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Abstract—In this paper, we present some useful results 

related with the sampling theorem and the reconstruction 

formula. The first of them regards a relation existing between 

bandwidths of interpolating functions different from a perfect-

reconstruction one and the bandwidth of the latter. Furthermore, 

we prove here that two non-identical interpolating functions can 

have the same  bandwidths if and only if their (same) bandwidth 

is a multiple of the bandwidth of an original unsampled signal. 

The next result shows that sets of sampling points of two non-

identical (but not necessarily interpolating) functions possessing 

different bandwidths are unique for all sampling periods smaller 

or equal to a given period (calculated in a theorem provided). 

These results are completed by the following one: in case of two 

different signals possessing the same bandwidth but different 

spectra shapes, their sets of sampling points must differ from 

each other.         

Keywords—sampling theorem, cardinal series, reconstruction 

formula 

I. INTRODUCTION 

T seems that everything has already been said about 

sampling of signals, sampling theorem, and reconstruction 

formula. Everything seems to have been fully explained in 

thousands of articles and textbooks published on the above 

subjects. However, that is not entirely true, as we will see in 

this paper. We will show here that there are still some 

properties of the sampling operation and reconstruction 

formula that we did not get to know yet. 

The paper is organized as follows. Section II contains a 

short description of basics of the sampling theorem and of the 

reconstruction formula [1]-[6], which we will need in 

derivations of the next sections. In section III, we show that 

bandwidths of interpolating functions different from the 

perfect-reconstruction one are greater than the bandwidth of 

the latter. Three interesting observations are presented in 

section IV. First, we prove that two non-identical interpolating 

functions can have the same  bandwidths if and only if their 

(same) bandwidth is a multiple of the bandwidth of an original 

unsampled signal. Moreover, we show that sets of sampling 

points of two non-identical (but not necessarily interpolating) 

functions possessing different bandwidths are unique for all 

sampling periods smaller  or  equal to a given one (calculated 

in  a  theorem provided).  Finally, we complete  the  above two 
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results with the following one: in case of two different signals 

possessing the same bandwidth but different spectra shapes, 

their sets of sampling points must differ from each other. The 

paper ends with section V that contains conclusions.  

II. PRELIMINARY MATERIAL 

Let a signal ( )x t  of a continuous time variable t R , 

where R  denotes the set of real numbers, be sampled 

uniformly with a sampling period T, what leads to receiving 

an infinite set of signal samples. We denote it here by 

( ) ( ) ( )   ..., , 0 , ,... , ..., 1,0,1,... .x T x x T x kT k− = = −  

Assume now that only the set of samples, as defined above, 

of a signal ( )x t  and the sampling period T are available. And 

having this, we want to recover an unknown form of the signal 

mentioned. That is we want to deduce from this data a 

function of a continuous time variable t  that would be an 

original signal ( )x t . 

Before proceeding further, let us however note that the 

operation of signal recovery from its samples, as stated above,  

can be viewed as an inverse operation with respect to the 

signal sampling. So, as such, it can be formulated as searching 

for an appropriate inverse operator. However, this operator 

can exist or not. Obviously, when it exists this leads to 

achieving a perfect signal reconstruction from its samples. 

However, in cases it does not exist, it will be always possible 

to find an imperfect version of the original signal. Then, in 

terms of operators’ terminology, we will speak about 

searching for a good pseudo-inverse operator. 

As we know, with regard to the problem stated above, there 

exists a highly celebrated sampling theorem, which uses the 

following formula:  

 

 ( ) ( ) ( )ˆ  sinc
k

x t x kT t T k


=−

= −  ,         (1) 

 

where the function ( )sinc t  is defined as 

 

 ( ) ( )sinc sin   for 0   and  1 for 0t t t t t =  =  (2) 

 

and ( )x̂ t  means a function being an approximation of ( )x t  

that exploits just the set  x kT  defined above. Further, the 
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sampling theorem is formulated as follows: Let ( )x t  be such 

a real function, whose bandwidth is finite. That is it denotes a 

bandlimited signal having a Fourier transform ( )X f  

satisfying the following equation: 

 

 ( ) 0  for  0mX f f f   ,         (3) 

 

where f  means a continuous frequency variable. 

By assuming (3), we say that the Fourier transform ( )X f  

of ( )x t  is identically zero outside a closed frequency interval 

,m mf f −  . So, the bandwidth of the signal ( )x t  is equal to 

0m mB f f= − = , where 
mf  means a real number. And, 

assume additionally that ( )X f  is a piecewise continuous 

function on the set ,m mf f −  . 

Then, the function ( )x t  can be exactly approximated (or, 

in other words, it can be perfectly reconstructed from its 

samples defined above) at every point t R  with the use of 

(1), when the following: 

 

 ( )1 2 mT f          (4) 

 

is fulfilled. As we know this constitutes the so-called sampling 

theorem [2]. Furthermore, as it is also well known, (1) is 

called a reconstruction formula or a cardinal series. 

