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A reactive algorithm for deducing nodal forwarding
behavior in a multihop ad-hoc wireless network in

the presence of errors
Karol Rydzewski, Jerzy Konorski

Abstract—A novel algorithm is presented to deduce indi-
vidual nodal forwarding behavior from standard end-to-end
acknowledgments. The algorithm is based on a well-established
mathematical method and is robust to network related errors
and nodal behavior changes. The proposed solution was verified
in a network simulation, during which it achieved sound results
in a challenging multihop ad-hoc network environment.
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I. INTRODUCTION

SELF-ORGANIZATION and node autonomy in ad-hoc
networks pose many research and engineering challenges.

One important issue is nodal selfishness and a strong microe-
conomic incline toward uncooperative behavior — primar-
ily, dropping some or all offered transit packets instead of
forwarding them [1]. Many concepts aiming at incentivizing
cooperative behavior have been proposed; two main lines
of research in this area are micropayment schemes [2] and
reputation systems [3]. The presented solution comes under
the latter line, and uses a novel approach to detection of nodal
forwarding behavior, the core mechanism of every reputation
system. In our research, we developed two algorithms based
on the same model to solve this problem. One of them,
described and validated with the same simulated data set,
cf. reference [4], uses linear programming enhanced with
heuristics to address network errors and occasional changes in
forwarding behavior. As an output it produces for each node an
interval containing, in most cases, the node’s true percentage
of forwarded packets, thereby also providing a measure of
confidence in the deduced behavior. In contrast, the algorithm
detailed in this paper uses the least squares method, which
is better suited to operate in environments where changes
and errors are prevalent. We incorporated a mechanism in
the algorithm that improves the deduction quality in volatile
environments and informs users of possible deduction error.

The remainder of this article is organized as follows: Sec. II
summarizes related works and highlights the advantages of our
solution; Sec. III presents the adopted model; Sec. IV details
the deduction algorithm; Sec. V discusses the simulation
environment and the results of the algorithm’s evaluation;
finally, Sec. VI concludes the paper.

This work was funded by National Science Centre, Poland under grant
No. UMO-2016/21/B/ST6/03146.

K. Rydzewski and J. Konorski are with Faculty of Electronics, Telecom-
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II. RELATED WORK

In recent years, many concepts of reputation systems have
been proposed for multihop wireless networks to ensure that
(selfishly) misbehaving nodes are isolated or forced into co-
operation; see reference [3] for a survey. An essential part of
such systems is a behavior detection mechanism.

Many of these systems use a watchdog mechanism [5],
[6], [7], [8], [9] that relies on omnidirectional single-channel
wireless transmission for sensing packets transmitted by a
neighbor node. Its fundamental assumption is that if a node A
requests a neighbor node B to forward its packets to a remote
node C, then a watchdog at node A can also check whether
node B forwards the packets to node C. However, owing
to various imperfections of wireless transmission, watchdogs
are known to be unreliable. Moreover, they do not reflect
the nature and underlying incentives of a multihop wireless
network service, which consists in source-to-destination rather
than node-to-node packet transfer, thus violating the end-to-
end principle [10].

The need to derive agent reputation from a service com-
posed of multiple agents has been pointed out in [11]. How-
ever, research efforts to date have focused on the explicit
locations of misbehaving nodes on paths, e.g., via the two-
ACK scheme [12], node auditing [13], or end-to-end flow
conservation analysis [14].

