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Abstract—In this paper the new synthesis method for 

reversible networks is proposed. The method is suitable to 

generate optimal circuits. The examples will be shown for three 

variables reversible functions but the method is scalable to larger 

number of variables. The algorithm could be easily implemented 

with high speed execution and without big consuming storage 

software. Section 1 contains general concepts about the reversible 

functions. In Section 2 there are presented various descriptions of 

reversible functions. One of them is the description using 

partitions. In Section 3 there are introduced the cascade of the 

reversible gates as the target of the synthesis algorithm. In order 

to achieve this target the definitions of the rest and remain 

functions will be helpful. Section 4 contains the proposed 

algorithm. There is introduced a classification of minterms 

distribution for a given function. To select the successive gates in 

the cascade the condition of the improvement the minterms 

distribution must be fulfilled. Section 4 describes the algorithm 

how to improve the minterms distributions in order to find the 

optimal cascade. Section 5 shows the one example of this 

algorithm. 
 
Keywords—reversible logic, reversible circuits, reversible gate, 

CNT set of the gates 

I. INTRODUCTION 

ogic synthesis of the reversible circuits is the initial step 

towards synthesis of quantum circuits [1]. Any 

irreversible logic computation dissipates a certain amount of 

energy [2]. This amount of heat dissipation will be 

problematic in the near future since the number of transistors 

on an integrated circuits is growing exponentially. Reversible 

logic constitutes a potential solution to this problem. The 

reversible circuits are able not to dissipate power because 

there is no information loss [3]. 

The classic synthesis problem is transformation any 

description of any function into some circuit implementation. 

These implementations are the cascades of the reversible 

gates.  
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Fig. 1. Example of the reversible gates 

 
 The one possible reversible gate is shown on the Fig. 1. The 

gate has the same input number (on the Fig. 1 three) as output 

number. On the one of the three lines is XOR gate. One of the 

input of this gate is connected to input of the gate. The second 

and third input of the gate could be connect to the another 
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input of the gate or not. These connection methods allow for 

four variants of the reversible gates with XOR gate on this 

line. 

There are many other types of the reversible gates. In this 

paper there will be used the NCT set of gates. The problem of 

the synthesis is to find the cascades which transform the given 

reversible function F into the identical function I. 

Furthermore, these cascades could be optimal ea. must contain 

a minimal number of gates. There are many methods leading 

to the solution of this problem [4,5]. In this paper will be 

presented a new algorithm able to execute manually as well as 

using appropriate software.  

II. REVERSIBLE FUNCTIONS DESCRIPTIONS 

The reversible function can be presented using many type of 

descriptions. They could be: true table, minterm permutation 

or hex notation of each Boolean function being components of 

reversible functions [6]. To ensure reversibility the number of 

inputs is the same as the outputs number (the number of 

variables is the same as the number of Boolean functions). 

 Let be given the reversible function F with three variables. 

This function could be described using truth table shown in 

Table I. 

TABLE I 

TRUTH TABLE OF EXAMPLE OF REVERSIBLE FUNCTION 

No. X2X1X0 Y2Y1Y0 

0 000 100 

1 001 000 
2 010 011 

3 011 010 

4 100 111 
5 101 110 

6 110 101 

7 111 001 

 

 For the three variables X2, X1 and X0 there are defined the 

three balanced (the same number of zeros and ones) Boolean 

functions Y2, Y1 and Y0. The set of the output vectors Y2Y1Y0 

contain all eight input minterms. None of the output vectors 

repeats. The output vectors are one of the possible minterms 

permutation. 

The second description of this function is the minterm 

permutation: <4, 0, 3, 2, 7, 6, 5, 1>. It is the sequence of the 

decimal form of the output vectors Y2Y1Y0 as an answer to 

increasing sequence of input vectors. The permutation <0, 1, 

2, 3, 4, 5, 6, 7> will be called the identical function I.  

