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Abstract—This paper proposes an advanced routing method in 

the purpose of increasing IoT routing device’s power-efficiency, 

which allows to centralize routing tables computing as well as to 

push loading, related to routing tables computation, towards the 

Cloud environment at all. We introduced a phased solution for the 

formulated task. Generally, next steps were performed: stated 

requirements for the system with Cloud routing, proposed possible 

solution, and developed the whole system’s structure. For a proper 

study of the efficiency, the experiment was conducted using the 

developed system’s prototype for real-life cases, each represents 

own cluster size (several topologies by each size), used sizes are: 5, 

7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 and 29. Expectable results for 

this research – decrease the time of cluster’s reaction on topology 

changes (delay, needed to renew routing tables), which improves 

system’s adaptivity. 

 
Keywords—routing algorithm, IoT, IoT device, cloud 

environment 

I. INTRODUCTION 

T latest several decades of constantly increasing demand 

for intelligent and compact things, a new term has arisen – 

Internet of things, IoT [1]. Internet of things is strictly bounded 

with enlarged requirements to devices that can be used. Thus, 

for the field of information communication technologies, ICT, 

certain tendencies had grown up, arrowed towards solving 

myriad issues: simplicity, stiffness, fault tolerance, mobility, 

load balancing etc. 

Commonly routers are robust and have stable power supplies 

(thus they must be statically installed). That is why common 

routing methods are expensive by means of computing, storing, 

and keeping routing table’s actuality. Hence these routing 

methods can’t be used in IoT clusters because of many 

redundant actions that drain battery resources. Critical influence 

these conditions reach in clusters with full or partial mesh 

topologies, which is usually the case for IoT. 

II. TRENDS AND PROBLEM STATEMENT 

Using classical routing approaches introduces lots of problems 

for wireless IoT with its P2P networks [4]. Moreover, the 

EEPROM of the IoT device is too small and slow to hold routing 

tables. This motivates towards seeking new approaches. 

Defying modern tendencies [2], [3], [5], this work proposes a 

fundamentally new approach – to centralize routing table’s 

computing, which will decrease computational loading, applied 
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to weaker devices in the cluster, and push determined loading 

center out of cluster bounds to the Cloud environment. 

A. System requirements 

In research, you can frequently notify term “cluster” – the 

network, composed of a certain number of devices that use their 

internally installed voltage sources (batteries) and can 

communicate as well as create brand new links when needed. 

According to that, the first requirement can now be stated – 

effective use of battery resources. The battery is mainly used in 

two cases: when the device performs computations and when it 

transmits or receives information (communicates). Term 

“coordinator” usually describes the device, which acts as an 

intermediate link in IoT hierarchy. However, in this research, its 

responsibility is to act like the cluster’s controlling center. In the 

given case, it acts like the center of routing table’s computation. 

The coordinator can use Cloud resources in its own purposes. 

Given amendment allows breaking the system into two self-

reliable subsystems according to decomposition principle 

(coordinator, is even capable to compute everything needed on 

its own in case of losing the link with Cloud service). 

B. Structure of the proposed routing principle 

Now then, main parameters, which must be kept by the routing 

algorithm [6]–[8]: minimal complexity for defining further path 

to send packet inside nodes; minimal volume of local memory 

in the node, needed for routing process maintenance; and ability 

to transfer algorithm to the Cloud environment, that is algorithm 

must calculate all valuable parameters centrally. These 

requirements form the structure of the system. The system 

consists of three main parts: cluster, coordinator and the Cloud 

subsystem. But before we start to build system prototypes, it is 

obvious to consider proposed principle for routing messages 

inside the cluster. That’s why in nearest subsections we review 

cluster and its functioning when the coordinator’s along with 

Cloud’s subsystems and their interaction will be covered later. 