A notable example, proposing a different approach address-
ing the above need, has been presented in [15] as a a concept
of selfish node detection in military wireless sensor networks
with hierarchical tree structures. In this concept, the detection
and later avoidance of malicious nodes is orchestrated by the
sink node that periodically changes the network topology and
assigns a unique encryption key to every node of the network.
A source node adds a sequence number and the node’s ID to
each generated packet and encrypts the packet. Every node
further along the path adds its own ID to the packet and
encrypts it again with its own key. A sink gathers statistics on
network behavior. Given the network topology and its changes,
and knowing the ratio of delivered packets to packets sent
by a given source node, the sink is able to deduce malicious
and suspected nodes in the network. Obviously, the system
is constrained to work in controlled networks, and is unfit
to work in self-organizing ad-hoc networks. Additionally, it
requires an encryption component into every network node,
which can result in a prohibitive cost in some low-powered
devices.
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Another, similar mechanism working in multihop ad hoc
networks with OLSR routing protocol has also been proposed
[16]. The algorithm collects information on all paths used
within a given network, i.e., on the transit nodes as well as
packets sent and delivered on each path. The data are then
analyzed using a heuristic algorithm to identify misbehaving
nodes. The algorithm attempts to isolate a single node that
exists only on misbehaving paths and does not exist on
any path working correctly, through comparing the paths’
intermediate node sets. If such a node is identified, it is blamed
for the unsatisfactory performance of all paths on which it is
present. As the authors acknowledge, this method has several
limitations: the network must have a sufficiently large set of
disjoint paths, the number of misbehaving nodes must be much
smaller than the number of cooperative nodes, and only a
limited number of misbehaving nodes may be detected. The
algorithm is incapable of identifying any misbehaving node
when a set of misbehaving paths exists such that there is
no single node present on all of these paths, since then at
least two nodes are responsible for this situation. Similarly,
the algorithm fails to reflect reality when a single node from a
set of misbehaving paths can be isolated, but it is only partially
responsible for the decreased path performance, because there
are more nodes contributing to it. In such cases, only one node,
not necessarily the worst-behaving one, is identified and takes
responsibility for all the misbehavior, whereas other misbe-
having nodes are considered fully cooperative. Fine-grained
numbers representing node behavior are then translated into
one of three classes of nodal behavior via fuzzy-logic rules.
The above mechanism can be employed to detect two types
of misbehavior: dropping and delaying packets. Each of these
detection schemes is based on end-to-end acknowledgment,
the former on packet delivery statistics and the latter on the
number of packets not delivered within an a priori defined
timeframe. The type of misbehavior responsible for the re-
sulting rating cannot be specified.

Many detection mechanisms can discern only cooperative
or misbehaving nodes by measuring their behavior against a
predefined desirable pattern. Most often they rely on threshold-
based criteria or fuzzy-logic rules. Others [17] create a finer-
grained view of a node, typically with real-valued reputation
levels between 0 and 1.

The mechanism proposed in reference [16] is similar to the
solution described in this work, however, our algorithm seems
more universal and robust, as demonstrated in subsequent
sections. We state the major differences between our solution
and the referenced works as follows:

• The solution proposed in this work is able to detect
an unlimited number of misbehaving nodes and deduce
accurately behavior levels for each of them.

• The deduced behavior precisely reflects actual nodal
forwarding behavior and therefore enables a finer network
response.

• The algorithm provides additional information on the
quality of deduction, which can be used to assess its
usefulness in a given situation.

• The algorithm operates in a reactive manner and is
constantly optimizing its output to mitigate the effects
of nodal behavior changes and network errors.

• The proposed solution can work with any routing pro-
tocol, providing a source node with information on all
intermediate nodes on the route used.

• The algorithm is based on a classical optimization prob-
lem with well-known properties and many dedicated
high-performance solvers available.

• The algorithm works in any topology without the need for
introducing any supporting infrastructure, e.g., encryption
or authentication. Consequently, the algorithm does not
degrade the flexibility, autonomy and performance of the
network.

• Our solution does not rely on the assumption that transit
nodes will cooperate in detecting behavior of their peers,
thus it is compliant with the widely recognized end-to-
end principle [10].

III. MODEL

In our notation, sets are written in boldface, nodes are
denoted by upper-case letters, and lower-case symbols are
reserved for various numerical characteristics. The set of
network nodes is denoted by N. For simplicity, in the presented
solution it is a static set; however, the algorithm can work
without modifications on a variable set. The traffic pattern is
represented by a set K of source-destination node pairs. If
there is no wireless link between a given source-destination
node pair, then a path involving transit nodes is established
by using some single-path routing protocol. For a path k ∈
K, let Sk, Dk ⊆ N denote the source and destination nodes,
and let Xk ⊆ N\{Sk, Dk} denote the (possibly empty) set of
transit nodes1.

As previously indicated, the transit nodes may selfishly drop
all or part of the offered transit packets. To incentivize a
satisfactory packet forwarding service, the network must first
accurately deduce nodal forwarding behavior. To this end,
it incorporates a reputation system whose task is to deduce
each node’s forwarding behavior from observable performance
characteristics. Later use of the deduced behavior levels is
beyond the scope of this work. Although this task could be
fulfilled in a distributed fashion, for ease of exposition we
assign it to a single network-wide reputation server (RS).
(A distributed algorithm will be investigated in future work.)
Source nodes in the network, upon completion of each com-
munication session, send a report on the observed end-to-end
packet delivery ratio (PDR). After receiving the report from a
source node, RS runs a dedicated algorithm that calculates
each node’s forwarding behavior level. Hence, watchdogs
are dispensed with, and deducing the individual forwarding
behavior of the nodes in Xk from the PDR on path k becomes
the main challenge.

