Deep learning can improve early skin cancer detection

Authors

  • Abeer Afifi Mohamed Benha University
  • Wael A. Mohamed Benha University
  • Abdel Halim Zekry Cairo University

Abstract

Skin cancer is the most common form of cancer affecting humans. Melanoma is the most dangerous type of skin cancer; and early diagnosis is extremely vital in curing the disease. So far, the human knowledge in this field is very limited, thus, developing a mechanism capable of identifying the disease early on can save lives, reduce intervention and cut unnecessary costs. In this paper, the researchers developed a new learning technique to classify skin lesions, with the purpose of observing and identifying the presence of melanoma.  This new technique is based on a convolutional neural network solution with multiple configurations; where the researchers employed an International Skin Imaging Collaboration (ISIC) dataset. Optimal results are achieved through a convolutional neural network composed of 14 layers. This proposed system can successfully and reliably predict the correct classification of dermoscopic lesions with 97.78% accuracy.

Downloads

Published

2024-04-19

Issue

Section

Biomedical Engineering