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Space-Time-Frequency Machine Learning for
Improved 4G/5G Energy Detection

Małgorzata Wasilewska, and Hanna Bogucka

Abstract—In this paper, the future Fifth Generation (5G
New Radio) radio communication system has been considered,
coexisting and sharing the spectrum with the incumbent Fourth
Generation (4G) Long-Term Evolution (LTE) system. The 4G
signal presence is detected in order to allow for opportunistic
and dynamic spectrum access of 5G users. This detection is based
on known sensing methods, such as energy detection, however,
it uses machine learning in the domains of space, time and
frequency for sensing quality improvement. Simulation results for
the considered methods: k-Nearest Neighbors and Random Forest
show that these methods significantly improves the detection
probability.
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I. INTRODUCTION

FREQUENCY spectrum is a scarce resource of high
value for contemporary and future radio communication

networks with ever-growing traffic for ubiquitous Internet
access. Nowadays, effective (possibly broadband) spectrum
access faces a major problem of limited resources, on one
hand, and inefficient usage of the ones already licensed, on
the other. The basic issue is how to maintain guaranteed
quality of services while a number of spectrum users and the
generated traffic are exponentially growing [1]. As a solution
to this problem, the idea of cognitive radio was proposed.
Cognitive radio is a concept of the intelligent radio network
and devices that acquire awareness on their radio environment,
and dynamically adopt their communication parameters to
the available transmission opportunities (spacial, spectral and
timing conditions) [2]. Moreover, cognitive radio is expected
to learn from its past actions by assessing the quality of
the decisions taken. A cognitive-radio user (called secondary
user – SU) is a radio device, that is able to determine the
current state of the spectrum occupancy, and to transmit and
receive the data, keeping the interference generated to the
licensed (incumbent) systems (called primary users – PUs)
at the acceptable level. For this spectral awareness, spectrum
sensing (SS) techniques are essential. SS allows SU to decide
whether the spectrum is occupied or not. If the spectrum is
idle, SU can transmit without disturbing PU. On the other
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hand, if PU is active (transmitting), SU should detect this
transmission, and wait until PU releases the spectrum.

Common detection methods include, the energy detection
method (ED) [3], matched filtering [4], cyclostationarity detec-
tion [5], waveform based sensing [6], wavelet transform based
detection [7] and other methods. In this paper, the focus is put
on ED method. ED is very simple, and is based on the received
signal energy calculation. It does not require any knowledge
on signal’s properties, however, the noise-level cognition is
essential [8]. The noise-power level respective to the detected
signal-power level, as well as the noise power estimation error
significantly impact the ED-based SS performance.

Thus, the goal of this paper is to examine, how the
cognitive-radio introduced intelligence, and in particular learn-
ing ability, can increase the probability of SS and the radio-
environment awareness. The applied machine learning (ML)
methods are introduced to support standard ED-based sensing
of resource blocks (RBs) that are being used by the Long-Term
Evolution (LTE) system base station (eNodeB) in the downlink
transmission. The ultimate goal of the applied methods is
to achieve high LTE-RBs sensing performance to enable the
fourth generation system (4G) and the fifth generation system
(5G) New Radio opportunistic (cognitive) communication by
utilizing sensed unused RBs. This 5G communication should
be particularly effective (spectrum-wise) as it can use the or-
thogonal frequency division multiplexing (OFDM) subcarriers
and RBs orthogonal to sensed LTE downlink signal.

The ML algorithms can significantly improve signal detec-
tion techniques. ML applied in SS can be used directly on
signal energy values as discussed in [9]–[11]. Moreover, ML
methods can use different sets of subject-signal features in or-
der to classify it, e.g., ED decisions, calculated energy-values,
location in space, time and frequency, etc., for classification of
the PU’s signal, namely PU’s transmission presence or absence
thereof [12]–[14].