The third description of this function is hex notation of the 

three functions Y2, Y1 and Y0. For our given function it will be 

8E3C2B (8E corresponds with Y2, 3C with Y1 and 2B with 

Y0) [7].  
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In this paper there will be introduced the fourth description 

of the reversible function using minterms partitions. For 

reversible functions with three variables the three partitions 

will be introduced. Each partition contains four two-elements 

blocks. Depending on the function the minterms occupy 

well-defined positions. The three partitions for the identical 

function I are: 

Y2:{0,4;1,5;2,6;3,7} Y1:{0,2;1,3;4,6;5,7} Y0:{0,1;2,3;4,5;6,7} 

Left elements in each blocks contain minterms with 0 for 

function Yi and right elements contain minterms with 1 for 

this function. These partitions designate the minterms 

positions in partitions for any reversible function. 

The three partitions for the given function presented in 

Table I are: 

Y2:{4,7;0,6;3,5;2,1} Y1:{4,3;0,2;7,5;6,1} Y0:{4,0;3,2;7,6;5,1} 

On the minterms 0 position (the minterm 0 place in partitions 

of the identical function) is minterm 4. On the minterms 1 

position is minterm 0, on the minterms 2 position is minterm 

3, on the minterms 3 position is minterm 2, on the minterms 4 

position is minterm 7 and so on. 

In order to indicate if the minterm i of the given function 

has the opposite bit value as the minterm on the same place in 

partition of the identical function the minterm i will be 

overlined. 

 For example, the minterm 4 takes the place of the minterm 

0 in the partitions of the identical function. These two 

minterms differ only on the most significant position so in the 

corresponding partition Y2 it will be denoted by over-lining 

minterm 4. For our example function from Fig. 1 this 

partitions of the function F will be indicated as below: 

Y2:{4̅,7;0,6;3,5;2,1̅} Y1:{4,3;0,2;7̅,5̅;6̅,1̅} Y0:{4,0̅;3̅,2̅;7̅,6̅;5̅,1} 

 
TABLE II 

 SWAPPED MINTERMS FOR REVERSIBLE GATES 

Gate Swapped positions  

T0 6,7 

C0-1 2,3 & 6,7 

C0-2 4,5 & 6,7 

N0 0,1 & 2,3 & 4,5 & 6,7 

T1 5,7 

C1-0 1,3 & 5,7 

C1-2 4,6 & 5,7 

N1 0,2 & 1,3 & 4,6 & 5,7 

T2 3,7 

C2-0 1,5 & 3,7 

C2-1 2,6 & 3,7 

N2 0,4 & 1,5 & 2,6 & 3,7 

 

Each reversible gate transforms the input function into another 

reversible function. On the outputs of this gate there will be 

the function with different partitions. The target of the 

synthesis algorithm is to find the gate sequence which 

converts the partitions of the given function into partitions of 

the identical function. In this paper we will present the new 

method of the reversible functions synthesis using the NCT set 

of reversible gates. This NCT set for three variable functions 

contains 12 gates. The one of this gates swaps proper 

minterms in the partitions of the input function and these new 

partitions defined the output function of this gate. The names 

of the gates and appropriate swapped minterms are presented 

in Table II. 

 In Table III are showed the diagrams of all gates from the 

NCT set. The gate C0-1 has the XOR gate on the line X0 and 

with the second input connected to X1. The gate C0-2 has the 

XOR gate on the line X0 and with the second input connected 

to X2. The gate N0 has the XOR gate on the line X0 and with 

the second input connected to X1 and X2 (logical AND of the 

two inputs X1 and X2). 
 

TABLE III 

THE NCT SET OF THE REVERSIBLE GATES 

Gate Swapped positions  

T0 

X2

X1

X0

Y2

Y1

Y2 

C0-1 

X2

X1

X0

Y2

Y1

Y2 

C0-2 

X2
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X0

Y2

Y1

Y2 

N0 

X2
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Y2

Y1

Y2 

T1 

X2

X1
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Y2

Y1

Y2 

C1-0 

X2

X1

X0

Y2

Y1

Y2 

C1-2 

X2

X1

X0

Y2

Y1

Y2

X2

X1

X0

Y2

Y1

Y2 

N1 

X2

X1

X0

Y2

Y1

Y2 

T2 

X2

X1

X0

Y2

Y1

Y2 

C2-0 

X2

X1

X0

Y2

Y1

Y2 

C2-1 

X2

X1

X0

Y2

Y1

Y2 

N2 

X2

X1

X0

Y2

Y1

Y2 

 

 The right column in Table II presents the gates operations. 

