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Abstract—Accurate network fault diagnosis in smart 

substations is key to strengthening grid security. To solve fault 

classification problems and enhance classification accuracy, we 

propose a hybrid optimization algorithm consisting of three parts: 

anti-noise processing (ANP), an improved separation interval 

method (ISIM), and a genetic algorithm-particle swarm 

optimization (GA-PSO) method. ANP cleans out the outliers and 

noise in the dataset. ISIM uses a support vector machine (SVM) 

architecture to optimize SVM kernel parameters. Finally, we 

propose the GA-PSO algorithm, which combines the advantages 

of both genetic and particle swarm optimization algorithms to 

optimize the penalty parameter. The experimental results show 

that our proposed hybrid optimization algorithm enhances the 

classification accuracy of smart substation network faults and 

shows stronger performance compared with existing methods. 

 
Keywords—Smart substation, Network fault classification, 

improved separation interval method (ISIM), Support vector 

machine (SVM), Anti-noise processing (ANP) 

I. INTRODUCTION 

ith the increasing coverage of smart substations within 

the power grid, protecting them from intrusion and 

failure is critical to power grid safety [1–4]. Among protective 

measures, the first concern is network security, with fault 

diagnosis in the smart substation network being an important 

part of its overall security [5–8]. When a network fault occurs 

in a smart substation, the data acquisition equipment in the 

power system uploads a large amount of collected data to the 

dispatching end at the fastest rate possible for analysis. 

However, many of these uploaded fault messages have 

intricately related connections that make it difficult to detect the 

type of fault. Therefore, it is necessary to use the most suitable 

fault classification algorithm to classify the collected data 

accurately for the best fault diagnosis. 

Many researchers have explored network security problems 

in smart substations and have proposed several classification 

algorithms for diagnosing smart substation network faults more 

effectively. Some approaches combine neural networks with 

fault diagnosis to make full use of situational awareness and 

autonomous learning to classify network faults in smart 

substations accurately and efficiently [9–12], but the 

performance is limited when additional noise data are present. 

Solutions using Bayesian theory find the connection between 

the cause of a fault and its manifestation, applying machine 

learning to the manifestation to determine the corresponding 
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cause and obtaining good results [13–18]. However, these 

algorithms require relatively higher independence of the feature 

attributes of samples, that is, having very low relevance. In 

practice, this requirement is often not met, and as the degree of 

attribute relevance improves, the accuracy of the classification 

declines greatly. Others have combined Bayesian algorithms 

and neural networks, but these solutions have their limitations 

and deficiencies [19, 20]. 

In this paper, we propose some algorithms to improve the 

performance of smart substation fault classification. The 

contributions we make in this paper are as follows. 

1. Anti-noise processing. Because outliers and noise appear in 

much of the sample data, we propose a new method for 

removing the noise samples from datasets to improve 

classification. 

2. A new method of optimizing kernel parameters. We present 

our improved separation interval method (ISIM) method to 

improve classification by taking sample data into account. 

3. A new strategy for optimizing penalty parameters. We find 

that, among heuristic algorithms, the genetic algorithm (GA) 

[21, 22] and particle swarm optimization (PSO) [23, 24, 25] 

have their respective advantages and disadvantages in 

classifying smart substation faults. Therefore, we propose 

our GA-PSO algorithm using the ISIM method to combine 

the advantages of both methods for enhancing classification 

accuracy. 

We organize the remainder of our paper as follows. Section 2 

describes related work. Section 3 presents our method for 

improving classification accuracy. Section 4 provides 

experimental evaluations of the proposed algorithm and 

compares our algorithm with other methods. Finally, section 5 

presents our conclusions. 

II. RELATED WORK 

In this paper, a support vector machine (SVM) is used to 

investigate smart substation network fault classification [26, 27, 

28]. Since the introduction of SVM in recent years, many new 

algorithms have been developed using it, and they improve 

performance in areas such as convergence rate and 

generalization ability. However, these new algorithms also 

have their shortcomings. For example, to cope with the 

considerable noise in the collected data, Lin et al. proposed the 

fuzzy SVM (FSVM) [29]. The algorithm combines fuzzy math 

with an SVM to separate noise and outliers from valid samples. 