Here below, LTE downlink signal detection is discussed,
which applies the ED method. Two ML methods for ED
performance improvement are considered, namely k-nearest
neighbors (kNN) and random forest (RF). Detection is per-
formed for every LTE resource block (LTE-RB), with con-
sideration of interrelationships between LTE-RBs. The LTE
signal shows correlation in time, which reflects daily traffic
changes. The considered signal is also correlated in frequency
and in space (spacial location of SU). Frequency correlation
reflects typical resource (channels) management among the
LTE-system cells, while spacial correlation reflects shadowing
effect in the radio communication channel.
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Note that in [15], we have considered some ED-based SS
methods with ML, however there, the ML algorithms have
been trained separately for the selected points in space, so
that the location coordinates (the space-dimension) have not
been used as features in the ML training and testing. This
approach has lower computational complexity, since the most
suitable subset of training data is selected at the beginning of
the algorithm. However, ML would never be performed for
exactly the same spatial coordinates as in the testing phase.
This introduces the need for preliminary calculations in order
to choose the nearest point in space. In consequence, a point
chosen this way might not indicate the similar (correlated)
propagation conditions as the other points in close proximity.
In the approach proposed in this paper below, the above
mentioned problem is solved by treating the space coordinates
as two additional ML features. The main contribution of this
paper can be then summarized as:
• ML-based SS algorithm development and formulation of

the space-time-frequency feature dataset used for ML
training;

• Obtainment of a trained ML model (via computer simu-
lations), that uses information of SU’s location as feature
input data, and thanks to that it can improve detection
performance;

• Verification of the method and comparison of the results
for various modulations used in LTE downlink.

The rest of the paper is organized as follows. In section
II, the ED method is described in detail. In section III,
the proposed ML algorithms are discussed, as well as their
application to ED-based SS. In section V, the simulation setup
is described, and in section VI, all of the results are shown
and discussed. Finally, in section VII, conclusions are drawn.

II. SIGNAL ENERGY DETECTION

Detecting signals comes down to deciding, which hypothesis
is more probable, hypothesisH0 or hypothesisH1. Hypothesis
H0 means that signal has not been transmitted, and that the
received signal y(t) consists of just noise n(t). Hypothesis
H1 denotes that the received signal consists of noise and
the transmitted signal s(t). Thus, hypotheses H0 and H1 are
defined as follows [16]:

H0 : y(t) = n(t),

H1 : y(t) = h(t) ∗ s(t) + n(t),
(1)

where h(t) denotes the channel impulse response, and ∗ is a
linear convolution. The performance indicators of a detection
method are: the probability of detection Pd (required to be
high) and the probability of false alarm Pfa (required to be
low). Pd is a probability of correctly deciding that hypothesis
H1 is true, while Pfa is a probability of wrongly deciding that
hypothesis H1 is true.

As mentioned above, in this paper, ED is considered for the
signal presence detection. This method requires the knowledge
about the noise power level or its estimation. On the other
hand, no signal properties knowledge required. Here, the
energy of the received signal is calculated, and is considered

as the so-called test function. Test function T (y) calculated
over N signal’s samples y(n) is calculated as follows [17]:

T (y) =
1

N

N∑
n=1

|y(n)|2. (2)

In order to decide, whether the signal is present, the value
of the test function is compared with threshold λ defined as
[17]:

λ = σ2
n

(
Q−1(P̄fa)

√
1

N
+ 1

)
, (3)

where σn denotes the noise power, P̄fa is an assumed max-
imum level of Pfa and Q−1 denotes the inverse Q function,
which is described using equation:

Q(x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du, (4)

where u is an integration variable. If value of the test function
is higher than threshold, it is assumed that the spectrum is
occupied. Otherwise, it is assumed that the spectrum is idle.
Therefore the probabilities of detection and false alarm can be
described as:

Pd = Pr{T (y) > λ|H1},
Pfa = Pr{T (y) > λ|H0}.

(5)

The probability of detection is calculated as the probability of
the test function value being higher than the threshold, while
hypothesis H1 is true. The probability of false alarm is the
probability of the test function value exceeding the threshold
value, while hypothesis H0 is true.

III. MACHINE LEARNING FOR ENERGY DETECTION
IMPROVEMENT

ML techniques are methods of finding patterns and similarities
in the input data (set of features) in order to categorize that
data into predefined or initially unknown output values. The
function of mapping input data into output values is unknown,
and the task of ML is to find out the best way of this function
approximation.