1) Routing table generation 

Routing table, according to the proposed method, is formed 

using the Bellman-Ford algorithm [9], [10]. The example of 

distances matrix (it is the exact routing table) for the cluster, 

represented in figure 1, is offered in table 1. The matrix, in this 

case, describes minimal distances (in hops, just like “hop count” 

metrics in classical routing approaches) between each two IoT 

devices inside cluster for current topology. Each row in this 

matrix corresponds to a unique node and represents its unique 

vision of a network around it (consequence: two different nodes 
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can’t have equal rows). It is clear to see, that routing policy, in 

this case, is arrowed toward carrying packets through the 

smallest quantity of nodes (like in RIP protocol, again “hop 

count” metrics) during the routing process. 

The width of the routing table is equal to the size of the cluster 

(quantity of devices inside the cluster). As a result, lengths of 

different rows are equal, which allows to element-wisely 

compare them for the routing process. This also imposes certain 

limitations on the cluster size: for big clusters, rows become too 

large to be transmitted and compared effectively, especially by 

the weak IoT devices. However, the solution to this problem is 

the subject of a separate investigation. 

 
Fig. 1. Example of a cluster of eight IoT devices 

TABLE 1 
BELLMAN-FORD MATRIX FOR THE CLUSTER, SHOWN IN FIG. 1 

 IP 1 IP 2 IP 3 IP 4 IP 5 IP 6 IP 7 IP 8 IP 9 

IP 1 0 1 2 1 2 2 3 3 4 

IP 2 1 0 1 1 2 2 3 3 4 

IP 3 2 1 0 2 3 1 2 2 3 
IP 4 1 1 2 0 1 1 2 2 3 

IP 5 2 2 3 1 0 2 1 2 2 

IP 6 2 2 1 1 2 0 1 1 2 
IP 7 3 3 2 2 1 1 0 1 1 

IP 8 3 3 2 2 2 1 1 0 2 

IP 9 4 4 3 3 2 2 1 2 0 

2) Routing process itself 

When the hop needs to transfer a packet to the other hop inside 

its cluster, and it knows IPv6 address of the destination, it first 

sends to the coordinator request for the sequence of distances 

for the destination (routing row). If the device with the 

destination’s address is still inside the cluster, the coordinator 

returns the actual routing row inside distances matrix, which 

corresponds to the IPv6 address of the destination. After 

receiving this row, hop saves it into cash and attaches it to the 

packet header. Each distances matrix have its unique identifier, 

which also must be attached to a packet header. This is done to 

avoid comparing routing rows that belong to different routing 

tables in further nodes. 

To define the path for packet transmission, the node must have 

rows from distances matrix of all its neighbors. These 

information devices get from the coordinator, whenever it 

distributes among nodes corresponding rows. Along with that, 

they save in cache memory routing rows for all their neighbors 

in addition to their own. This is done to decrease service traffic 

during routing. When an intermediate node receives a packet, it 

looks for destination’s routing row, attached to the header, then 

it takes routing rows of its neighbors from the cache memory 

and compares them with destination’s row (Fig. 2). When 

comparisons are done, device evaluates resulting differences. 

The bigger is the difference between routing rows (from single 

routing table), the bigger is the distance between that neighbor 

and a destination node within the current topology. It is clear to 

see, that after comparing differences, the device will choose a 

neighbor, whose routing row differs from the row of destination 

minimally. 

 

Fig. 2. Process for getting the difference between two routing rows, where 

the difference between two corresponding members )( yxabsd −=  

III. EXPERIMENT INFRASTRUCTURE 

Ability to centralize computations in proposed routing 

principle allows to push loading to the Cloud environment [5], 

[11]. However, along with centralization, the need for an 

exhaustive description for input and output parameters occurs. 

Apparently, the structure for output data (fig. 3, data structure, 

generated by Bellman-Ford algorithm) determines itself: it is 

distances matrix and could be represented as a list of rows (row, 

in its turn, is the list of calculated distances). 

 
Fig. 3. Connections map and distances matrix descriptions for the presented 

cluster in JSON format, nodes in the cluster are encountered counterclockwise 

Now, let’s describe what the structure of input data looks like. 