In practical applications, researchers have made some 
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corresponding improvements to the algorithm [30, 31], but 

many problems remain. For example, if there is a considerable 

amount of abnormal data or abnormal data with a certain 

distribution, FSVM loses information when separating the 

abnormal data. FSVM also requires expensive calculations in 

the kernel function, a large amount of memory, and significant 

training time. The Lagrangian SVM cannot handle large sample 

data in nonlinear problems [32, 33]. The granular SVM 

performs well on a uniformly distributed dataset, but actual data 

tend to be unevenly distributed, limiting the performance of the 

algorithm [34, 35]. Our approach also models the network fault 

information and optimizes the related algorithms to improve 

classification accuracy, but it differs from the ones described in 

this section. 

III. METHOD 

A. Preliminaries 

1) Data normalization 

In actual environments, as the amount of network fault data 

collected and the data size increase, outliers must be detected 

and considered. We apply a combination technique to the 

classification problem to make the influence of previous 

processes observable by later processes. The final result is a 

weighted combination analysis algorithm. However, for some 

independent combinations, we use different algorithm values in 

different parts of the dataset. We combine these different results 

to detect outliers. 

Data normalization is an indispensable part of training an 

SVM. In the sampled data, the difference in the range of 

numerical values is very large. For features with such a large 

range, we can ignore the fractional (decimal) portion of the 

values as the large range already affects the classifier to a much 

greater extent than features with a smaller range of values. 

We map a given attribute to the range [0, 1] using the 

normalization formula 

𝑥𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑖𝑛𝑚𝑎𝑥×(ℎ𝑖𝑔ℎ−𝑙𝑜𝑤)+𝑙𝑜𝑤
                      (1) 

where x is the value before the feature value is processed, 

minx  is the minimum of all of  the original features, and maxx  is 

the maximum of all of the original features. high and low are 

the maximum and minimum values of the mapping interval, 

respectively. 

2) Anti-noise processing 

The widely used SVM classification technique performs the 

task satisfactorily when no noise is present but performs less 

well with noise in the dataset, producing different results. 

Moreover, a given sample may differ significantly from normal 

data and have a greater similarity to abnormal data. Noise has 

characteristics indicating that they are equivalent to discrete 

points. Therefore, admitting a noise sample into the final 

calculation can make a significant difference between the 

computed result and the actual value, leading to serious errors 

in the classifier. Achieving accurate classification requires us to 

preprocess the existing training samples to remove the noise 

samples from the initial training sample set. This noise filtering 

greatly improves classification accuracy. 

To make the classifier more robust and less sensitive to noise 

performance, we propose a scheme to enhance these 

characteristics greatly. Prior to using the dataset to train the 

SVM, we remove the outliers using high-dimensional spatial 

denoising to complete the denoising process. 

We introduce some definitions to assist in describing our 

model. We let o, p, and q denote samples in the sample set S 

and ( , )d p q  denote the distance between samples p and q. 

• Definition 1. The k-dist(p) is the value of ( , )d p o  meeting the 

following requirements: at least k 'o S  samples satisfy 

( , ') ( , )d p o d p o  and at most (k-1) 'o S  samples satisfy 

( , ') ( , )d p o d p o . 

• Definition 2. ( )kN p  is a set of samples that meet the 

following requirements: the distance between sample p and 

the sample belongs to dataset S is less than k-dist(p) and 

( ) { \{ }, ( , ) ( )}kN p q S p d p q k dist p=   − . 

• Definition 3. The local density of sample p is the reciprocal 

of the mean value of its k-dist(p), 

( ) ( ) ( )1/ ( |k kden p avg k dist q q N p= −  . The outlier 

coefficient of sample p is 

( ) ( ) ( )  ( )| /k k k kLOF p avg den q q N p den p=   and reflects 

the discretization between the nearest k points. 