With regard to the forwarding behavior of a node X ∈ N, we
introduce two quantities. One, denoted by gX , is its intrinsic
forwarding trustworthiness (IFT) defined as the percentage of

1The sequence of nodes in Xk is irrelevant as long as the nodes can form
a valid path between Sk and Dk .
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offered transit packets that the node is inclined to forward
toward the destination. This is a ground truth-type quantity,
which is accurately observable only to node X itself. The
other quantity, denoted by dX , may change as new reports
are received; it is the nodal behavior level as deduced by RS
from the reported PDRs. We have gX , dX ∈ [0, 1], where 0
signifies a lack of cooperation (no packet forwarding), and
1 signifies fully cooperative behavior (no packet dropping).
Ideally, dX = gX , but in reality the two quantities may differ
on account of inaccurate observation of end-to-end PDRs and
possible ambiguities produced by the underlying deduction
algorithm at RS. Accurately approximating gX by dX is
critical to the viability of our reputation system.

The proposed deduction algorithm relies on the following
assumptions:

i After each packet transmission (e.g., TCP) session on path
k ∈ K, the source node Sk calculates and truthfully reports
to RS the observed end-to-end PDR, denoted by pk, along
with the set Xk. The presence of Xk in the report implies
that the employed routing protocol reveals all transit nodes
on path k to Sk before all packets within the session
have been transmitted toward Dk. An example is Dynamic
Source Routing (DSR) [18], an on-demand source routing
protocol in which Sk initiates a path discovery process,
and one path is returned in a reply message containing a
list of all discovered transit nodes. This list is carried in
packets’ DSR headers (and is also visible to all the nodes
in Xk).

ii Node X forwarding behavior with respect to an offered
transit packet is defined as an IFT-based forward/drop
decision, whereby a retained packet is forwarded with
probability gX and dropped with probability 1− gX .

iii The forward/drop decisions at the nodes in Xk are fully
autonomous and statistically independent, and also are not
selective with regard to k. Path selective behavior is not
assumed to occur, for simplicity of analysis, although such
behavior is generally possible [16] and will be investi-
gated in future work. External, e.g., temporary congestion-
related factors may influence the observed PDRs, thus
possibly resulting in apparent path selective behavior;
in our model, these factors are regarded as observation
imperfections and are not explicitly modeled.

In light of assumptions i–iii, the probability of successful
packet delivery on path k, as observed by Sk through the
analysis of incoming end-to-end ACKs and later reported to
RS as pk, is determined by the path equation:

pk =


∏

X∈Xk

gX , Xk 6= ∅

1, Xk = ∅
(1)

Note that pk is the fully determined ground-truth IFT of
the nodes in Xk. If path k contains only ideally trustworthy
transit nodes (or no transit nodes at all), then Sk can expect
an end-to-end PDR equal to 1. If path k does not contain any
transit nodes (Xk = ∅), pk = 1, as Sk is clearly interested
in forwarding all of its source packets. A similar model of pk
in a selfish network environment has been proposed in [19].

The path model, RS communication and nodal forwarding
behaviors are illustrated in Fig. 1.

Fig. 1. Path model and communication with RS.

The centralized RS model simplifies the considerations,
although a distributed reputation system can be envisaged
instead; this will be examined in future work. In addition, we
stress that the proposed deduction algorithm has reasonable
routing requirements (information on transit nodes available
for the source node prior to a session end) and can work with
any number of misbehaving nodes.

Nodal behavior levels are calculated by RS whenever a
PDR report is received, on the basis of this and all previously
received PDR reports. In the next section, we first describe the
algorithm for an idealized model, and next proceed with mech-
anisms for mitigating PDR observation errors, IFT changes
and possibly untruthful reporting.