For routing table’s calculation, it is enough that the algorithm 

has only connections map of a cluster. The most convenient way 

to describe this map in order to send it through the internet to 

the Cloud is JSON (JavaScript Object Notation – data exchange 

format [12]) (fig. 3, data structure next to the cluster). Therefore, 

connections map object consists of a core (outer) list, whose 

keys are cluster’s separate nodes. Values, related to these keys 

contain local (inner) lists of other nodes, connected to the node 

that is denoted by this key. The most integral parts of this JSON 

description is text strings (node’s names). 

A. Structural diagram of the experiment and principle of 

cooperation between coordinator and Cloud subsystem 

We propose to experimentally distinguish two cases (fig. 4): 

when the coordinator tries to compute matrix by itself, and when 

the coordinator uses Cloud service. These cases are generally 

denoted with Simulated device 1 and Simulated device 2. Such 

a strange designation derives from a simplified view on the 

system’s structure. The cluster is represented by a model, which 

changes its state (topology). Coordinator gets these changes and 

after a certain delay returns response – new distance’s matrix. 

The format of the data object, which describes topology, is 

realized in terms of JSON according to the structure, shown on 

fig. 3. Distance matrix format is also JSON (fig. 3). Finally, the 
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abstraction of Simulated device is a function, which receives 

input arguments and after a certain delay, responds with a result. 

The most generally, for system Simulated device 1 the name of 

coordinator is nothing else, then Simulated device 1. 

 

 

Fig. 4. Simplified experimental chart 

To embody the routing table’s computing service, Microsoft 

Azure App service was chosen [13], [14]. Type of this office – 

«platform as a service», fig. 5. Platform as a service (PaaS) – is 

a place for development and introduction of custom products, 

located entirely within the Cloud environment. Azure App 

service has plenty of resources, which allows in future without 

excessive headache turn from simple services, like the one, 

which is developed for this research, to more complicated [15]. 

Microsoft Azure App service gets paid as you go (Metered 

Usage). 

 
Fig 5. Direct services description, which can be used via Microsoft Azure 

PaaS [16] 

Python programming language was chosen for structural 

elements because of its simplicity and flexibility. During 

development, we used development tools DevOps, also 

presented by Microsoft Azure. The application is based on the 

Flask [17], the popular Python framework. Using this approach 

allows to simplify and enforce Cloud service’s development. 

1) Coordinator’s structure 

As stated, there are two coordinator’s types: the one that 

calculates routing tables by itself and the one, which uses remote 

Cloud service. System, which contains cluster, which has a link 

to the Cloud environment, that uses remote resources, called 

Simulated device 1. 

Let’s consider the structure of Simulated device 1 in more 

detail (fig. 6). The coordinator has a direct link to its cluster, 

through which it receives information about topology changes. 

After notifying change it saves renewed topology state within 

its local database. Next according to the HTTP protocol [18] it 

composes the request toward Cloud in the purpose of 

performing remote computations. To make request coordinator 

get the cluster’s last diameter and new topology state. Then it 

stuffs the request body with input parameters. Request body – is 

a JSON text string that is to be sent to the Cloud service by 

address http://api_bfalgorithm.azurewebsites.net/calculate in 

the purpose of receiving a response with prepared distances 

matrix. The request body consists of 3 key-value pairs. The 

value for key “version” is the version of used API (application 

programmable interface) – the set of rules and principles, which 

describes a conversation between devices through the Internet 

[19]. Next key is “depth”. It is, strictly speaking, the depth of 

algorithm penetration, or the maximal distance between two 

nodes in topology that can be measured by the algorithm. To 

make the “depth” term apparent – think of it as of an analogy 

for TTL field within packets, transmitted by an existing routing 

algorithm. The sense of restricting “depth” is also the same – to 

decrease time, needed for distances matrix calculation. To fill in 

depth “depth” we propose to use last cluster’s diameter plus one, 

because one integral change in topology can’t lead to diameter 

expansion more, than by one. This approach optimizes the 

algorithm’s performance for a specific topology. In the next 

key-value pair, the key is “connections”, and the value is the 

topology object in JSON format (fig. 3). The only one header, 

obvious to be present in the request is stated as Content-Type: 

application/json and is used to point information type. Also, as 

we are sending to the service information, the type of request 

must be POST. 