Each gate swaps appropriate positions indicated by the 

minterms positions of the identical function. For example the 

gate T0 swaps positions occupied by minterms 6 and 7 of the 

identical function. For our example function the gate T0 swaps 
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minterms 5 and 1 because these minterms occupy the 6 and 7 

positions of the identical function. These minterms 5 and 1 

will be swapped in all partitions. The output function of the 

gate T0 will be the function F(T0) with partitions as below: 

Y2:{4̅,7;0,6;3,1̅;2,5} Y1:{4,3;0,2;7̅,1̅;6̅,5̅} Y0:{4,0̅;3̅,2̅;7̅,6̅;1̅,5} 

The partition corresponding to Y1 could be ordered by the gate 

C1-2 (both minterms in two last blocks with over-lining 

minterms will be swapped by this gate).  

III. REVERSIBLE FUNCTIONS IMPLEMENTATION 

The implementations of the reversible functions are the 

cascades of the reversible gates presented in . Fig. 2. There are 

two types of the cascades. 
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Fig. 2. Examples of the cascades with 6 reversible gates  

The cascade in Fig. 2a (first type cascade) transforms 

function F into identical function I. The cascade in Fig. 2b 

(second type cascade) transforms function I into the given 

function F. Both the cascades contain the same gates but the 

order of the gates in both cascades is reversed. In the 

presented algorithm there will be used concepts of the rest 

function and the remain function.  
 

Definition 1: The output function Fr(Gi) of the gate Gi will be 

called the rest function of the input function F. 
 

The gate Gi which swaps the corresponding minterms (as in 

Table II) gives the new function denoted Fr(Gi). For the first 

type cascade the rest function Fr(G1) is realized by the gates 

G2 to G6. The rest function Fr(G6) is the identical function. The 

gate G6 in the first type cascade swapps the appropriate 

positions to receive on the output the identical function. The 

identical function determines these positions by their own 

minterm values. 

How to determine the function realized by the gates G1 to 

G5? It will be calculated by swapping the same minterms of 

the function F as the minterms swapped by the gate G6.  
 

Definition 2: The input function Fv(Gi) of the gate Gi will be 

called the remain function if on the output of the gate Gi is the 

function F. 
 

To determine the function Fv(Gi) the minterms values 

corresponding to the given gate Gi. should be swapped. 
 

Example 1: The remainder function Fv(G6) of the function 

from Table I if the gate G6 is T0 is:  

Y2:{4̅,6;0,7;3,5;2,1̅} Y1:{4,3;0,2;6̅,5̅; 7̅,1̅} Y0:{4,0̅; 3̅,2̅;6,7;5̅,1} 

In all partitions the minterms 6 and 7 are swapped (see 

Table II). 

 

Definition 3: The Boolean function Yi is ordered when 

corresponding partition has in all blocks minterm “0” on the 

left side of the block and “1” on the right side of the block. 

 

 From definition 3 the partition corresponding to Boolean 

function Yi has all blocks without over-lined elements. The 

Boolean function Y1 of the given reversible function F is 

ordered when the front gate of the first type of cascade G1 will 

be the gate C1-2. The gate C1-2 swaps positions of the 

identical function 4 with 6 and 5 with 7. On the positions 4 

and 6 in partition Y1 there are minterms 7 and 5 and on the 

positions 5 and 7 there are minterms 6 and 1. They will be 

swapped by the gate C1-2. The rest function Fr(G1) will be: 

Y2:{4̅,5;0,1̅;3,7;2,6} Y1:{4,3;0,2;5,7;1,6} Y0:{4,0̅; 3̅,2̅; 5̅,1;7̅,6̅} 

The Boolean function Y1 is ordered.  

 There are 576 (4!×4!=24x24) ordered partitions for each 

Boolean functions Yi. One of them is the identical function: 

Y2::{0,4;1,5;2,6;3,7} Y1:{0,2;1,3;4,6;5,7} Y0:{0,1;2,3;4,5;6,7} 

because every function Yi is ordered. 

 

All Boolean functions Y2, Y1, Y0 used in the reversible 

function are the balanced functions. Hence there exist (8
4

) = 70 

various combinations of the minterms distributions with and 

without over-lining.  One of these combinations corresponds 

to the ordered partition (all blocks are without over-lines).  

