Routing policy validation for the integrated system supporting routing in Software Defined Networks (SDNRoute)

Authors

  • Piotr Jaglarz AGH University of Science and Technology
  • Grzegorz Rzym AGH University of Science and Technology
  • Piotr Jurkiewicz AGH University of Science and Technology
  • Piotr Boryło AGH University of Science and Technology
  • Piotr Chołda AGH University of Science and Technology

Abstract

In the article, a validation module, being a component of an integrated system supporting routing in software defined networks (SDNRoute), is proposed and thoroughly examined. The module allows for the verification of the results provided by the optimization module before these results are deployed in the production network. Routing policies are validated for their impact on the network quality parameters and against the threat of overloading (congestion).

References

D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

P. Boryło, P. Chołda, J. Dom˙zał, P. Jaglarz, P. Jurkiewicz, A. Laso´n, M. Niemiec, M. Rzepka, G. Rzym, and R. Wójcik, “SDNRoute: Integrated System Supporting Routing in Software Defined Networks,” in 2017 19th International Conference on Transparent Optical Networks (ICTON), July 2017, pp. 1–4.

R. Wójcik, J. Dom˙zał, Z. Duli´nski, P. Gawłowicz, and P. Jurkiewicz, “Loop resolution mechanism for Flow-Aware Multi-Topology Adaptive Routing,” IEEE Communications Letters, vol. 19, no. 8, pp. 1339–1342, Jun 2015.

A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS Adaptive Traffic Engineering,” in IEEE INFOCOM 2001, vol. 3, 2001, pp. 1300–1309.

S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the Tightrope: Responsive Yet Stable Traffic Engineering,” ACM SIGCOMM Computer Communication Review, vol. 35, no. 4, pp. 253–264, 2005.

P. Jurkiewicz, R. Wójcik, J. Dom˙zał, and A. Kamisi´nski, “Testing implementation of FAMTAR: Adaptive multipath routing,” Computer Communications, vol. 149, pp. 300–311, 2020.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat et al., “Hedera: dynamic flow scheduling for data center networks.” in NSDI’10, 2010.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee, “Devoflow: Scaling flow management for high-performance networks,” in ACM SIGCOMM Computer Communication Review, vol. 41, no. 4. ACM, 2011, pp. 254–265.

J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, “Opensample: A low-latency, sampling-based measurement platform for commodity sdn,” in 2014 IEEE 34th International Conference on Distributed Computing Systems. IEEE, 2014, pp. 228–237.

C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Wattenhofer, “Achieving high utilization with software-driven WAN,” ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 15–26, 2013.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-deployed software defined WAN,” ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 3–14, 2013.

I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for traffic engineering in SDN-OpenFlow networks,” Computer Networks, vol. 71, pp. 1–30, 2014.

M. R. Abbasi, A. Guleria, and M. S. Devi, “Traffic engineering in software defined networks: a survey,” Journal of Telecommunications and Information Technology, 2016.

O. Michel and E. Keller, “SDN in wide-area networks: A survey,” in 2017 Fourth International Conference on Software Defined Systems (SDS). IEEE, 2017, pp. 37–42.

Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu, “Software-defined wide area network (SD-WAN): Architecture, advances and opportunities,” in 2019 28th International Conference on Computer Communication and Networks (ICCCN). IEEE, 2019, pp. 1–9.

G. Rzym, P. Boryło, and P. Chołda, “Time-efficient shrinkage algorithm for Fourier-based prediction enabling proactive optimization in Software Defined Networks,” 2019. [Online]. Available: http://kt.agh.edu.pl/~rzym/publications/prediction.pdf

M. Pióro and D. Medhi, Routing, Flow, and Capacity Design in Communication and Computer Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., July 2004.

Y. Yang, M. Xu, D. Wang, and S. Li, “A hop-by-hop routing mechanism for green Internet,” IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 1, pp. 2–16, Jan 2016.

P. Ruiu, A. Bianco, C. Fiandrino, P. Giaccone, and D. Kliazovich, “Power comparison of cloud data center architectures,” in 2016 IEEE International Conference on Communications ICC’16, May 2016.

S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “SNDlib 1.0— Survivable Network Design Library,” vol. 55, no. 3, pp. 276–286, May 2010.

P. Jurkiewicz, G. Rzym, and P. Boryło, “How Many Mice Make an Elephant? Modelling Flow Length and Size Distribution of Internet Traffic,” arXiv:1809.03486, 2018. [Online]. Available: http://arxiv.org/abs/1809.03486

Downloads

Published

2024-04-19

Issue

Section

Telecommunications