in

two cases: when the device performs computations and when it

transmits or receives information (communicates). Term

“coordinator” usually describes the device, which acts as an

intermediate link in IoT hierarchy. However, in this research, its

responsibility is to act like the cluster’s controlling center. In the

given case, it acts like the center of routing table’s computation.

The coordinator can use Cloud resources in its own purposes.

Given amendment allows breaking the system into two self-

reliable subsystems according to decomposition principle

(coordinator, is even capable to compute everything needed on

its own in case of losing the link with Cloud service).

B. Structure of the proposed routing principle

Now then, main parameters, which must be kept by the routing

algorithm [6]–[8]: minimal complexity for defining further path

to send packet inside nodes; minimal volume of local memory

in the node, needed for routing process maintenance; and ability

to transfer algorithm to the Cloud environment, that is algorithm

must calculate all valuable parameters centrally. These

requirements form the structure of the system. The system

consists of three main parts: cluster, coordinator and the Cloud

subsystem. But before we start to build system prototypes, it is

obvious to consider proposed principle for routing messages

inside the cluster. That’s why in nearest subsections we review

cluster and its functioning when the coordinator’s along with

Cloud’s subsystems and their interaction will be covered later.

1) Routing table generation

Routing table, according to the proposed method, is formed

using the Bellman-Ford algorithm [9], [10]. The example of

distances matrix (it is the exact routing table) for the cluster,

represented in figure 1, is offered in table 1. The matrix, in this

case, describes minimal distances (in hops, just like “hop count”

metrics in classical routing approaches) between each two IoT

devices inside cluster for current topology. Each row in this

matrix corresponds to a unique node and represents its unique

vision of a network around it (consequence: two different nodes

Performance of Routing Algorithm Remote

Operation in Cloud Environment for IoT

Devices
Valentyn Faychuk, Orest Lavriv, Bohdan Strykhalyuk, Olga Shpur, Ivan Demydov, and Roman Bak

A

368 V. FAYCHUK, O. LAVRIV, B. STRYKHALYUK, O SHPUR, I. DEMYDOV, R. BAK

can’t have equal rows). It is clear to see, that routing policy, in

this case, is arrowed toward carrying packets through the

smallest quantity of nodes (like in RIP protocol, again “hop

count” metrics) during the routing process.

The width of the routing table is equal to the size of the cluster

(quantity of devices inside the cluster). As a result, lengths of

different rows are equal, which allows to element-wisely

compare them for the routing process. This also imposes certain

limitations on the cluster size: for big clusters, rows become too

large to be transmitted and compared effectively, especially by

the weak IoT devices. However, the solution to this problem is

the subject of a separate investigation.

Fig. 1. Example of a cluster of eight IoT devices

TABLE 1
BELLMAN-FORD MATRIX FOR THE CLUSTER, SHOWN IN FIG. 1

 IP 1 IP 2 IP 3 IP 4 IP 5 IP 6 IP 7 IP 8 IP 9

IP 1 0 1 2 1 2 2 3 3 4

IP 2 1 0 1 1 2 2 3 3 4

IP 3 2 1 0 2 3 1 2 2 3
IP 4 1 1 2 0 1 1 2 2 3

IP 5 2 2 3 1 0 2 1 2 2

IP 6 2 2 1 1 2 0 1 1 2
IP 7 3 3 2 2 1 1 0 1 1

IP 8 3 3 2 2 2 1 1 0 2

IP 9 4 4 3 3 2 2 1 2 0

2) Routing process itself

When the hop needs to transfer a packet to the other hop inside

its cluster, and it knows IPv6 address of the destination, it first

sends to the coordinator request for the sequence of distances

for the destination (routing row). If the device with the

destination’s address is still inside the cluster, the coordinator

returns the actual routing row inside distances matrix, which

corresponds to the IPv6 address of the destination. After

receiving this row, hop saves it into cash and attaches it to the

packet header. Each distances matrix have its unique identifier,

which also must be attached to a packet header. This is done to

avoid comparing routing rows that belong to different routing

tables in further nodes.