We do not often realize how powerful is the signal sampling 

theorem. Its powerfulness follows from the fact that it really 

expresses an equivalence between a series of discrete indexed 

values and a certain function of a continuous variable.  

However, we underscore that this is only true, when an 

additional condition (4) is fulfilled. So, we see that the 

knowledge regarding fulfillment or non-fulfillment of (4) is 

crucial. 

III.  SAMPLING OF DIFFERENT SIGNALS LEADING TO  

IDENTICAL SETS OF SAMPLES AND REPERCUSSIONS OF THIS 

Assume that we sample different signals of a continuous 

time t and get exactly the same sets of samples  x kT  in all 

these cases. This is illustrated in Fig. 1. 

Note that it is easy to get such a situation as that sketched in 

Fig. 1. For instance, imagine you have a set of discrete values 

( ) ( ) ( )   .., , 0 , ,.. ,  .., 1,0,1,..x T x x T x kT k− = = − , coming 

from an unknown analog signal, Assume, however, that you 

know its bandwidth, which is equal to ( )0 1 2mB f T= − = , 

and you wish to interpolate this signal. As illustrated in Fig. 1, 

you can do this in many ways, also with the use of the formula 

(1). Note that in the case considered it allows you to perform a 

perfect reconstruction (because the condition (4) is then 

fulfilled).  
 
 

Fig. 1. Example showing three different signals of a continuous time variable t 
sampled in such a way that the sets of samples ( ),  ..., 1,0,1,...x kT k = − , 

obtained are exactly the same in these cases. 

 
An interesting question can arise regarding the above 

interpolating curves: Are the bandwidths of the  interpolating 

functions different from that of the perfect-reconstruction one, 

or are lesser, equal to, or greater than the bandwidth of the 

latter? In what follows, we will answer this question. 

  
Theorem 1. Bandwidths of interpolating functions different 

from the perfect-reconstruction one are greater than the 

bandwidth of the latter. 

Proof: Obviously, the bandwidth of any of the interpolating 

functions differing from the perfect-reconstruction one cannot 

be equal to ( )1 2T  because the latter is unique. So, their 

bandwidths must be lesser or greater than ( )1 2T . And, let us 

start first with checking whether they can be lesser than 

( )1 2T . To this end, assume that there exists at least one such 

the function. Denote it as ( )1x t . Moreover, denote its 

bandwidth and maximal frequency as 
1B  and 

1mf , 

respectively. Further, let use 
1T  for denoting the sampling 

period equal to ( )11 2 mf . Then, under the assumptions made 

above, we have 

 

 ( ) ( )1 1 11 2 1 2m mB f T T f B= =  = =  .        (5) 

 

This gives 
1T T . So, by virtue of the sampling theorem 

invoked in section II, the interpolating signal ( )1x t , when 

sampled at the rates 
1 11 2 mT f=  and 1 2 mT f= , can be 

perfectly reconstructed using formula (1) in both these cases. 

Therefore, we can write 

 

 

( ) ( ) ( )

( ) ( )

1 1 1 1

1

 sinc

 sinc   .

k

k

x t x kT t T k

x kT t T k



=−



=−

= − =

= −





          (6) 

 

 

 

x(t), x(kT) 

t  0  -T  T 2T  3T  
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Now, on the other hand, note that we assumed that the 

samples of the interpolating signals ( )x t  and ( )1x t  at the 

points kT , ..., 1,0,1,...k = − , are equal to each other. That is 

we have   ( ) ( )1 ,  .., 1,0,1,..x kT x kT k = − . Taking this 

into account in (6), we get 

 

 
( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 sinc

 sinc   .

k

k

x t x kT t T k

x kT t T k x t



=−



=−

= − =

= − =





          (7) 

 

However, this contradicts our assumption that ( )1x t  does not 

identically equal ( )x t  (see also Fig. 1 for illustration). So, 

because of this fact, we must conclude that it is not possible to 

have an interpolating signal possessing the bandwidth smaller 

than ( )1 2T . And this ends our proof.   

By the way, note that the problems of the kind mentioned 

above do not occur, when an interpolating signal, say ( )2x t , 

is assumed to have its bandwidth greater than ( )1 2T . With 

an equivalent of (5) now in the form 

 

 ( ) ( )2 2 21 2 1 2m mB f T T f B= =  = =  ,        (8) 

 

where 
2B , 

2mf , and 
2T  have the same meaning as 

1B , 
1mf , 

and 1T  for the signal ( )1x t , we can write 

 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

2

2 2 2

2 2 2

2 2

2 2 2 2

 sinc

 sinc =

=  sinc

 sinc

 sinc  .

k

k

k

k

k

x t x t x t

x kT t T k

x kT t T k

x kT t T k

x kT t T k

x kT x kT t T k



=−



=−



=−



=−



=−

 = − =

= − −

− −

− −

− − =

= − −  











 (9) 

 

Note now that because the difference ( ) ( )2 2 2x kT x kT−  in 

(9) for ..., 1,0,1,...k = −  does not identically equal zero the 

most right-hand side sum in (9) is not identically equal to zero, 

too. That is ( )x t  does not equal zero for all values of t, what 

is true (once again see Fig. 1 for illustration). 