To separate noise from the samples, we calculate ( )kLOF p  

for each sample p. If ( )kLOF p  is higher than a certain 

threshold value, ( )kLOF p  is an outlier (i.e., p is a sample that 

produces noise in the classification), and we should remove it 

from the dataset. In this way, we obtain better classification 

precision by training the SVM with the noise-filtered dataset. 

B. SVM model optimization 

1) Kernel function selection 

Given the nonlinearity of the sample data, we need to 

introduce a kernel function to map the original nonlinear 

samples to the high-dimensional feature space, so that the 

samples are linearly separable in the new space. Then, we can 

use the classification theory of linear samples to solve such 

problems. Different kernel functions apply to different sample 

data. Different kernel functions and parameters produce 

different effects even for the same sample data. Therefore, we 

should select appropriate kernel parameters to solve the 

applicable calculations. Commonly used kernel functions 

include linear kernel functions, polynomial kernel functions, 

Gauss radial basis kernel functions, and sigmoid kernel 

functions. We choose the Gauss radial basis kernel function 

because it has a single parameter σ and can handle the 

relationship between attribute and category well. It is also 

superior to several other kernel functions in performance [36, 

37]. 

2) Kernel parameter optimization 

After selecting the kernel function, we must select appropriate 

kernel parameters. For the Gaussian kernel parameter   used 

in our kernel, experimental data show that, if the distance 

between   and the sample point is very small, 0 → . 

Conversely, if the distance between   and the sample point is 

large,  →  . When   is very small, the discriminant 

function obtained by the Gauss kernel function SVM is almost 

a constant, which leads to overfitting and a reduction in the 

classification accuracy rate. A large value of   leads to 
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reduced classification accuracy as well. Therefore, finding 

optimal parameter values is necessary for the best classification 

performance. The traditional separation interval method (SIM) 

aids in selecting the kernel parameter by taking the smallest 

distance from the same sample data to the center point of its 

category. We use two sample sets: ( )1 { , | 1}i i iX x y y= =  and 

( )2 { , | 1}i i iX x y y= = − . The data quantities are 1n  and 2n , and 

the respective center points of the sample sets are 1q  and 2q . 

From this we obtain 

1
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q x
n =

=  , 
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q x
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=                                   (2) 

We set the kernel function to be ( , ) ( ), ( )i j i jK x x x x =   

with kernel parameter  . After the kernel function maps the 

selected samples from the lower dimensional to the higher 

dimensional space, the distance between the center points 1q  

and 2q  is 

1 2Q q q= −
1 2
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Then, we express the optimization kernel parameter as 

( )( )
1 2

2

1 11 2

   max max
1 1

( ) ( )
n n

i i

i i

x x
n n

Q
 

 
= =

−=                 (4) 

This method only needs to solve for the maximum value in 

Formula (4) to obtain the value of the kernel parameter, making 

it easy to implement and fast in theory. However, for a 

relatively scattered sample set, when solving the maximum 

distance between the center points, some sample data will be 

ignored, which is not convincing and does not classify 

accurately. Given this situation, this paper proposes the ISIM. 

In each type of dataset, a distinct feature is always present: 

the sample data belonging to the same category are always close 

to each other, and the distribution is relatively aggregated. ISIM 

first solves their center points iq  according to the sample data 

of each category and then solves the sum of the distances of 

different types of sample data to the center points of other 

categories. As a simple example, consider the use of two 

categories. For the low-dimensional space, there are two 

different categories of nonlinear sample sets: 

( ) 1 1, | 1 , 1,2, ,i i iX x y y i n= = =      

        ( ) 2 2, | 1 , 1,2, ,i i iX x y y i n= = − =                       (5) 

In the above formula, 1n  and 2n  are used to indicate the 

number of the samples that two categories of data sets contain, 

respectively, and iy  represents the category of the sample data. 