To define the path for packet transmission, the node must have

rows from distances matrix of all its neighbors. These

information devices get from the coordinator, whenever it

distributes among nodes corresponding rows. Along with that,

they save in cache memory routing rows for all their neighbors

in addition to their own. This is done to decrease service traffic

during routing. When an intermediate node receives a packet, it

looks for destination’s routing row, attached to the header, then

it takes routing rows of its neighbors from the cache memory

and compares them with destination’s row (Fig. 2). When

comparisons are done, device evaluates resulting differences.

The bigger is the difference between routing rows (from single

routing table), the bigger is the distance between that neighbor

and a destination node within the current topology. It is clear to

see, that after comparing differences, the device will choose a

neighbor, whose routing row differs from the row of destination

minimally.

Fig. 2. Process for getting the difference between two routing rows, where

the difference between two corresponding members)(yxabsd −=

III. EXPERIMENT INFRASTRUCTURE

Ability to centralize computations in proposed routing

principle allows to push loading to the Cloud environment [5],

[11]. However, along with centralization, the need for an

exhaustive description for input and output parameters occurs.

Apparently, the structure for output data (fig. 3, data structure,

generated by Bellman-Ford algorithm) determines itself: it is

distances matrix and could be represented as a list of rows (row,

in its turn, is the list of calculated distances).

Fig. 3. Connections map and distances matrix descriptions for the presented

cluster in JSON format, nodes in the cluster are encountered counterclockwise

Now, let’s describe what the structure of input data looks like.

For routing table’s calculation, it is enough that the algorithm

has only connections map of a cluster. The most convenient way

to describe this map in order to send it through the internet to

the Cloud is JSON (JavaScript Object Notation – data exchange

format [12]) (fig. 3, data structure next to the cluster). Therefore,

connections map object consists of a core (outer) list, whose

keys are cluster’s separate nodes. Values, related to these keys

contain local (inner) lists of other nodes, connected to the node

that is denoted by this key. The most integral parts of this JSON

description is text strings (node’s names).

A. Structural diagram of the experiment and principle of

cooperation between coordinator and Cloud subsystem

We propose to experimentally distinguish two cases (fig. 4):

when the coordinator tries to compute matrix by itself, and when

the coordinator uses Cloud service. These cases are generally

denoted with Simulated device 1 and Simulated device 2. Such

a strange designation derives from a simplified view on the

system’s structure. The cluster is represented by a model, which

changes its state (topology). Coordinator gets these changes and

after a certain delay returns response – new distance’s matrix.

The format of the data object, which describes topology, is

realized in terms of JSON according to the structure, shown on

fig. 3. Distance matrix format is also JSON (fig. 3). Finally, the

PERFORMANCE OF ROUTING ALGORITHM REMOTE OPERATION IN CLOUD ENVIRONMENT FOR IOT DEVICES 369

abstraction of Simulated device is a function, which receives

input arguments and after a certain delay, responds with a result.

The most generally, for system Simulated device 1 the name of

coordinator is nothing else, then Simulated device 1.

Fig. 4. Simplified experimental chart

To embody the routing table’s computing service, Microsoft

Azure App service was chosen [13], [14]. Type of this office –

«platform as a service», fig. 5. Platform as a service (PaaS) – is

a place for development and introduction of custom products,

located entirely within the Cloud environment. Azure App

service has plenty of resources, which allows in future without

excessive headache turn from simple services, like the one,

which is developed for this research, to more complicated [15].

Microsoft Azure App service gets paid as you go (Metered

Usage).

Fig 5. Direct services description, which can be used via Microsoft Azure

PaaS [16]

Python programming language was chosen for structural

elements because of its simplicity and flexibility. During

development, we used development tools DevOps, also

presented by Microsoft Azure. The application is based on the

Flask [17], the popular Python framework. Using this approach

allows to simplify and enforce Cloud service’s development.

1) Coordinator’s structure

As stated, there are two coordinator’s types: the one that

calculates routing tables by itself and the one, which uses remote

Cloud service. System, which contains cluster, which has a link

to the Cloud environment, that uses remote resources, called

Simulated device 1.

Let’s consider the structure of Simulated device 1 in more

detail (fig. 6). The coordinator has a direct link to its cluster,

through which it receives information about topology changes.