Finally in this section, we stress the importance - for the 

validity of considerations presented above - of the assumption 

that the signal ( )x t  was sampled with such a sampling period 

T that fulfilled the condition (4). Note that this was crucial.  

IV.  THREE OBSERVATIONS MORE 

In this section, further three statements that regard the 

sampling theorem and the reconstruction formula are 

discussed. They are presented in form of short theorems, in a 

similar way as Theorem 1. Moreover, their proofs are also 

similar. 

So, let us now begin with the first observation: 

 

Theorem 2. Two non-identical interpolating functions that 

were defined in the previous section can have the same  

bandwidths if and only if their (same) bandwidth, let denote it 

by 
mef , is a multiple of the bandwidth 

mf  of the signal ( )x t . 

Proof: We will prove this theorem by showing that 

assuming two non-identical interpolating functions possessing 

the same  bandwidths leads to contradiction when 
mef  is not a 

multiple of 
mf . To this end, assume that we found two 

different interpolating functions ( )1x t  and ( )2x t  having the 

same bandwidths 
1 2m m mef f f= = . Sampling both of them 

with the same sampling period, say 
eT , that is given by 

( )1 2e meT f= , and applying then the sampling theorem and 

the reconstruction formula (1) allows us to write 

 

 ( ) ( ) ( )1 1  since e

k

x t x kT t T k


=−

= −           (10) 

and 

 

 ( ) ( ) ( )2 2  since e

k

x t x kT t T k


=−

= −   .       (11) 

 
In the next step, observe that because we assumed that 

( )1x t  and ( )2x t  are interpolating functions of a function 

( )x t , the following equalities:  

 

 ( ) ( ) ( )1 2 ,  ..., 1,0,1,...x nT x nT x nT= = − , (12) 

 
must hold. So, applying (10) and (11) in (12) gives 

 

 ( ) ( ) ( )1 2  sinc 0e e e

k

x kT x kT nT T k


=−

− − =    , (13) 

 

which must hold for all ..., 1,0,1,...n = − . 

To proceed further, observe first that (13) holds for 0n = . 

That is because it follows from (13) that 
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( ) ( ) ( )

( ) ( )

( ) ( )

1 2

1 2

1 2

 sinc

.. 0 0 0 0 0 0 ...

0 0  .

e e

k

x kT x kT k

x x

x x



=−

− − =  

= + + + − + + + =  

= −



  (14) 

However, ( ) ( )1 20 0x x=  (meaning that all the interpolating 

functions have the same value at the point  0t = ; see also 

Fig. 1). Applying this in (14) leads to the conclusion that 

really (13) holds for 0n = . Note also that the validity of (13) 

for 0n =  does not depend upon values of the ratio 
eT T  

occurring in (13). 

In what follows, we will check validity of (13) for all the 

other values of n . Now, however, we will need to distinguish 

between two cases: first one when the ratio 
eT T is not a 

natural number, and second when it is.  

We begin with the first one. Observe that then the values of 

( )sinc enT T k−  do not identically equal zero for all the 

possible combinations of  0n Z − , where Z denotes the 

set of integers, and k Z . So, only way to satisfy equations 

(13) is to require fulfillment of the following: 

( ) ( )1 2 ,  ..., 1,0,1,...e ex kT x kT k= = − . Note however that 

this, in view of the reconstruction formula (1), is equivalent to 

saying that ( ) ( )1 2x t x t= . But, we assumed that the 

functions ( )1x t  and ( )2x t  are not identical. So, we arrived 

at a contradiction. That is the occurrence of this case is not 

possible. 

Let us now consider the second case when the ratio 
eT T  is 

a natural number, and denote it by 
ec . (By the way, note that 

in view of theorem 1 of section III this natural number will be 

always greater than 1, ie.  1ec N − , where N  denotes 

the set of natural numbers.) Further, see that we can express 

equivalently the above ratio in terms of the bandwidths as 

 
( )

( )

1 2
      

1 2

m

e me e m

e me

fT
c f c f

T f
= =  =  . (15) 

 

Substituting (15) into (13) gives 

 ( ) ( ) ( )1 2  since e e

k

x kT x kT nc k


=−

− − =     (16) 

 

( ) ( )

( ) ( )

1 2

1 2

1 2

.. 0 0

0 0 ...