If two data belong to the same category, then their y values are 

equal. Conversely, if they do not belong to the same category, 

then their y values are not equal. 

ISIM calculates the centre points of two different categories 

of data based on the sample set: 
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The average distance of the data in the category of 1X  to 2Q  is 
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Similarly, the calculation of the average distance from the 

data in the 2X  category to 1Q  is 
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Then, we use the ISIM selection method to determine the 

kernel parameter : 

( ) ( )12 21max max X X = +                               (9) 

For the Gaussian kernel function used in this paper, 
2

2
( , ) exp( )

2

i j

i j

x x
K x x



− −
= , the above sample set is mapped 

to a higher dimensional space. The mapping is represented by

 . Thus, after the mapping, we can convert Formulae (6)–(8) 

into the following expressions: 
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After mapping to a higher dimensional space, the full 

expansion of Formula (9) is 
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The preceding describes our optimization method for the 

kernel parameters. The following steps give a specific process. 
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• Step 1: First, obtain the sample dataset and incorporate the 

sample data in each category into the formulae above to 

obtain their actual expressions. 

• Step 2: Select a range of values 1 2( , )f f  for the kernel 

parameter   and set the condition value for the end of the 

optimization to 310e −= . 

• Step 3: Solve for the values 3 1 2( ) / 2f f f= + , 1max( )f , and 

2max( )f . 

• Step 4: If 1 2max( ) max( )f f , set 2 3f f= . If 

1 2max( ) max( )f f , set 1 3f f= . 

• Step 5: If 
1 2max( ) max( )f f e−  , the optimal value is 

1 2( ) / 2f f+ , and the entire optimization process ends. 

Otherwise, repeat Step 3 and following. 

3) Penalty parameter optimization 

The penalty parameter C is another important factor affecting 

the performance of SVM algorithms by balancing error and 

risk. This parameter adjusts the ratio of the confidence range to 

the empirical risk of the SVM model, improving the SVM’s 

generalization ability. Once the value of C is too small, there is 

a smaller empirical error, and the obtained error becomes 

greater, increasing the empirical risk value of the SVM, 

resulting in an “under-learning” condition. If C is too large, the 

accuracy of the model improves at the expense of its 

generalization ability, and the “over-learning” condition occurs. 

In addition, reasonable values of C leading to better processing 

of outliers in the sample help keeping the model in a stable state. 

Therefore, we need to optimize the penalty parameter selection. 

We have introduced the GA into the SVM to optimize the 

parameter set. However, the results show that the convergence 

rate is slow and the results are not very satisfactory. GAs are 

general-purpose algorithms that can solve many problems, but 

the results obtained are not optimal. We also introduce the PSO 

into the SVM to optimize the parameter set. Our research found 

that the convergence rate is very fast but with unsatisfactory 

accuracy. The PSO method slowly loses its diversity as the 

number of iterations increases. This easily leads to the rapid 

convergence of the population. However, this produces only a 

local optimal solution. Given the characteristics of the two 

algorithms, we propose the GA-PSO algorithm, which 

introduces genetic operations into the PSO to optimize the 

penalty parameter C. Although many experts and scholars have 

spent a considerable amount of research on GA-PSO, our 

approach is different from theirs [38, 39, 40]. 

Since we want the maximum classification accuracy, we 

solve the fitness function in the algorithm, 

( ( , )) ( , )fit f C f C = . The specific algorithm steps are as 

follows. 

• Step 1: Set the particle swarm size and then initialize the 

position and velocity of each particle. Set the variable i = 1. 

Set the initial value of n as the number of evolutional 

generations. 

• Step 2: Apply the SVM to each particle, calculating the 

fitness value fiti (i=1,2,…, k) of each particle in the 

population and the average fitness value fitv of the particle 

swarm by using the classification accuracy of the fivefold 

cross-validation as the fitness value of the particle. 