After notifying change it saves renewed topology state within

its local database. Next according to the HTTP protocol [18] it

composes the request toward Cloud in the purpose of

performing remote computations. To make request coordinator

get the cluster’s last diameter and new topology state. Then it

stuffs the request body with input parameters. Request body – is

a JSON text string that is to be sent to the Cloud service by

address http://api_bfalgorithm.azurewebsites.net/calculate in

the purpose of receiving a response with prepared distances

matrix. The request body consists of 3 key-value pairs. The

value for key “version” is the version of used API (application

programmable interface) – the set of rules and principles, which

describes a conversation between devices through the Internet

[19]. Next key is “depth”. It is, strictly speaking, the depth of

algorithm penetration, or the maximal distance between two

nodes in topology that can be measured by the algorithm. To

make the “depth” term apparent – think of it as of an analogy

for TTL field within packets, transmitted by an existing routing

algorithm. The sense of restricting “depth” is also the same – to

decrease time, needed for distances matrix calculation. To fill in

depth “depth” we propose to use last cluster’s diameter plus one,

because one integral change in topology can’t lead to diameter

expansion more, than by one. This approach optimizes the

algorithm’s performance for a specific topology. In the next

key-value pair, the key is “connections”, and the value is the

topology object in JSON format (fig. 3). The only one header,

obvious to be present in the request is stated as Content-Type:

application/json and is used to point information type. Also, as

we are sending to the service information, the type of request

must be POST.

Fig. 6. Structure of the coordinator, connected to the Cloud environment

through ISP – internet service provider

In this case, two delays are worth measuring: delay on a

server-side and total delay before receiving a response. Healthy

response status is 200. Obvious headers: Content-Type:

application/json. Response body similarly contains a JSON

object. The first key-value pair in the body is a log, it is used to

account about how the method was executed in the Cloud

environment. That is, if the algorithm had been executed

successfully or if not, then why (an incorrect API version, an

incorrect format of the request etc.). The value for the key “out”

is the resulting distances matrix in JSON format (fig. 3). In the

pair where key equals to “time” the value equals to the delay for

BF algorithm performance (time, spent for algorithm execution

in Cloud environment). If the value of key “log” is “success”,

then coordinator writes into its database received distances

matrix. Only after coordinator successfully gathered distances

matrix, it can respond to the topology changes.

In contrast with the previous case, Simulated device 2 doesn’t

contain any Cloud service and its coordinator tends to perform

computations self-reliably. Hence, such a coordinator doesn’t

370 V. FAYCHUK, O. LAVRIV, B. STRYKHALYUK, O SHPUR, I. DEMYDOV, R. BAK

need any API (can avoid request formation). However, after

being informed about the integral change in topology, it pushes

change into its database. Then it pulls the latest topology map

as well as the latest known cluster’s diameter, adds 1 to it, and

pushes these parameters toward the input of BF function. After

the algorithm has finished, the coordinator does the same as in

the previous case. The only measurement is the total delay

before getting distances matrix ready. As we can admit the

interface for both coordinators is the same, but the realizations

are different.

Fig. 7. The internal structure of self-dependent coordinator

2) Structure of the Cloud environment

The most complicated fraction of the experimental assembly

is Cloud environment (fig. 8). The major part of this subsection

is dedicated to the method, which is responsible for processing

“calculate distances matrix” requests along with sending

corresponding responses. Recalling the structure of coordinator,

API is based on HTTP protocol (request-response). For

experimental purposes and further clarity let us name this

method “calculate”. This method processes only POST JSON

requests, otherwise error message gets triggered.

Fig. 8. Internal structure and example of correct work of a method that

computes distances matrices in Cloud environment

“Calculate” method captures JSON object and verifies,

whether API version is correct. If not – the response is “log”:

“failure, invalid API”. Further, BF function converts the

connections map into distances matrix. The time to compute

distances matrix must be measured and also can be saved to the

database in the purpose of collecting statistics. The healthy

response must contain three obvious key-value elements: pair

“log”: “success”, “out”: distances matrix, and a “time”: delay

time to execute BF function. Finally, the method transmits this

response is with code 200 towards the source of the request.

B. Practical realization of the system

Coordinators within Simulated device 1 and Simulated device

2 are realized programmatically. Python programming language

Python of version 3.6.6 was used. Additional modules are

simplejson (functions that load JSON object from text string

into a python’s dictionary data set and vice versa), requests

(functions for making requests to the Cloud environment), time

(functions for performing time measurements). Simulator

programs get their input values in a form of JSON formatted

topologies. Program with convenient GUI for making a cluster

and exporting its topology into JSON format (fig. 9) is written

in C++ programming language, version 11. GUI uses OpenGL

framework [20], whilst other functions use standard template

library STL features.