In this paper, two ML methods are being considered, namely
the kNN and the RF methods. Both of these algorithms belong
to the category of supervised algorithms, which implies that
in the training phase, the target values of outputs (labels) are
known for a given training dataset.

1) k-NN algorithm: For a given input data point, the kNN
algorithm consists in choosing k nearest neighboring training
data points (feature data points), by calculating their distance
to the input point [18]. The output value of an input point
is then decided as an output value that is the most common
(representative) among those closest k neighboring points. The
distance value is usually calculated as the Euclidean distance
[19].

The algorithm is easy to analyze. However, the drawback
is that the kNN requires storing of all of the training data to
perform the future-data prediction. This implies that for large
training datasets prediction can be extremely time and memory
consuming.
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In the case considered in this paper, transmission using
various LTE-RBs is to be detected. For each LTE-RB the ED
decision is made. Then, the kNN algorithm is supposed to
learn dependencies between LTE-RBs detected as occupied.
This is possible, because LTE-RBs are usually transmitted in
bunches, so the probability of a LTE-RB being occupied is
higher, the more of the closest LTE-RBs are considered as
occupied.

More details on the kNN application for the LTE-RBs
detection can be found in section IV.

2) RF algorithm: The RF algorithm is also a supervised
algorithm. It is a combination of several, slightly different
decision tree (DT) algorithms [20]. The DT algorithm builds a
decision tree based on the training data. For each branch of this
tree, the input data division into categories is made. For full
depth DT, all of the training data space gets correctly divided
into categories matching their output labels. This means that
though all of the training data points are categorized correctly,
DT may overfit on new data point outside of the training
data. The RF algorithm is a way of minimizing overfitting
by averaging operation of several DTs, that are performed on
randomly chosen data subsets.

We believe that RF should perform well in the considered
LTE scenario. A fundamental advantage of this algorithm is
that once the algorithm is trained, it does not require storing
all of the training data. However, for a large number of DTs
used, the RF algorithm can be computationally complex.

IV. ALGORITHM DESCRIPTION

We propose that the sensing algorithm consists of three main
steps:

• Collecting the ED decisions regarding a single LTE-RB
in the current time slot.

• Features calculation for each LTE-RB, both for LTE-RBs
recognized as occupied and for LTE-RBs recognized as
idle.

• ML algorithm application on calculated features, trained
on the collected training data.

The first step is to use ED on the received signal samples. For
an assumed level of P̄fa the threshold λ is calculated. Then,
the test function value, i.e., the signal’s energy is obtained
in a given time slot, and for a given set of subcarriers, that
form one LTE-RB. If the test function value for this LTE-
RB is higher than the threshold, the LTE-RB is recognized as
occupied, otherwise it is decided that the LTE-RB is idle.

At this point, the second phase of the sensing procedure
begins, which constitutes of the features calculation for each
LTE-RB. Some of the features are calculated based on ED
decisions, the rest of the features are measured to provide
information on time, frequency and space-location of trans-
mission. The used features are listed below:

• the LTE-RB frequency identifier - a number that unequiv-
ocally determines a set of subcarriers on which the given
LTE-RB is being detected;

• the time slot identifier - a number that corresponds to the
time of LTE-RB detection;

Fig. 1. Sample LTE resources allocation in time and frequency.

• the first coordinate of the sensor (SU sensing the PU
signal) position;

• the second coordinate of the sensor position;
• the ED decision regarding considered LTE-RB;
• the number of adjacent neighbouring LTE-RBs recog-

nized as occupied;
• the number of diagonally neighboring LTE-RBs recog-

nized as occupied;
• the history coefficient with the forgetting factor.

The history coefficient is defined as:

φED(m, l) = ED(m, l) + α · φED(m− 1, l), (6)

where α is the forgetting factor in the range of [0, ..., 1],
ED(m, l) is the ED decision for the LTE-RB of time slot
identifier m and subcarriers identifier l.

The above mentioned features are supposed to provide
sufficient information to the ML algorithm, so that it can
correct the ED results. The use of ML is the last part of the
algorithm.