 
Fig. 6. Structure of the coordinator, connected to the Cloud environment 

through ISP – internet service provider 

In this case, two delays are worth measuring: delay on a 

server-side and total delay before receiving a response. Healthy 

response status is 200. Obvious headers: Content-Type: 

application/json. Response body similarly contains a JSON 

object. The first key-value pair in the body is a log, it is used to 

account about how the method was executed in the Cloud 

environment. That is, if the algorithm had been executed 

successfully or if not, then why (an incorrect API version, an 

incorrect format of the request etc.). The value for the key “out” 

is the resulting distances matrix in JSON format (fig. 3). In the 

pair where key equals to “time” the value equals to the delay for 

BF algorithm performance (time, spent for algorithm execution 

in Cloud environment). If the value of key “log” is “success”, 

then coordinator writes into its database received distances 

matrix. Only after coordinator successfully gathered distances 

matrix, it can respond to the topology changes. 

In contrast with the previous case, Simulated device 2 doesn’t 

contain any Cloud service and its coordinator tends to perform 

computations self-reliably. Hence, such a coordinator doesn’t 
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need any API (can avoid request formation). However, after 

being informed about the integral change in topology, it pushes 

change into its database. Then it pulls the latest topology map 

as well as the latest known cluster’s diameter, adds 1 to it, and 

pushes these parameters toward the input of BF function. After 

the algorithm has finished, the coordinator does the same as in 

the previous case. The only measurement is the total delay 

before getting distances matrix ready. As we can admit the 

interface for both coordinators is the same, but the realizations 

are different. 

 
Fig. 7. The internal structure of self-dependent coordinator 

2) Structure of the Cloud environment 

The most complicated fraction of the experimental assembly 

is Cloud environment (fig. 8). The major part of this subsection 

is dedicated to the method, which is responsible for processing 

“calculate distances matrix” requests along with sending 

corresponding responses. Recalling the structure of coordinator, 

API is based on HTTP protocol (request-response). For 

experimental purposes and further clarity let us name this 

method “calculate”. This method processes only POST JSON 

requests, otherwise error message gets triggered. 

 
Fig. 8. Internal structure and example of correct work of a method that 

computes distances matrices in Cloud environment 

“Calculate” method captures JSON object and verifies, 

whether API version is correct. If not – the response is “log”: 

“failure, invalid API”. Further, BF function converts the 

connections map into distances matrix. The time to compute 

distances matrix must be measured and also can be saved to the 

database in the purpose of collecting statistics. The healthy 

response must contain three obvious key-value elements: pair 

“log”: “success”, “out”: distances matrix, and a “time”: delay 

time to execute BF function. Finally, the method transmits this 

response is with code 200 towards the source of the request. 

B. Practical realization of the system 

Coordinators within Simulated device 1 and Simulated device 

2 are realized programmatically. Python programming language 

Python of version 3.6.6 was used. Additional modules are 

simplejson (functions that load JSON object from text string 

into a python’s dictionary data set and vice versa), requests 

(functions for making requests to the Cloud environment), time 

(functions for performing time measurements). Simulator 

programs get their input values in a form of JSON formatted 

topologies. Program with convenient GUI for making a cluster 

and exporting its topology into JSON format (fig. 9) is written 

in C++ programming language, version 11. GUI uses OpenGL 

framework [20], whilst other functions use standard template 

library STL features. 

 
Fig. 9. The graphical user interface of a program for generating clusters and 

exporting their topologies in JSON format 

13 different cluster sizes (devices quantity in the cluster) of 3 

types (by means of topology) for performing experimental 

measurements were developed using this program. 

Cloud service was developed using Microsoft Azure App 

Service [14]. To implement the application, we use the Python 

of version 2 along with the Flask framework, latest version [17]. 

All resources are offered via “pay as you go” payment method. 