 There is another combination where all blocks contain both 

over-lined elements. For ordering this partition one gate Ni is 

needed. 

 There are 14 other combinations with blocks containing 

both elements over-lined or without over-line: 4 combinations 

with one block containing both elements over-lined, 

6 combinations with two blocks containing both elements 

over-lined and 4 combinations with three blocks containing 

both elements over-lined.  

 

Lemma 1. The partitions containing one from 15 above 

combinations could be ordered by the string of the gates with 

XOR on this line. This string could be one-, two-, three- or 

four-goal string gates. 

 

Proof.  

Four combinations: {x,x;�̅�,�̅�;x,x;�̅�,�̅�}, {x,x;x,x;�̅�,�̅�;�̅�,�̅�}, 

{x,x;x,x;x,x;�̅�,�̅�}, {�̅�,�̅�; �̅�,�̅�; �̅�,�̅�;�̅�,�̅�} could be ordering by one 

gate. Six combinations {x,x;x,x;�̅�,�̅�;x,x}, {x,x;�̅�,�̅�;x,x;x,x}, 

{x,x;�̅�,�̅�;�̅�,�̅�;x,x}, {�̅�,�̅�;x,x;�̅�,�̅�;x,x}, {�̅�,�̅�;�̅�,�̅�;x,x;x,x}, 

{�̅�,�̅�; �̅�,�̅�; �̅�,�̅�;x,x} could be ordering by two gates. Four 

combinations {�̅�,�̅�;x,x;x,x;�̅�,�̅�}, {x,x;�̅�,�̅�;�̅�,�̅�;�̅�,�̅�}, 

{�̅�,�̅�;x,x;�̅�,�̅�;�̅�,�̅�}, {�̅�,�̅�;�̅�,�̅�;x,x;�̅�,�̅�} could be ordering by 

three gates. One combination {�̅�,�̅�;x,x;x,x;x,x} could be 

ordered by four gates. 

 In Table III there are introduced the binary partitions 

corresponding to all gates. These partitions indicate the 

positions swapped by corresponding gate. The given gate 

swaps the minterms on the positions indicated by the same 

numbers in the partition but different from zero. 

  



284  A.SKORUPSKI, K.GRACKI 

 

 

TABLE III 

SWAPPED MINTERMS POSITIONS FOR REVERSIBLE GATES 

Gate Swapped positions 

T0 X2:{0,0;0,0;0,1;0,1} X1:{0,0;0,0;0,1;0,1} X0:{0,0;0,0;0,0;1,1} 

C0-1 X2:{0,0;0,0;2,1;2,1} X1:{0,2;0,2;0,1;0,1} X0:{0,0;2,2;0,0;1,1} 
C0-2 X2:{0,2;0,2;0,1;0,1} X1:{0,0;0,0;2,1;2,1} X0:{0,0;2,2;0,0;1,1} 

N0 X2:{4,2;4,2;3,1;3,1} X1:{4,3;4,3;2,1;2,1} X0:{4,4;3,3;2,2;1,1} 

T1 X2:{0,0;0,1;0,0;0,1} X1:{0,0;0,0;0,0;1,1} X0:{0,0;0,0;0,1;0,1} 
C1-0 X2:{0,0;2,1;0,0;2,1} X1:{0,0;2,2;0,0;1,1} X0:{0,2;0,2;0,1;0,1} 

C1-2 X2:{0,2;0,1;0,2;0,1} X1:{0,0;0,0;2,2;1,1} X0:{0,0;0,0;2,1;2,1} 

N1 X2:{4,4;3,1;2,2;3,1} X1:{4,4;3,3;2,2;1,1} X0:{4,3;4,3;2,1;2,1} 
T2 X2:{0,0;0,0;0,0;1,1} X1:{0,0;0,1;0,0;0,1} X0:{0,0;0,1;0,0;0,1} 