Fig. 9. The graphical user interface of a program for generating clusters and

exporting their topologies in JSON format

13 different cluster sizes (devices quantity in the cluster) of 3

types (by means of topology) for performing experimental

measurements were developed using this program.

Cloud service was developed using Microsoft Azure App

Service [14]. To implement the application, we use the Python

of version 2 along with the Flask framework, latest version [17].

All resources are offered via “pay as you go” payment method.

Virtual machine parameters: 1 Core, 1.75GB RAM. The

development environment is Azure DevOps. We also use source

control (control version system), based on Git for versioning. In

this case, developers have their own copies of the repository on

their local equipment [15], [21]. Thus, further development of a

service can be done by separate teams. Services of Azure

DevOps is CI/CD (continuous integration, continuous delivery).

The occupied resources are located in North Europe because it

is the most probable scenario [22].

IV. EFFICIENCY FOR REMOTE CALCULATION OF ROUTING

TABLES RESEARCH

A. Mathematical reasoning of the proposed principle

In this section, we will operate the term performance or

efficiency or gain (all these terms are interchangeable) from

using remote computations instead of local ones.

Formerly, let us generally explain, what the “gain” means for

us. Ideally, to organize effective dynamical routing within a

cluster, the integral topology changes must trigger immediate

reactions. Though, in real systems the delay is obvious. It

directly influences the efficiency of the routing process, i.e. its

relation to the routing policy. The ability to predict cluster state

(model its further behavior) is so crucial because it influences

the level of control over the cluster. Thus, the fact that reaction

delay ought to be minimized is apparent. For the proposed

PERFORMANCE OF ROUTING ALGORITHM REMOTE OPERATION IN CLOUD ENVIRONMENT FOR IOT DEVICES 371

principle, the delay depends directly on the performance of the

BF algorithm (as well as any other investigated algorithm). Two

major scenarios of performing BF algorithm are local and

remote. Hence, efficiency represents the ratio between two

delays of routing table’s computation: for local scenario and for

remote scenario (certainly for the same cluster).

In the efficiency design next factors must be considered:

algorithm itself, or rather its algorithmic complexity; ratio

between times, needed to perform one integral operation in

Cloud and in IoT device (generally it depicts how much the IoT

device is faster than the Cloud environment); transmit time for

one integral value between IoT device and Cloud environment.

Algorithmic complexity of an algorithm is the mathematical

law, which outlines delay increase with data amount’s (length

of input array) enlargement [23], fig. 10.

Fig. 10. Time on performing algorithms of a different algorithmic

complexity versus the number of input values (in programming, size of input

array) [24]

The attitude of the time for performing one integral operation

in the Cloud environment to the time for processing it in IoT

device It is a non-dimensional indicator of the certain algorithm

running time decrease using the Cloud environment, having its

values between 0 and 1 (providing that Cloud environment is

more powerful than IoT device which is almost always the

case). We propose to gather it empirically by comparing the

measured delays, introduced by one operation within the IoT

device and Cloud, formula (1).

 ()10==
device

cloud

cloud

device

t

t

P

P
p (1)

where deviceP and cloudP – are computational capacities of

coordinator and Cloud environment, devicet and cloudt – are

the durations, introduced by an integral operation, similarly.

The time spent to transmit one value between IoT device and

Cloud environment – is the time of passing one integral part of

information through one direction (from coordinator to Cloud

or vice-versa). As it depends on a myriad of factors, we propose

to measure this value also empirically (transmit a large amount

of information between terminals, measure transmission time,

divide time by values quantity), formula (2).

  ms
N

T
,


= (2)

where T – is the delay, introduced by passing values through

the network, N – values quantity.

The efficiency, being a ratio between the local computation

and remote computation times, depends on these parameters via

relations, described by formula (3).

 ()
+

= 0
2)(

)(
)(

nnTp

nT
n


 (3)

where)(nT – is the delay of performing algorithm over n

values inside the IoT device, n – the number of input values.

The numerator is the time of local algorithm execution. The

first term of the denominator is the time to perform an algorithm

in the Cloud environment. The second term of the denominator

is the delay, introduced by data transmission (here we assume,

that the amount of data in request roughly equals the amount of

data in response). For cases of medium to low clusters, the

difference between request and response sized can be neglected.