 

• Step 3: Sort the fitness values of each particle from largest 

to smallest. Update the current particle and population 

extreme values based on the current fitness value of the 

particle and the reserved respective remaining extreme 

values. According to the fitness order, divide the particle 

swarm into two parts {A} and {B}. If i vfit fit , then 

{ }iP A , where iP
 
represents the ith particle. If

 i vfit fit , 

then { }iP B . 

• Step 4: Perform the crossing and mutation operation for 

particles in A ( { }iP A ) to generate another new particle 

swarm C. Replace swarm B with swarm C. Reconstruct a 

new population combined with swarm A. 

• Step 5: Compare the current fitness value of each particle 

with the best value retained by the particle. If the former is 

better than the latter, the current position of the particle is 

set to the best position pbest that the particle has experienced; 

the current fitness value of each particle is compared with 

the best value reserved by the population, and if the former 

is better than the latter, then the current position of the 

particle is set to the best position gbest experienced by the 

population. 

• Step 6: Increment i. When =i n  or the optimum fitness 

value increment is less than a given threshold, break out of 

the loop. Otherwise, return to step 3. 

• Step 7: Obtain the optimal parameter and use it to calculate 

classification accuracy. 

IV. EXPERIMENT 

A. Experiment design 

We implemented our approach using the open source package 
LIBSVM and MATLAB. LIBSVM is a simple, easy to use, 
fast, and efficient SVM pattern recognition and regression 
software package. The software not only provides compiled 
executable files for Windows-based systems but also offers 
source code for easy improvement, modification, and use on 
other operating systems. The LIB-SVM algorithm in the 
package implements basic SVM functionality. Our code was 
written in MATLAB and integrates with LIBSVM. We 
performed the following steps in our experiment. 

• Step 1: Preprocess the fault data, deleting records with 

missing values. 

• Step 2: Normalize the data as described in Section 3.1.1. 

• Step 3: Convert the data to the format required by LIBSVM. 

• Step 4: Perform fault classification using optimized 

methods. 

① Filter noise and optimize the sample set using the 

anti-noise processing (ANP) method. 

② Select the Gaussian radial basis kernel function. 

③ Optimize kernel parameters with the ISIM method. 

④ Optimize the penalty parameter with the GA-PSO 

algorithm. 

⑤ Calculate the final classification result. 

B. Experimental results and analysis 

1) Anti-noise processing experiment 

According to the sample optimization strategy, we calculated 

( )kLOF p  for each sample p in the dataset S and removed 

noise data according to a corresponding threshold. 
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Because larger datasets have a greater probability of noise, we 

selected 800 samples from the dataset collected by the smart 

substation. We used x samples as the training set and the 

remainder as the test set. We compared the noise reduction 

results between our proposed anti-noise processing (ANP)-

SVM and the regular LIB-SVM methods. Table I shows the 

experimental results. 

 
TABLE I 

 CLASSIFICATION ACCURACY OF ANP-SVM AND LIB-SVM 

x value 
LIB-SVM 

classification 

accuracy (%) 

ANP-SVM 
classification accuracy 

(%) 

100 64.2 66.8 

200 74.8 76.9 

300 77.8 80.8 

400 83 86.1 

500 87.9 91.5 

600 90.1 93.2 

 

Our ANP-SVM achieved better classification accuracy than 

LIB-SVM, so we decided to use ANP-SVM in all subsequent 

experiments. 

2) The effect of the parameter   on performance 

We looked for values of the kernel parameter   in the range 

[0,100], using ISIM to find the optimal value according to 

Formula (9). We then conducted an experiment to verify that 

our improved kernel parameter selection method was better. In 

the experiment, we set penalty parameter C to 100 (constant) 

and used both C and   in the SVM. We used the de-noised 

sample set from the first experiment and measured the 

classification performance in terms of accuracy. We selected 

800 samples from the dataset collected by the substation, using 

x samples for training and the remainder for testing as before. 

Table II shows the results from using the ANP-SVM algorithm 

for x=600 and compares the performance before and after the 

improvement of the kernel parameter  . 