Virtual machine parameters: 1 Core, 1.75GB RAM. The 

development environment is Azure DevOps. We also use source 

control (control version system), based on Git for versioning. In 

this case, developers have their own copies of the repository on 

their local equipment [15], [21]. Thus, further development of a 

service can be done by separate teams. Services of Azure 

DevOps is CI/CD (continuous integration, continuous delivery). 

The occupied resources are located in North Europe because it 

is the most probable scenario [22]. 

IV. EFFICIENCY FOR REMOTE CALCULATION OF ROUTING 

TABLES RESEARCH 

A. Mathematical reasoning of the proposed principle 

In this section, we will operate the term performance or 

efficiency or gain (all these terms are interchangeable) from 

using remote computations instead of local ones. 

Formerly, let us generally explain, what the “gain” means for 

us. Ideally, to organize effective dynamical routing within a 

cluster, the integral topology changes must trigger immediate 

reactions. Though, in real systems the delay is obvious. It 

directly influences the efficiency of the routing process, i.e. its 

relation to the routing policy. The ability to predict cluster state 

(model its further behavior) is so crucial because it influences 

the level of control over the cluster. Thus, the fact that reaction 

delay ought to be minimized is apparent. For the proposed 
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principle, the delay depends directly on the performance of the 

BF algorithm (as well as any other investigated algorithm). Two 

major scenarios of performing BF algorithm are local and 

remote. Hence, efficiency represents the ratio between two 

delays of routing table’s computation: for local scenario and for 

remote scenario (certainly for the same cluster). 

In the efficiency design next factors must be considered: 

algorithm itself, or rather its algorithmic complexity; ratio 

between times, needed to perform one integral operation in 

Cloud and in IoT device (generally it depicts how much the IoT 

device is faster than the Cloud environment); transmit time for 

one integral value between IoT device and Cloud environment. 

Algorithmic complexity of an algorithm is the mathematical 

law, which outlines delay increase with data amount’s (length 

of input array) enlargement [23], fig. 10. 

 

Fig. 10. Time on performing algorithms of a different algorithmic 

complexity versus the number of input values (in programming, size of input 

array) [24] 

The attitude of the time for performing one integral operation 

in the Cloud environment to the time for processing it in IoT 

device It is a non-dimensional indicator of the certain algorithm 

running time decrease using the Cloud environment, having its 

values between 0 and 1 (providing that Cloud environment is 

more powerful than IoT device which is almost always the 

case). We propose to gather it empirically by comparing the 

measured delays, introduced by one operation within the IoT 

device and Cloud, formula (1). 

 ( )10==
device

cloud

cloud

device

t

t

P

P
p   (1) 

where deviceP  and cloudP  – are computational capacities of 

coordinator and Cloud environment, devicet  and cloudt  – are 

the durations, introduced by an integral operation, similarly. 

The time spent to transmit one value between IoT device and 

Cloud environment – is the time of passing one integral part of 

information through one direction (from coordinator to Cloud 

or vice-versa). As it depends on a myriad of factors, we propose 

to measure this value also empirically (transmit a large amount 

of information between terminals, measure transmission time, 

divide time by values quantity), formula (2). 
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N

T
,


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where T  – is the delay, introduced by passing values through 

the network, N  – values quantity. 

The efficiency, being a ratio between the local computation 

and remote computation times, depends on these parameters via 

relations, described by formula (3). 
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nnTp
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n


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where )(nT  – is the delay of performing algorithm over n  

values inside the IoT device, n  – the number of input values. 

The numerator is the time of local algorithm execution. The 

first term of the denominator is the time to perform an algorithm 

in the Cloud environment. The second term of the denominator 

is the delay, introduced by data transmission (here we assume, 

that the amount of data in request roughly equals the amount of 

data in response). For cases of medium to low clusters, the 

difference between request and response sized can be neglected. 

On fig. 11 formula (3) is tabulated (efficiency vs cluster size) 

for different algorithmic complexities of possible routing 

algorithms. 

 
Fig. 11. Tabulated efficiency for next algorithmic complexities, curves from 

bottom to top: quasilinear, quadratic, exponential, factorial 

B. Experimental results estimation and analyzation 

The main reason to conduct an experiment – is to determine if 

the proposed method can be effectively used on practice. 