IV. ALGORITHM

Each source node in the network collects data on the
PDR ratio (pk) and transit nodes (Xk) for each path (k) that
the node uses. The data tuple 〈pk, |Xk|〉 is sent to the RS
upon completing a TCP session on a given path; this tuple
constitutes a PDR report. The RS builds an equation system
from all received reports according to the model (1):

pk =
∏

Y ∈Xk

gY ,∀k ∈ K (2)

Because a multiplicative PDR model equation is not suit-
able for linear regression methods, the RS uses logarithmic
transformation to obtain a system of linear equations. Let
p̃k = − logb(pk) and g̃X = − logb(gX), the logarithms being
to any base b > 1. Then (2) transforms into:

p̃k =
∑
Y ∈Xk

g̃Y ,∀k ∈ K (3)

The linear system (3) is an input for a behavior deduction
algorithm, which is identical to a least-squares minimization
problem:

minimize: |Ag̃ − p̃| (4)

subject to: gY ∈ [0, 1], Y ∈ N

where A is an |N| × |K| node-path incidence matrix, and is
a |K|-dimensional column vector with a generic entry p̃k.
Writing AT for the transpose of A, the solution to (4) can
be routinely obtained as:
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g̃∗ = (ATA)−1AT p̃ (5)

and subsequently transformed to the deduced behavior level
dX , X ∈ N, using dX = expb(−g̃∗X). The result is a
scalar number representing the best possible match of all
dX for all equations in the RS-built linear system, i.e., dX
minimizes the total discrepancy among pk (PDR observed by
source nodes) and p

′

k (PDR calculated by substituting dX into
all the equations in the system). This discrepancy is called
the residual. In the basic least-squares method, the error of
deduction of dX follows from (4). This error may be of
fundamental significance if dX is used as a decision factor
for subsequent cooperation enforcement. To give this error,
denoted eX , a more straightforward interpretation, we propose
a method to assess it as the maximum residual for all reported
paths containing node X:

eX =

{
maxk∈KX

|pk − p
′

k|, |KX | > 3

penalty, |KX | ≤ 3
(6)

where pk is given by (2), p
′

k =
∏

Y ∈Xk

dY , and KX = {k ∈

K : X ∈ Xk}. When the number of reported paths comprising
node X as a transit node is small, the eX value is set to an a
priori defined penalty value. The penalty is set to 1 (highest
possible error value) to avoid yielding misleading results when
the number of reports on X behavior is insufficient to yield
a conclusive estimate. Without this provision, algorithm (6)
would significantly underestimate the eX for such nodes. The
threshold value 3 was experimentally evaluated to provide a
satisfactory balance between an acceptable risk of a false result
and the minimum sample size required to yield informative
output.

The formula (6) produces a single number that can be used
to calculate an interval within which gX should be located:
gX ∈ [dX − eX , dX + eX ] ∩ [0, 1]. Importantly, the interval
has the following properties:

1) It is based on source nodes’ reports; in some cases,
the true gX may be located outside this interval. An
example of such a case is a situation where majority
of KX reports experience unusually high medium-related
losses. This may happen if a relatively small portion of
a network suffers from congestive traffic, while the rest
of the network operates in more favourable conditions.
The algorithm should gradually recover as new reports
are received.

2) The interval depends on errors related to all nodes co-
existing with X at least once on a path in KX . It is
impossible to deduce which node is responsible for a
specific value of eX .

One path in KX almost always resulted in a large (|gX−dX+
eX | > 0.05) deduction error for X because of interference
between the PDR-reading error and the inherent least-squares
error. Two paths in KX improved the results, however, signif-
icant errors were observed in roughly 10% of the cases. With
|KX | = 3 we did not observe any significant errors and even
small errors (|gX − dX + eX | < 0.05) were infrequent. Note

that because the results of the deduction algorithm strongly
depend on the network topology and the nodes’ IFT, it is hard
to judge if the adopted threshold value is a universally optimal
choice.

In typical circumstances (without nodal behavior changes
and under steady traffic conditions), the value of the observed
error initially increases with incoming PDR reports and even-
tually stabilizes. Unusually large network errors (e.g., buffer
overflow, transmission impairments, MAC-layer delays, end-
to-end acknowledgment loss, PDR inaccuraccies) and nodal
IFT changes result in sharp surges in eX . The value by
which gX changes is correlated with the increase in eX . The
presented solution uses eX values to improve the deduction
accuracy (defined as gX − dX ) and enable prompt response
to nodal IFT changes.