TABLE II 

 EXPERIMENTAL RESULTS OF KERNEL PARAMETER OPTIMIZATION  

Parameters Values 

Number of training samples 600 

Number of test samples 200 

σ before improvement 65.1 

σ after improvement 63.7 

Classification accuracy before 

improvement (%) 
93.2 

Classification accuracy after 

improvement (%) 
94.8 

 

This experiment shows that optimizing   alone improved 

our classification accuracy while holding other parameters 

constant. For further comparison, we used 10%, 20%, 30%, 

40%, 50%, 60%, and 70% of the sample dataset as training 

samples. For each training sample set, we calculated the 

classification accuracy before and after optimization, as shown 

in Fig. 1. The classification accuracy was better when the kernel 

parameter   was optimized. Therefore, we confirm that our 

ISIM method improves the accuracy of smart substation 

network fault classification. This stage also prepared for the 

following GA-PSO experiment. 
 

Fig. 1. Classification results for kernel parameter optimization 

 

3) Optimization of penalty parameter C 

In this experiment, we searched for the optimal value of the 

penalty parameter C in the range [0,200]. We set the value of 

the two learning factors c1 and c2 to 1.5 and 1.7, respectively, 

as these are common values and would have no effect on the 

comparison results of the experiments in this section. We used 

a population size of 30 and a generation limit of 100. We used 

600 samples as the training dataset and the remaining 200 as the 

test dataset. The optimized kernel parameter   together with 

the specified penalty parameter C ( , )C  obtained from the 

previous experiment is set to the initial value of gbest in GA-PSO 

algorithm that we proposed. However, GA and PSO need to 

calculate their respective classification accuracies without the 

ISIM optimization. After repeated training, our GA-PSO 

algorithm determined the optimal penalty parameter C and the 

corresponding  . Table III shows the results of the 

classification prediction. 

TABLE III 

 OPTIMIZATION RESULTS OF CLASSIFICATION PREDICTION  

Algorithms (C,σ)  
optimization 

time (s) 

classification 

accuracy 

GA (98.6,78.5) 529 95.2% 

PSO (129.7,70.2) 463 93.9% 

GA-PSO (116.2,64.8) 458 97.8% 

 

Table III shows that when the classification performance 

was optimal, not only the C value was optimized but also the 

  value. The experimental data from the GA algorithm show 

that the algorithm had better performance optimization but with 

slower convergence speed. The experimental data from the 

PSO algorithm show that PSO took less time than GA but with 

slightly reduced classification accuracy. The data from our GA-

PSO method show that it had the shortest optimization time and 

the best resulting classification accuracy. Notice that the 

optimization time taken by GA-PSO consists of the time for 

ANP denoising, ISIM kernel parameter optimization, and GA-

PSO for penalty parameter optimization. Since the initial value 

of gbest was optimized by the ISIM method, the optimization 

time of the penalty parameter was greatly reduced. Therefore, 

the hybrid optimization algorithm we have proposed consists of 

three parts: ANP, ISIM, and GA-PSO. 
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To further compare and the performance of this hybrid 

algorithm with others, we also ran tests using 10%, 20%, 30%, 

40%, 50%, 60%, and 70% of the input as the training set to see 

the effects on classification accuracy. Fig.2 shows the results. 

The results demonstrate that our hybrid optimization algorithm 

significantly outperforms existing methods. Therefore, we 

believe that the hybrid algorithm offers the best fault 

classification accuracy. 

 

Fig. 2. Comparison of classification accuracy  

V. CONCLUSIONS 

In this paper, we have studied the characteristics and related 

technologies of network fault diagnosis in smart substations. 

We have preprocessed and applied ANP to the data to remove 

noise and increase classification accuracy. From there we 

investigated kernel parameter optimization with our ISIM 

classification method to further improve classification. Finally, 

we used our improved GA-PSO to enhance performance 

further. The experimental results show that the classification 

algorithm proposed in this paper is advantageous and suited to 

smart substation network fault classification. 
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