Bellman-Ford algorithm used in our experiment has some 

distinctions from its reference realization. In the etalon 

realization of a Bellman-Ford algorithm, its algorithmic 

complexity (memory access operations are discarded) is cubical 

)( 3nO  [9]. For the developed algorithm, fig. 12, however, the 

measured algorithmic complexity in case of processing clusters 

with less than 29 devices is around )( 4nO . The Simulated 

device 2 was tuned to work 10 times slower than the Cloud does 

1.0==
device

cloud

t

t
p . 

 
Fig. 12. Realized Bellman-Ford algorithm 
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Results for measuring the time spent to calculate different 

matrixes locally and remotely are presented on the fig. 13 in 

form of a plot (dotted line is the local scenario – Simulated 

device 2, solid line is the remote scenario – Simulated device 1). 

Each value on the plot is averaged among 50 real measurements 

of a studied value [25]. There is no need to introduce errors on 

this graph by now because plotted curves are mainly needed to 

represent the sense of how does the duration increases with 

increasing cluster size under different scenarios. This plot 

allows to make a very important conclusion: for different 

boundary conditions (right and left plot margins) it is better to 

use different approaches. For very small clusters it is better to 

compute routing tables using local resources. But for medium to 

large clusters that is much better to use remote Cloud service. 

And in case of an infinite cluster, the use of remote service gives 

p

1
 gain over local scenario. 

 

Fig. 13. Time to compute distances matrix versus cluster sizes in Simulated 

device 1 (solid line) and in Simulated device 2 (dashed line) 

For now, we can derive the curve of the efficiency versus 

cluster size (fig. 14). Parameters for mathematical 

approximation: algorithmic complexity is )( 4nO , coefficient 

1.0==
device

cloud

t

t
p , the transmit time was selected empirically. 

 

Fig. 14. The efficiency of using Cloud environment for routing tables 

computation versus cluster size derived theoretically (solid line) and 

experimentally (dashed line) 

CONCLUSION 

Internet of things has plenty of unique conditions that post 

enlarged demands related to effective battery resource usage in 

IoT devices. These restrictions make classical routing 

approaches insufficient. In this research, we propose the 

solution for effective routing in IoT systems and then improve 

it using Cloud service. Also, the results of efficiency evaluation 

are presented. 

Estimated sizes of cluster are: 5, 7, 9, 11, 13, 15, 17, 19, 21, 

23, 25, 27 and 29. Reached results: proposed adopted for IoT 

routing method; it was optimized for the minimal reaction time 

in case of topology changes using Cloud service; the 

optimization gain was characterized in two ways: mathematical 

and experimental. Meanwhile, these results allow to inspect the 

applicability of the proposed approach to IoT systems in 

practice. 

The peculiarity of this research is a practical realization of the 

fully functional research prototype. Prototyping process 

includes API development, Microsoft Azure App Service and 

Microsoft Azure DevOps resources occupation, services as well 

as simulators development and many more. 

For the use of the remote Cloud service, performed 

measurements showed a rapid increase of gain in cases of bigger 

cluster sizes, e.g. in case of 29 IoT devices in the cluster, the 

gain is 739.7=  for experimental assembly and 7.092=  for 

theoretical approximation. At the same time, the biggest 

mismatch between theory and experiment is % 0.549= . The 

convenience of this research is that Cloud performs 

computations 10 times faster, that IoT device does. In case of 

infinite cluster size (right border condition), efficiency tends to 

be 10. Therefore, in the case of 45 hops in the cluster, the 

efficiency must be 9.011= , while for 99 hops it equals 

9.898=  (derivative lowers as the gain approaches the ratio 

between Cloud’s and IoT device’s speeds). Also, the issues for 

further studies are: using databases to improve routing table’s 

calculation performance in Cloud, adjusting (varying) routing 

policy remotely in Cloud; predicting further cluster states in 

Cloud; machine learning investigation in the purpose of 

improving administration strategies, used by Cloud. 
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