C2-0 X2:{0,0;2,2;0,0;1,1} X1:{0,0;2,1;0,0;2,1} X0:{0,2;0,1;0,2;0,1} 

C2-1 X2:{0,0;0,0;2,2;1,1} X1:{0,2;0,0;0,2;1,1} X0:{0,0;2,1;0,0;2,1} 

N2 X2:{4,4;3,3;2,2;1,1} X1:{4,2;1,1;4,2;3,3} X0:{4,3;2,1;4,3;2,1} 

 

Let consider the function F:  

Y2:{4̅,7;0,6;3,5;2,1̅} Y1:{4,3;0,2;7̅,5̅;6̅,1̅} Y0:{4,0̅;3̅,2̅;7̅,6̅;5̅,1} 

To calculate the partitions of the rest function we use the 

operation indicated by symbol • facilitating this operation. For 

example the partitions of the rest function Fr(T0) of the given 

function F are: 

Y2:{4̅,7;0,6;3,5;2,1̅}•{0,0;0,0;0,1;0,1}={4̅,7;0,6;3,1̅;2,5 } 

Y1:{4,3;0,2;7̅,5̅; 6̅,1̅}•{0,0;0,0;0,1;0,1}={4,3;0,2;7̅,1̅;6̅,5̅} 

Y0:{4,0̅;3̅,2̅; 7̅,6̅;5̅,1}•{0,0;0,0;0,0;1,1}={4,0̅; 3̅,2̅;7̅,6̅;1̅,5} 

 The gates with XOR on line Yi swap minterms in the same 

block in the partition Yi. Then these minterms in this block 

change the over-line situation: if the minterm was with over-

line then it would be without over-line and if it was without 

over-line then it would be with over-line. A different situation 

is on the remaining lines. The minterms in different blocks are 

swapped between these blocks without any changes in the 

over-line situation. 

IV. ALGORITHM 

The proposed algorithm based on the partitions analysis to 

evaluate the minterms distributions. The algorithm indicates 

the gates set containing the best gates leading to ordering any 

function Yi. This set will be called the front best gates FBG 

(front gate is the first gate in cascade). Is possible to appoint 

the closing best gates CBG (the closing gate is the last gate in 

the cascade).  

 The target of the analysis is to find the shortest way 

(minimal gates number) to sequentially ordering all the 

partitions. The algorithm starts for the given function and 

verifies the partitions if there exist one gate ordering any line. 

If it exist it will be the first member of FBG set. The next step 

of the algorithm is the calculations of the rest functions for 

every gate from NCT set. For each the rest functions must be 

verified if there exist the partition ordered by the string of the 

gates (one-, two-, three- or four-gates). If it exist will be the 

member of FBG set.  
 

Lemma 2  

The last gate Gi in the first type of the cascade ordering one of 

the lines Yi is the gate with XOR on line Yi. 
 

Proof: 

The gates with XOR on line Y i swap the minterms in one 

block (see Table III). If on the output of the gate the minterms 

 

distribution is ordered then on the input of this gate the 

minterm distribution on this line contains over-lining block 

corresponding with this gate. 

 

In each step of the algorithm the target of the analysis can be 

the series of the gates ordering the individual lines. In order to 

do it the minterms distribution should be transformed so as to 

receive the partitions only with blocks where both minterms 

are over-lined.  

 

Lemma 3  

The sequence of the gates with XOR on the same line Yi can 

be put in the cascade in freely order. 

 

Proof: 

Each of the gates with XOR on line Y i swaps the minterms 

only inside the given blocks. Swapping minterms inside the 

blocks in the same partition could be done in any order. 

 
TABLE IV 

THE DISTRIBUTIONS  

Gates 

numaber 
Minterm distributions 

1 {0,0;0,0;0,0;1,1} 

{0,0;0,0;2,2;1,1} 

{0,0;2,2;0,0;1,1} 
{4,4;3,3;2,2;1,1} 

2 {0,0;0,0;1,1;0,0} 

{0,0;1,1;0,0;0,0} 

{0,0;2,2;1,1;0,0} 
{2,2;0,0;1,1;0,0} 

{2,2;1,1;0,0;0,0} 

{1,1;2,2;3,3;0,0} 

3 {2,2;0,0;0,0;1,1} 
{0,0;1,1;2,2;3,3} 

{1,1;0,0;2,2;3,3} 

{1,1;2,2;0,0;3,3} 

4 {1,1;0,0;0,0;0,0} 

 

The synthesis problem can be reduced to a problem of 

transforming the given minterms distribution to one of the 

presented by Lemma 1. To solve the problem of ordering the 

partitions two criterions will be introduced:  

1. If one (or more) partition of the given function could be 

ordered by the string one-, two-, three- or four-gates the first 

gate of this string will be the member of FBG set. 