 

e e e e

e e

e e

x nc T x nc T

T T
x n T x n T

T T

x nT x nT

= + + + − +  

+ + + =

   
= − =   

   

= −

   

for all  0n Z − . 

However, by virtue of that ( )1x t  and ( )2x t  are the 

interpolating functions assuming the same value at the points 

,  nT n Z , ( ) ( )1 2x nT x nT= . Applying this in (16) leads 

to the conclusion that really (13) holds for all  0n Z − , 

when (15) is satisfied. And this ends the proof.  

Our second observation is the following: 

 

Theorem 3. Sets of sampling points of two non-identical 

(but not necessarily interpolating) functions possessing 

different bandwidths 
1 1mB f=  and 

2 2mB f= , respectively, 

are unique (in the sense that they are not identical) for all 

sampling periods ( ) ( )( )1 2min 1 2 ,1 2i m mT f f . 

Proof: To prove this theorem, consider two functions 

( )1x t  and ( )2x t  having the bandwidths 
1 1mB f=  and 

2 2mB f= , respectively. Note that sampling them with the 

same sampling period 
iT  fulfilling the following inequality: 

 

  ( ) ( )( )1 1 2 2min 1 2 , 1 2i m mT T f T f = = , (17) 

 
and applying then the sampling theorem and the 

reconstruction formula (1) allows us to write 

 

 

( ) ( ) ( )

( ) ( )

1 1 1 1

1

 sinc

 sinc

k

i i

k

x t x kT t T k

x kT t T k



=−



=−

= − =

= −





          (18) 

 

and 

 

( ) ( ) ( )

( ) ( )

2 2 2 2

2

 sinc

 sinc        .

k

i i

k

x t x kT t T k

x kT t T k



=−



=−

= − =

= −





        (19) 

 
Consider now the most right-hand side expressions in (18) and 

(19). It follows from them, the reconstruction formula (1), and 

from the fact that the functions ( )1x t  and ( )2x t  were 

assumed to be not identical that the sequences  1 ix kT  and 

 2 ,  ..., 1,0,1,...ix kT k = − , are not identical, too. That is 

they are unique. And this ends the proof.     

We remark that theorem 3 holds also when two non-

identical (but not necessarily interpolating) functions possess 

the same bandwidth, say 
mef . Then, the condition (17) 

reduces simply to ( )1 2i e meT T f = . 

Let us now consider our third observation. We express it in 

a form of the following theorem: 
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Theorem 4. In case of two different signals possessing the 

same bandwidth but different spectra shapes, their sets of 

sampling points must differ from each other. That is they 

cannot be identical. 

Proof: Consider two functions ( )1x t  and ( )2x t  that have 

the same bandwidths 
1 2m m mef f f= =  but different spectra 

shapes. Let us sample these signals with the same sampling 

period ( )1 2 1 2e meT T T f= = = . Then, see that because this 

period satisfies the condition (4) of the sampling theorem, we 

can express them using the reconstruction formula (1) as 

 

 ( ) ( ) ( )1 1  since e

k

x t x kT t T k


=−

= −           (20) 

 

and 
 

 ( ) ( ) ( )2 2  since e

k

x t x kT t T k


=−

= −     .      (21) 

 

Observe now that according to the sampling theorem the 

expressions on the right-hand sides of (20) and (21) are 

unique. So, because ( ) ( )1 2x t x t  holds, it follows from the 

above that    1 2x kT x kT  as well. And this ends the 

proof.  

The latter observation, maybe, may seem for many obvious. 

However, in our opinion, it is worthy to recall it also in this 

paper to complete the remaining ones discussed here.  

V.  CONCLUSIONS 

Among the most fundamental tools of the digital signal 

processing are the sampling theorem and the reconstruction 

formula. Their history is long and dates, after [1], to 1841 and 

to 1897. In 1841, A. Cauchy recognized something what is 

called today a minimal sampling rate (rediscovered by H. 

Nyquist and named after him the Nyquist rate). Several years 

later, in 1897, another famous mathematician E. Borel 

recognized possibility of recovering a bandlimited signal from 

its samples. In the 20th century, E. T. Whittaker (1915), H. 

Nyquist (1928), V. A. Kotelnikov (1933), and C. Shannon 

(1948) published their works, in which they formulated the 

sampling theorem and the reconstruction formula (called also 

a cardinal series) in the form we know today. They introduced 

the aforementioned tools to the theory of signals and modern 

telecommunications. The literature on these topics is huge. Let 

us only mention, at the end of this paper, some of the most 

prominent publications in these areas, articles and books [1]-

[26]. 

And finally, let us say the following: Nowadays, it seems 

that such topics like sampling of signals, sampling theorem, 

and reconstruction formula are fully developed, as mentioned 

above. This paper shows however that there are still new 

intriguing and useful results that can be obtained in this highly 

matured area.  
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