V. EXPERIMENT SETUP

The considered signal has been simulated as a downlink LTE
signal of bandwidth 10 MHz. OFDM signal is transmitted over
12 subcarriers and every LTE-RB has the bandwidth of 180
kHz. One LTE-RB lasts 0.5 ms. To generate every OFDM
symbol, FFT of order 1024 has been used, and the cyclic
prefix of the length of 144 samples has been added. The
QPSK modulation has been considered in most results. For
comparison also other LTE downlink modulation have been
considered, namely 16-QAM and 64-QAM.

The aim of the experiment was to evaluate how the ML
algorithms can improve the ED method, if correlation of the
received signal ED detection in time, frequency and space
is in place. The correlation in frequency has been simulated
by introducing the Gaussian distribution in the probability
of choosing the frequency channels (frequencies for LTE-
RB). The probability of choosing some center frequencies is
higher than choosing other frequencies. This approach can be
justified as a way of avoiding interference from outside of
used frequency band. The correlation in time corresponds to
the daily changes in communication traffic. At some periods
of a day, more resources are occupied, and at other periods
(especially at night hours) the traffic is much lower. This has
been simulated using the Gaussian distribution of the time-
slots transmission probability. Figure 1 shows an example
resource allocation in time and in frequency. The correlation
in space is introduced by the shadowing effect in the channel-
model simulation.

Finally, in the radio channel model, Rayleigh fast fading
effect has also been simulated. For this purpose, the extended
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pedestrian A Model (EPA) [21], [22] has been used. Additive
White Gaussian Noise (AWGN) has been added to the signal.
The Signal-to-Noise power Ratio (SNR) has been calculated
relative to the power of one LTE-RB.

Figure 2 presents the SNR values distribution in the two-
dimensional space. It shows that the SNR values are spatially
correlated; for a given point in the considered space, the other
close points have similar propagation (attenuation) conditions.
The SU experiences different received signal attenuation,
depending on its location. Thus, the SU can learn through ML
algorithm to recognize areas of similar SNR levels and use this
information to improve the PU’s signal (transmission) presence
detection. As the path loss has not been implemented, the units
of x and y axis on Fig. 2 are not specified. It is assumed though
that the distances between every two closest location points are
distant enough that for every location point, different fading
channel impulse response has been generated. Note that in Fig.
2, the eNodeB location is not marked, because in this context,
the knowledge of the eNodeB location is not important and
it could be assumed to be anywhere in the given space, or
even outside of the presented space borders. The antenna
transmission model has been assumed to be omnidirectional,
and all of the SNR differences in space result from shadowing
effect only.

The considered PU’s signals have been generated using
MATLAB software (R2018a version 9.4, MathWorks, Natick,
MA, USA). Moreover, the ED algorithm has been performed
using MATLAB. The examined ML algorithms have been
implemented in Python programming language using scikit-
learn library [23]. Finally, it should be mentioned that the α
coefficient used to calculate the history coefficient has been
assumed to be equal to 0.9.

VI. RESULTS

The first step in our sensing algorithm is to apply the ED
method for the LTE downlink transmission signal and collect
(store) the results. Figure 3 presents the Pd and Pfa for three
values of the assumed level of P̄fa equal to 10%, 5% and 1%. It
can be observed that for higher P̄fa, the method performs better
in terms of Pd, but as it can be expected, Pfa is also higher
and close to assumed P̄fa level. It can be also observed that
even for very low SNR, Pd and Pfa obtain approximately equal
values, so Pd is never equal to zero. This is due to ED method,
where the value of λ threshold depends on noise power and
on the assumed P̄fa level, so for the worst channel state, the
percentage of noise (or noisy transmitted signal) exceeding the
threshold is equal to P̄fa.

Higher Pfa cause higher probabilities of making a mistake
by the ED method, i.e., deciding that a given LTE-RB is
occupied, when it is actually free. Higher Pfa can also be
a source of misleading information for the ML algorithm.