2. If one (or more) partition of the rest function Fr(Gi) could 

be ordered by the string one-, two-, three- or four-gates the 

first gate of this string will be the member of FBG set. 

 The minterms distribution is better if it requires less gates to 

order some partition. 

 

 The above algorithm was presented under assumption non 

empty FBG set. If his set is empty the designer could change 

the given function F by determination the last gate in the 

cascade. This is possible by using the remain function. For 

given function F should be calculated the remain functions 

Fv(Gi) for all reversible gates Gi and create the CBG set 

(closing best gates set). If the gate Gi is a member of CBG set 

than for the function Fv(Gi) should be finding the FBG set. 

This method will be illustrated in next section.  
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V. EXAMPLE 

Let consider the example function F=<4, 0, 3, 2, 7, 6, 5, 1>.  

The partitions of the given function are: 

Y2:{4̅,7;0,6;3,5;2,1̅} Y1:{4,3;0,2;7̅,5̅;6̅,1̅} Y0:{4,0̅;3̅,2̅;7̅,6̅;5̅,1} 

 

Criterion 1: The partition Y1 could be ordered by the gate 

C1-2. This gate will be the member of the FBG. 

 

Criterion 2. Below 12 rest functions will be calculated: 

Fr(T0) = 

Y2{4̅,7;0,6;3,1̅;2,5} Y1{4,3;0,2;7̅,1̅;6̅,5̅} Y0{4,0̅;3̅,2̅;7̅,6̅;1̅,5} 

partition Y1 could be ordered by one gate, the gate T0 will be 

the member of the FBG. 

Fr(C0-1) = 

Y2{4̅,7;0,6;2,1̅;3,5} Y1{4,2;0,3;7̅,1̅;6̅,5̅} Y0{4,0̅;2,3;7̅,6̅;1̅,5} 

partition Y1 could be ordered by one gate, the gate C0-1 will 

be the member of the FBG. 

Fr(C0-2) = 

Y2{4̅,6;0,7;3,1̅;2,5} Y1{4,3;0,2;6̅,1̅;7̅,5̅} Y0{4,0̅;3̅,2̅;6,7;1̅,5} 

partition Y1 could be ordered by one gate, the gate C0-2 will 

be the member of the FBG. 

Fr(N0) = 

Y2{0,6; 4̅,7;2,1̅;3,5} Y1{0,2;4,3;6̅,1̅;7̅,5̅} Y0{0,4̅;2,3;6,7;1̅,5} 

partition Y1 could be ordered by one gate, the gate N0 will be 

the member of the FBG. 

Fr(T1) = 

Y2{4̅,7;0,1̅;3,5;2,6} Y1{4,3;0,2;7̅,5̅;1,6} Y0{4,0̅;3̅,2̅;7̅,1;5̅,6̅} 

partition Y1 could be ordered by two gates, the gate T1 will be 

the member of the FBG. 

Fr(C1-2) = 

Y2{4̅,5;0,1̅;3,7;2,6} Y1{4,3;0,2;5,7;1,6} Y0{4,0̅;3̅,2̅;5̅,1;7̅,6̅} 

partition Y1 is ordered, the gate C1-2 will be the member of 

the FBG. 

Fr(C1-0) = 

Y2{4̅,7;2,1̅;3,5;0,6} Y1{4,3;2̅,0̅;7̅,5̅;1,6} Y0{4,2̅;3̅,0̅;7̅,1;5̅,6̅} 

partition Y1 could be ordered, by two gates, C1-0 will be the 

member of the FBG. 

Fr(N1) = 

Y2{3,5;2,1̅;4̅,7;0,6} Y1{3̅,4̅;2̅,0̅;5,7;1,6} Y0{3̅,2̅;4,0̅;5̅,1;7̅,6̅} 

partition Y1 could be ordered, by two gates, N1 will be the 

member of the FBG. 