Proposed algorithm operates accordingly to Algorithm 1.
Upon receipt of a new report, RS transforms it with logarithm
transformation (3), and calculates dX and eX values for each
node in N, based on the whole K, including the newly received
report. Then, RS starts search for possible optimization by
looking for a KX subset, which removal results in lowering
overall eX . Search for improvement is continued until no
suitable KX is identified for removal or further search is
impossible (e.g., all paths have been removed).

begin upon reception of a PDR report: < pk,Xk >
< pk,Xk > report ← log. trans.(< pk,Xk >); //(3)
while true do

vector orig. dX ← deduce IFT(K∪ report);
//(5)

vector orig. eX ← estimate error (N, orig. dX ,
K ∪ report, penalty); //(6) for each X ∈ N

foreach X ∈ report.Xk do
vector dX ← deduce IFT((K\KX ) ∪

report);
eX ← sum(estimate error(N, dX , (K\KX )
∪ report, penalty));

end
< node, eX > best← min(eX );
if best.eX ≥ sum(orig. eX ) then

K ← K ∪ report;
orig. eX ← estimate error(N, orig. dX , K,

penalty=1) return orig. dX , orig. eX ;
else

K← K \Kbest.node;
end

end
end
Algorithm 1: A reactive algorithm for deducing IFT

Notably, removing more paths from K than necessary is
undesirable because it negatively affects deduction for all
nodes in the network until new reports are received. Because
of this fact, excessive path removal should be discouraged.
Assigning an appropriate penalty value 6 is essential for
achieving a good balance between the sensitivity of the
deduction algorithm for IFT changes and the prevention of
unnecessary path removal. A discussion of the influence of the
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penalty values on the algorithm’s deduction accuracy will be
provided later. Note that in Algorithm 1 there is a difference
between the penalty values returned by the algorithm as an
end-result, to provide information on possible deduction errors
(penalty always equals 1), and the penalty value used to decide
weather to remove KX subset (penalty ∈ [0, 1]).

Another measure implemented in the presented solution re-
stricts the maximum size of the analyzed linear system to some
predefined value called history, denoted by h. This reduces
the resources (memory and computing power) required for
deduction, and ensures that PDR reports produced by outdated
nodal IFT are eventually removed even if the path removal
mechanism based on eX differences fails to correctly identify
such reports. The h must be large enough to ensure minimal
disruption when paths are removed through the eX -based
mechanism. In stable environments, longer histories guarantee
superior accuracy; in contrast, in environments where nodal
IFT changes are frequent, decreasing h is beneficial as it
speeds up response to nodal IFT changes and permits to
quickly return to acceptable accuracy, cf. experimental results
in Sec. V.

V. SIMULATIONS

The simulation environment was built in OMNeT++ with
the Inetmanet extension package [20]. A simulated network
was configured as a multihop ad-hoc wireless network based
on the IEEE 802.11g standard. Selected simulation parameters
are provided in Table I.

TABLE I
SELECTED PARAMETERS OF THE SIMULATOR SETUP.

Parameter Value
antenna omnidirectional

nodal transmission 1 mW
power

receiver sensitivity -90 dBm

transmission error Ieee80211BerTableErrorModel
model (”per table 80211g Trivellatoḋat”) [20]

MAC protocol 9 Mbps 802.11g

EDCA enabled

maximum queue size 50

network layer ACK disabled

routing protocol DSR, route request period = 1 s

transport protocols TCP
UDP (only for to- and from-RS messages)

TCP mode DumbTCP [20]

TCP settings disabled: delayed ACK, selective ACK,
Nagle’s algorithm [21];

maximum segment size = 1452 B,
advertised window = 65535

simultaneously active 1-4
TCP sessions

nodal behavior 0.5-1.0

Node locations, as depicted in Fig. 2 along with the available
wireless links, were invariable throughout the simulations.
However, source-destination pairs were randomly selected for

each path (thus implying randomly selected transit nodes).
Moreover, initial nodal IFTs were randomly assigned at sim-
ulation startup. Hence, the examined network topology was
somewhat different in every simulator run. Additionally, other
networks, with varying numbers (up to 15) and location of the
nodes, were examined in parallel to this research and similar
results were achieved. Multiple traffic patterns were examined,
in which the average packet loss ratio due to network error
(mostly buffer overflow) fluctuated below 5%, with sporadic
spikes up to 11–12%.

Fig. 2. Network used in simulations (wireless links marked with solid lines).

Nodal IFTs varied according to a stochastic model. An
input to this model was the mean number of initiated sessions
between singular behavior changes in the entire population of
nodes, denoted by τ . On the basis of τ and the total number
of nodes in the network, |N|, the probability of IFT change
for a single node (cg) per initiated session was calculated as:

cg =
1

τ |N|
(7)