On fig. 11 formula (3) is tabulated (efficiency vs cluster size)

for different algorithmic complexities of possible routing

algorithms.

Fig. 11. Tabulated efficiency for next algorithmic complexities, curves from

bottom to top: quasilinear, quadratic, exponential, factorial

B. Experimental results estimation and analyzation

The main reason to conduct an experiment – is to determine if

the proposed method can be effectively used on practice.

Bellman-Ford algorithm used in our experiment has some

distinctions from its reference realization. In the etalon

realization of a Bellman-Ford algorithm, its algorithmic

complexity (memory access operations are discarded) is cubical

)(3nO [9]. For the developed algorithm, fig. 12, however, the

measured algorithmic complexity in case of processing clusters

with less than 29 devices is around)(4nO . The Simulated

device 2 was tuned to work 10 times slower than the Cloud does

1.0==
device

cloud

t

t
p .

Fig. 12. Realized Bellman-Ford algorithm

372 V. FAYCHUK, O. LAVRIV, B. STRYKHALYUK, O SHPUR, I. DEMYDOV, R. BAK

Results for measuring the time spent to calculate different

matrixes locally and remotely are presented on the fig. 13 in

form of a plot (dotted line is the local scenario – Simulated

device 2, solid line is the remote scenario – Simulated device 1).

Each value on the plot is averaged among 50 real measurements

of a studied value [25]. There is no need to introduce errors on

this graph by now because plotted curves are mainly needed to

represent the sense of how does the duration increases with

increasing cluster size under different scenarios. This plot

allows to make a very important conclusion: for different

boundary conditions (right and left plot margins) it is better to

use different approaches. For very small clusters it is better to

compute routing tables using local resources. But for medium to

large clusters that is much better to use remote Cloud service.

And in case of an infinite cluster, the use of remote service gives

p

1
 gain over local scenario.

Fig. 13. Time to compute distances matrix versus cluster sizes in Simulated

device 1 (solid line) and in Simulated device 2 (dashed line)

For now, we can derive the curve of the efficiency versus

cluster size (fig. 14). Parameters for mathematical

approximation: algorithmic complexity is)(4nO , coefficient

1.0==
device

cloud

t

t
p , the transmit time was selected empirically.

Fig. 14. The efficiency of using Cloud environment for routing tables

computation versus cluster size derived theoretically (solid line) and

experimentally (dashed line)

CONCLUSION

Internet of things has plenty of unique conditions that post

enlarged demands related to effective battery resource usage in

IoT devices. These restrictions make classical routing

approaches insufficient. In this research, we propose the

solution for effective routing in IoT systems and then improve

it using Cloud service. Also, the results of efficiency evaluation

are presented.

Estimated sizes of cluster are: 5, 7, 9, 11, 13, 15, 17, 19, 21,

23, 25, 27 and 29. Reached results: proposed adopted for IoT

routing method; it was optimized for the minimal reaction time

in case of topology changes using Cloud service; the

optimization gain was characterized in two ways: mathematical

and experimental. Meanwhile, these results allow to inspect the

applicability of the proposed approach to IoT systems in

practice.

The peculiarity of this research is a practical realization of the

fully functional research prototype. Prototyping process

includes API development, Microsoft Azure App Service and

Microsoft Azure DevOps resources occupation, services as well

as simulators development and many more.

For the use of the remote Cloud service, performed

measurements showed a rapid increase of gain in cases of bigger

cluster sizes, e.g. in case of 29 IoT devices in the cluster, the

gain is 739.7= for experimental assembly and 7.092= for

theoretical approximation. At the same time, the biggest

mismatch between theory and experiment is % 0.549= . The

convenience of this research is that Cloud performs

computations 10 times faster, that IoT device does. In case of

infinite cluster size (right border condition), efficiency tends to

be 10. Therefore, in the case of 45 hops in the cluster, the

efficiency must be 9.011= , while for 99 hops it equals

9.898= (derivative lowers as the gain approaches the ratio

between Cloud’s and IoT device’s speeds). Also, the issues for

further studies are: using databases to improve routing table’s

calculation performance in Cloud, adjusting (varying) routing

policy remotely in Cloud; predicting further cluster states in

Cloud; machine learning investigation in the purpose of

improving administration strategies, used by Cloud.