Fr(T2) = 

Y2{4̅,7;0,6;3,5;1,2̅} Y1{4,3;0,1̅;7̅,5̅;6̅,2} Y0{4,0̅;3̅,1;7̅,6̅;5̅,2̅} 

the gate T2 does not be the member of the FBG. 

Fr(C2-0) = 

Y2{4̅,7;6̅,0̅;3,5;1,2̅} Y1{4,3;6̅,1̅;7̅,5̅;0,2} Y0{4,6̅;3̅,1;7̅,0̅;5̅,2̅} 

partition Y1 could be ordered, by two gates, C2-0 will be the 

member of the FBG. 

Fr(C2-1) = 

Y2{4̅,7;0,6;5̅,3̅;1,2̅} Y1{4,5̅;0,1̅;7̅,3;6̅,2} Y0{4,0̅;5̅,1;7̅,6̅;3̅,2̅} 

the gate C2-1 does not be the member of the FBG. 

Fr(N2) = 

Y2{7̅,4;6̅,0̅;5̅,3̅;1,2̅} Y1{7̅,5̅;6̅,1̅;4,3;0,2} Y0{7̅,6̅;5̅,1;4,0̅;3̅,2̅} 

partition Y1 could be ordered, by two gates, N2 will be the 

member of the FBG. 

 

The FBG set contains 10 gates. Only the gates T2 and C2-1 

are not the members of the FBG set. The algorithm divide out 

into 10 branches. The sequence of branches analysis depends 

on the number of the gates that order the partition. 

In this example there are:  

1. C1-2 gate because this gate order partition.   

2. The rest functions of the gates T0, C0-1, C0-2 and N0 could 

be ordered by one gate. 

3. The rest functions of the gates T1,C1-0, N1, C2-0 and N2 

could be ordered by two gates. 

The first branch no. 1 of the algorithm starts with the rest 

function Fr(C1-2) ea. the first gate in cascade is the gate C1-2. 

In this branch the algorithm is repeated ea. the FBG set for the 

rest function Fr(C1-2) should be appointed. 

The partitions for this function are: 

Y2:{4̅,5;0,1̅;3,7;2,6} Y1:{4,3;0,2;5,7;1,6} Y0:{4,0̅;3̅,2̅;5̅,1;7̅,6̅} 

The calculation of the rest functions gives the FBG set 

containing only two gates: C2-0 and C0-2.  

Fr(C2-0) = 

Y2{4̅,5;1,0̅;3,7;6̅,2̅}Y1{4,3;1,6;5,7;0,2} Y0{4,1;3̅,6̅;5̅,0̅;7̅,2̅} 

The rest function Fr(C2-0) could be ordered by three gates and 

the gate C2-0 is the member of the FBG set. 

Fr(C0-2) = 

Y2{4̅,1̅;0,5;3,6;2,7}Y1{4,3;0,2;1,6;5,7} Y0{4,0̅;3̅,2̅;1̅,5;6,7} 

The rest function Fr(C0-2) could be ordered by four gates and 

the gate C0-2 is the member of the FBG set. This branch is 

divided out for next two subbranches.  

During the next step the functions F(C1-2,C2-0) (branch 1.1) 

and F(C1-2,C0-2) (branch 1.2) will be analysed. 

 

Branch 1.1 

The function F(C1-2,C2-0) has partition Y2 requiring three 

gates for ordering. The gates C0-2, C0-1 and T0 are the 

members of the FBG set. 

 The FBG set of the rest functions Fr(C1-2,C2-0) contains 

five gates: C2-1, T2, C0-2, C0-1 and T0. 

 Hence the result of the functions F(C1-2,C2-0,C0-2), 

F(C1-2,C2-0,C0-1) and F(C1-2,C2-0,T0) could be ordered by 

the two gates. But the algorithm found the rest function 

Fr(C1-2,C2-0,C0-2,N2) could be ordered by one gate T0.  

 The function F(C1-2,C2-0,C0-2,N2,T0) could be ordered by 

the gate C2-0. The function F(C1-2,C2-0,C0-2,N2,T0,C2-0) is 

the identical function and the six gates cascade was found. 

The remaining subbranches gives longer cascades. 