The first examined ML algorithm is the kNN method. It
has been tested for different values of parameter k which
stands for the number of neighboring data points taken into
account in the prediction. The values of k parameter are as
follows; k = 1, k = 3, k = 5 and k = 9. For all of the kNN
results, feature datasets for 40000 LTE-RBs have been used
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Fig. 2. Shadowing SNR representation in space.
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Fig. 3. ED results comparison for different P̄fa values.

for training and 4000 LTE-RBs for testing. The results were
averaged over 30 iterations. The kNN ML performance has
been tested using group k-fold cross-validation method. The
results are presented in Fig. 4. It can be observed that the best
performance has been achieved for the k = 1. This means that
the simplest, and least complicated algorithm, in terms of the
calculations, is the best solution for the ED improvement in the
considered scenario. For low SNR, the detection improvement
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Fig. 4. Results of kNN algorithm for P̄fa = 10%.

is significant. On the other hand, it should be noted that Pd

after the ML application is never equal to 100% even for high
SNR. This is caused by high value of Pfa, which prevents
ML from reaching the highest accuracy. This problem can
be solved by using ML adaptively as needed. For high SNR,
the ED is performing well and there is no need of using
other algorithms, which can be demanding computationally.
Another aspect worth noting, is that kNN algorithm lowers
Pfa down from the assumed level of 10% for high SNR.
The probability results for different SNRs were obtained by
performing multiple simulations for every location point and
by averaging the results for every SNR.

The Pd and Pfa results can also be calculated for each
tested location in space. Figure 5 presents such results. The
higher surface represents Pd in space, and the lower surface
represents Pfa.

Next, the RF algorithm has been examined. Similarly as
for kNN, RF has been tested for different values of the main
parameter. Here, the main parameter is the number of DTs
used. The RF algorithm has been performed for 1 tree, 10, 50
and 100 trees. For all of the RF results, feature datasets for
24000 LTE-RBs have been used for training and 4000 LTE-
RBs for testing. The results were averaged over 30 iterations.
The RF ML performance has been tested using group k-fold
cross-validation method as well. The results are presented in
Fig. 6. In this case, the results are very similar. The RF for
100 trees performs the best, although the differences are not
significant. In the rest of the paper, the RF algorithm for 1
tree will be considered. Similarly as in the previous example,
the highest improvements are made for low SNR and for high
SNR, Pd is lower than 100% and close to 90%.

Similarly as in the kNN algorithm’s case, the probability
surfaces of Pd and Pfa for RF results are shown in Fig. 7.

In order to compare, how the ML algorithms perform for
ED results obtained for lower P̄fa, two additional Figs. are
presented. Figure 8 presents the ED performance for P̄fa = 5%
and kNN results obtained for k = 1, as well as the RF results
obtained for 1 tree. Figure 9 presents the same ML algorithms
and ED results, but for P̄fa = 1%. It can be observed that the
lower the P̄fa, the closer Pd gets to 100% for high SNRs.
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Fig. 5. Probability representation in space of kNN results.
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Fig. 6. Results of RF algorithm for P̄fa = 10%.

To compare results of algorithm presented in this paper,
and results obtained in [15], the Fig. 10 has been obtained.
It can be observed that best results have been achieved for
the RF algorithm with 1 tree, for ML trained separately for
some chosen locations in space, and tested for the same
locations. The kNN algorithms perform very similarly for
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Fig. 7. Probability representation in space of RF results.
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Fig. 8. Results of kNN and RF algorithms for P̄fa = 5%.

low SNR for both proposed solutions. The worst performance
has been achieved for the RF algorithm trained on feature
set including spatial coordinates. Nevertheless, the differences
between performances of algorithms are small.

Except QPSK, other modulation methods than QPSK have
been tested as well. As expected, higher-order modulations
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Fig. 9. Results of kNN and RF algorithms for P̄fa = 1%.
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Fig. 10. Results of kNN and RF algorithms for P̄fa = 10%.

used in the LTE downlink transmission, namely 16-QAM
and 64-QAM, do not affect the ED results, and since ML
algorithms are based on ED decision data, ML performs the
same for every type of the signal modulation.

VII. CONCLUSION

In this paper, an algorithm for improving Energy Detection
of LTE signal has been proposed. The received signal is
considered in three domains, namely in time, frequency and
space. Two Machine Learning algorithms has been tested for
enhancing detection performance; the k-Nearest Neighbors
algorithm and the Random Forest algorithm. This approach
allows to significantly improve detection, especially for low
Signal-to-Noise Ratio. The proposed approach of considering
signal in space domain, allows to train the Machine Learning
algorithms without any knowledge of Signal-to-Noise Ratio.
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