REFERENCES

[1] A. Murtala, Z. S. Subashini, P. Vetrivelan, and S. Proceedings, Lecture
Notes in Electrical Engineering 493 Wireless Communication Networks

and Internet of Things, Springer Singapore, vol. VI, 2019.

[2] L. M. Camarinha-Matos, S. Tomic, and P. Graça, Eds., Technological
Innovation for the Internet of Things, vol. 394. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013.

[3] A. Suzdalenko and I. Galkin, “Instantaneous, Short-Term and Predictive
Long-Term Power Balancing Techniques in Intelligent Distribution

Grids,” 2013, pp. 343–350.
[4] S. Rani and S. H. Ahmed, Multi-hop Routing in Wireless Sensor

Networks. Singapore: Springer Singapore, 2016.

[5] M. Klymash, N. Peleh, O. Shpur and I. Lutsiuk, “Clustering model of

cloud centers for big data processing”, 14th International Conference on

Advanced Trends in Radioelectronics, Telecommunications and

Computer Engineering, 2018.
[6] A. Orda and R. Rom, “Optimal Routing with Packet Fragmentation in

Computer Networks,” Int. J. Networks, vol. 29, no. 1, pp. 11–28, 1997.

[7] P. Kuila and P. K. Jana, Clustering and Routing Algorithms for Wireless
Sensor Networks, 2018.

[8] M. Klymash, O. Lavriv, T. Maksymyuk and M. Beshley, “State of the art

and further development of information and communication systems”,
IEEE International Scientific Conference “Radio Electronics and Info

Communications”, 2016.

[9] O. K. Sulaiman, A. M. Siregar, K. Nasution, and T. Haramaini, “Bellman
Ford algorithm - In Routing Information Protocol (RIP),” J. Phys. Conf.

Ser., vol. 1007, no. 1, 2018.

[10] J. B. Singh and R. C. Tripathi, “Investigation of Bellman-Ford Algorithm,
Dijkstra’s Algorithm for suitability of SPP,” 2018.

[11] L. Wang, Y. Cui, I. Stojmenovic, X. Ma, and J. Song, “Energy efficiency

on location based applications in mobile cloud computing: A survey,”
Computing, vol. 96, no. 7, pp. 569–585, 2014.

[12] W. Jackson, JSON Quick Syntax Reference, Apress, 2016.

[13] R. Reagan, Web Applications on Azure. Berkeley, CA: Apress, 2018.
[14] S. Machiraju and S. Gaurav, Hardening azure applications : techniques and

principles for building large-scale, mission-critical applications, Apress,

2019.
[15] L. Carlson, Programming for PaaS. O’Reilly Media, Inc, 2013.

PERFORMANCE OF ROUTING ALGORITHM REMOTE OPERATION IN CLOUD ENVIRONMENT FOR IOT DEVICES 373

[16] “What is PaaS? Platform as a Service | Microsoft Azure.” [Online].
Available: https://azure.microsoft.com/en-us/overview/what-is-paas/.

[Accessed: 01-Feb-2019].

[17] M. Grinberg, Flask Web Development, 2014.
[18] B. Swen, “Outline of initial design of the Structured Hypertext Transfer

Protocol,” J. Comput. Sci. Technol., vol. 18, no. 3, pp. 287–298, May

2003.
[19] S. Patni, Pro RESTful APIs, 2017.

[20] S. Guha, Computer Graphics Through OpenGL® : from theory to

experiments, CRC Press, 2019.
[21] K. Geisshirt, A. Olsson, R. Voss, and E. Zattin, Git version control

cookbook : leverage version control to transform your development
workflow and boost productivity, 2014.

[22] R. Reagan, Web applications on Azure : developing for global scale,
Apress, 2018.

[23] M. Ravasi and M. Mattavelli, “High-level algorithmic complexity

evaluation for system design,” J. Syst. Archit., vol. 48, no. 13–15, pp. 403–
427, 2003.

[24] “Algorithmic complexity.” [Online]. Available:

https://devopedia.org/algorithmic-complexity. [Accessed: 01-Feb-2019].
[25] Anna G. Chunovkina, Leonid A. Mironovsky, Valery A. Slaev, Metrology

and theory of measurement, 2013.