 

Branch 1.2 

The function F(C1-2,C0-2) has partition Y2 requiring four 

gates to ordering. The gates N2, C2-0, C2-1 and T2 are the 

members of the FBG set. The rest function Fr(C1-2,C0-2) 

gives also the gate N0 as the member of FBG set because the 

partitions Y2 of the function F(C1-2,C0-2,N0) could be 

ordered by two gates C2-0 and T2. The functions 

F(C1-2,C0-2,N0,C2-0,T2) and F(C1-2,C0-2,N0,T2,C2-0) 

have only one member of FBG set and it is the gate C0-2. The 

functions F(C1-2,C0-2,N0,C2-0,T2,C0-2) and 

F(C1-2,C0-2,N0,T2,C2-0,C0-2) are the identical functions and 

two cascades with six gates were found.  

From Lemma 2 we can add the next two cascades: 

C1-2,N0,C0-2,T2,C2-0,C0-2 

C1-2,N0,C0-2,C2-0,T2,C0-2. 

In this branch of the algorithm when it starts from the gate 

C1-2 we found five optimal cascades with six gates each. But 
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the set of cascades with the gate C1-2 as the first gate in the 

cascade contains two cascades more. We can find these two 

solutions during the second type of cascade analysis.  

 

The remain function 

Let we try to find the remain functions for all gates although 

the LBG set for the given function is not empty. 

The partitions of given function are: 

Y2:{4̅,7;0,6;3,5;2,1̅} Y1:{4,3;0,2;7̅,5̅;6̅,1̅} Y0:{4,0̅;3̅,2̅;7̅,6̅;5̅,1} 

As was shown from the definition 2 the partitions of the 

remain functions Fv(C2-0) are: 

Y2:{4̅,3̅;0,6;7̅,1̅;2,5} Y1:{4,7;0,2;3̅,1̅;6̅,5̅} Y0:{4,0̅;7̅,2̅;3̅,6̅;1̅,5} 

Two gates C2-0 and N2 can ordered the Y2 partition. 

The partitions of the remain function Fv(C0-2) are: 

Y2:{5̅,6;0,7;3,4;2,5̅} Y1:{5,3;0,1;6̅,4̅;7̅,1̅} Y0:{5̅,0̅;3̅,2̅;6,7;4,1} 

Two gates C0-2 and N0 can ordered the Y0 partition.  

These two gates C2-0 and C0-2 are the members of the CBG 

set. 

 

Let consider the gate C2-0 as the last gate in the cascade. Now 

the function Fv(C2-0)=Fn should be design. The members of 

the FBG set are the gates C2-0, N0 and C1-2. The algorithm 

divide out into 3 branches. In first branch we will take the gate 

C2-0 as the first gate in this cascade. This cascade is presented 

on Fig. 3. 

 

C2-0
Gate
   3

C2-0F IGate
   2

 
Fig. 3 The cascade with the gate C2-0 as the last gate 

 

We consider the cascade with the gate C2-0 in the first and 

last positions. The FBG set for the function Fn(C2-0) should 

be appointed. This set contain three gates:  

• the gate N2 could ordered the line Y2, 

• the gates C1-2 and C0-2 (these gates together with 

the gate C1-0 could ordered the line Y2. 

 

If we take the gates N2 or C1-2 we obtain the 7 gates cascade. 

Only the branch with the gates C0-2 leads to the cascades with 

6 gates. Finally we obtain two optimal cascades:  

C2-0,C0-2,N2,C1-0,T0,C2-0 

C2-0,C0-2,C1-0, N2,T0,C2-0 

 

In this example was shown a few branches of the algorithm 

and was found 7 optimal cascades. The remaining branches of 

the algorithm give us the rest 17 cascades. Our given function 

has 23 optimal cascades contain 6 gates each. 

 

 

 

 

 

 

 

VI. CONCLUSION 

The main aim of this paper was presentation of the design of 

optimal reversible cascades for the three variables reversible 

functions. The target of this work was developing such 

method of the reversible function design which allows the 

“manually” design. The software implementation of this 

algorithm gives the speed program execution and low storage 

consuming. This algorithm was presented for the synthesis of 

the reversible functions of the three variables. But this 

algorithm is scalable for more variables.  
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