Subject to the above stochastic model, changes in a node’s
IFT were simulated when the node was chosen to be a transit
node on a newly created path on condition that it was not
currently serving as a transit node on another active path.
We chose such a model to simplify the control and analysis
of nodal behavior changes. Alternatively, the behavior could
change during an active session, resulting in the effective nodal
behavior during that session being some combination of the
initial and the new behavior. (An extreme option would be for
a node to behave differently during any two different sessions;
we conjecture that the algorithm should be able to perform
correctly under such a model as well, however, because of the
additional complexity of configuring the algorithm properly,
we defer this to future work.) The new behavior of a node
was stochastically drawn according to a uniform distribution
within the assumed domain for the simulations (gX ∈ [0.5, 1]).
Six τ values were used: {10, 50, 100, 150, 200 and ∞}, with
multiple simulation runs performed for each. The presented
algorithm for behavior deduction and observed error evalua-
tion was examined on uniformly prepared traffic generation
data. The influence of the penalty and history parameters
was evaluated and compared with the standard least-squares
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method not featuring these parameters (5). A total of 483
combinations of penalty and history parameters were exam-
ined, where penalty ∈ {0, 0.05, 0.1, 0.15, . . . , 0.95, 1} and
h ∈ {1, 25, 50, 75, . . . , 475, 550}.

Fig. 3. Average absolute accuracy in relation to penalty and history settings
in the deduction algorithm, (a) τ = 10, (b) τ = 100; for clarity, values above
0.08 in (a) and 0.028 in (b) were reduced to these values.

Fig. 3 presents the average absolute value of deduction
accuracy (|gX − dX |) in two simulation runs with different
τ values (τ = 10 in Fig. 2a and τ = 100 in Fig. 2b in
relation to variable h and penalty parameters (exploring their
full spectrum studied in the experiment). Steep spikes appear
for low values of either: insufficient numbers of reports (low
h) render accurate deduction impossible and result in high eX
rates; similarly, low penalty values do not prevent excessive
path removal, and the deduction algorithm is fed with an
insufficient number of path reports. The shape of the surface
beyond these extremely low values depends on the frequency
of changes. For low τ values, the deduction accuracy achieves
the lowest values for penalty in the lower part of its spectrum,
e.g., penalty ∈ (0.1, 0.4) for τ = 10. The h values have limited
influence; generally, h in the upper end of the tested range
yield the smallest deduction accuracy for comparable penalty;
however, in environments where IFT changes are prevalent,

a short history may yield better results. The lower the IFT
change frequency (i.e., the larger τ ), the more level the surface
become; in such stable environments, high values of both
penalty and history yield the best results.

Fig. 4. Outcome of the least-squares algorithm, (a) the simple variant, (b)
enhanced variant with path removal and limited history; solid lines: average
|gX − dX | for all the nodes, dotted lines: maximum |gX − dX |.

Fig. 4 compares the results achieved by the deduction
algorithm with and without its error-reacting component (6)
(respectively, Fig. 4b and Fig. 4a). In both plots, two values
are plotted in relation to the number of consecutively received
reports: average |gX−dX | (solid line) and maximum |gX−dX |
(dotted line). The outcome in Fig. 4b was achieved with
penalty = 0.85 and h = 325, which are the highest penalty
and h values among a group of the lowest |gX − dX | results
observed in Fig. 3b. The nodal IFT change frequency was
τ = 100. The IFT changes and significant network errors
were quickly detected, and the linear system at RS was aptly
trimmed. Acceptable average deduction accuracy was kept,
and the most erroneous dX values were quickly fixed. In
contrast, the standard least-squares algorithm was incapable
of adapting to nodal IFT changes and keeping the deduction
accurate.

The simulation results demonstrate that report removal to
minimize eX and history restriction are effective means of
improving behavior deduction accuracy when changes in IFT
behavior are prevalent. It was demonstrated that by manipulat-
ing the penalty and h parameters, decreasing in a volatile envi-
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ronment and increasing in a stable environment, the algorithm
performance can be adjusted to produce acceptable results and
short response times under various traffic conditions.

VI. CONCLUSION

A novel algorithm for deducing nodal individual forwarding
trustworthiness (IFT) on the basis of end-to-end acknowl-
edgements was presented. The algorithm is based on a well-
established mathematical method and incorporates apparatus
enhancing its deduction performance in volatile network envi-
ronments, as well as offers additional information on the de-
duction error. As such, it offers satisfactory situational aware-
ness and live insight into algorithm’s performance.During
extensive network simulations, the solution was demonstrated
to be robust to network-related errors as well as nodal IFT
changes, and to achieve significantly better results than exist-
ing algorithms.

A decentralized deduction algorithm, working with other
types of routing algorithms and better suited for mobile net-
works, and a scheme to incentivize cooperative nodal behavior
based on the presented solution are avenues of near-future
research.
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