
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, VOL. 66, NO. 3, PP. 425-430

Manuscript received July 1, 2019; revised July, 2020. DOI: 10.24425/ijet.2020.131895

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—As the delivery of good quality software in time is a very

important part of the software development process, it's a very

important task to organize this process very accurately. For this, a new

method of the searching associative rules were proposed. It is based on

the classification of all tasks on three different groups, depending on

their difficulty, and after this, searching associative rules among them,

which will help to define the time necessary to perform a specific task

by the specific developer.

Keywords—software development, classification, C4.5

algorithms, associated rules, FPG-algorithm

I. INTRODUCTION

HE one requirement among the important non-functional

requirements for the modern comprehensive software is

lifecycle requirement: identifying limitations on the human

resources involved and the length of time during which such

software is developed; and also the completion of the

development process in time, which increases the market value

of the final product. Therefore, an accurate estimation of the

release date of the software product, based on the estimates of

costs required for its development, is necessary for managers to

plan the work of the team of software developers and more

effective management of software projects [1,2,3,4].

One of the possible ways to verify that software is reliable is

to tightly control all stages of its development. The traditional

software development model requires testing of each

development stage before moving on to the next one. Modern

software projects are being developed more dynamically, by

using more flexible technologies and methodologies; but the

steps listed below are present in any process [5]:

1. Requirement analysis – at this stage, the area is being

studied and the most important requirements for the future

product are defined from the point of view of the customer

or the user [6,7].

2. Prototype design – designing a user's requirement for a

software product and specify requirements for the internal

structure and operation of the future program from the point

of view of programmers.

3. Development (coding) is the process of implementing a

project using specific programming languages and specific

tools.

Tamara O. Savchuk, and Natalia V. Pryimak are with Vinnytsia National

Technical University, Vinnitsa, Ukraine, (e-mail: savchtam@gmail.com,

nata.pryimak@gmail.com)

Nina V. Slyusarenko is with Kherson State University, Kherson, Ukraine, (e-
mail: ninaslusarenko@gmail.com).

Andrzej Smolarz, is with Lublin University of Technology, Lublin, Poland,

(e-mail: a.smolarz@pollub.pl).

4. Verification, testing and defect solving – the process of

identifying and eliminating errors and establishing the

compliance of the created product with its specification.

5. Documentation. During this process, documentation is

created, the future product is described in terms of its

creation, and in terms of its use [8,9,10].

The use of existing tools, such as program version control

systems and database of tasks raised during the development of

software, will allow collecting information about all changes in

the code and use it for further analysis. Available databases

contain a large amount of information that can not be manually

analyzed, so there is a need for automated data acquisition and

analysis. To solve this problem, such a method of data analysis

is used as the search for associative rules, which allows you to

find dependencies that can be used to predict the time required

for the realization of a particular task by a particular developer

[11,12,13].

II. ACTUALITY OF USING DATA MINING TECHNOLOGIES,

ESPECIALLY SEARCHING ASSOCIATIVE RULES, IN THE SOFTWARE

DEVELOPMENT PROCESS

The software is a computer program and data stored digitally

and used to solve the defined tasks of a particular class [2].

Software development is a planned and defined process of

creating programs [3].

One of the tools for managing software development is

network planning, which is a management method based on the

usage of the graph theory to display and algorithmize a set of

interrelated works, activities or actions to achieve a specific goal

[14].

The purpose of software development management is to

minimize costs and adhere to development times. To achieve it,

the following tasks must be solved [14]:

• Obtain the maximum material benefit that can be achieved

by reducing to a minimum the duration of the software

development process (by reducing the overall design and

implementation time).

• Distribute the labor and resources involved as effectively as

possible during the development of the software.
One of the main parameters of network planning is the critical

path, which determines the timing of the entire planned work.
The critical path is the longest chain of works leading from the
initial event to the final event [14]. In the process of managing

Saule Smailova is with East Kazakhstan State Technical University named
after D.Serikbayev, Ust-Kamenogorsk, Kazakhstan, (e-mail:

saule_smailova@mail.ru).

Yedilkhan Amirgaliyev is with Institute of Information and Computational
Technologies CS MES RK, Almaty, Kazakchstan, (e-mail: amir_ed@mail.ru).

Improved Method of Searching the Associative

Rules while Developing the Software
Tamara O. Savchuk, Natalia V. Pryimak, Nina V. Slyusarenko, Andrzej Smolarz, Saule Smailova,

and Yedilkhan Amirgaliyev

T

426 T. O. SAVCHUK, N. V. PRYIMAK, N. V. SLYUSARENKO, A. SMOLARZ, S. SMAILOVA, Y. AMIRGALIYEV

software development, the focus is on the tasks that form the
critical path. There are a lot of tools that help product managers
with managing, designing, and assigning developers to the task,
but they do not allow you to predict the duration of the task or
project development based on the accumulated data. This lack
of existing tools can be eliminated by developing the
information technology of searching associative rules for the
software development duration.

The large amount of information that appears during the
software development process is stored by the companies in
order to obtain useful data from it and a better understanding of
this process and the final product. The information, stored in the
repositories, can play a key role in improving the software
development process and in the quality of the programs being
developed [4,15].

Data Mining (DM) technology allows to analyze and obtain
additional and interesting patterns from the information [4].
Different DM technologies can be used to solve the verity of
tasks on different software process stages (figure 1), which are
described above.

Classification

 Data Minig

Identification of high-level and high-level requirements

The results of using Data Mining During the software

development

Text analysis
Identify the most active participants in the software

development process

Classification

Clusterization

Search of associative

rules

Identify sequences of events that characterize the tasks that led

to their development

Detection of potentially vulnerable places in the designed

program

Evaluate the effort required to correct an error encoding an

application

Clusterization

Classification

Search of associative

rules

The choice of tests to be performed to assess the relevant

requirement

Choosing the test information that is required during the tests

Estimate the time required to test a specific component

Classification of system errors that occurred during the

program

Classification of mistakes found during program testing

Estimate the time required to perform a specific test

M
o

d
el

in
g

 a
n

d
 p

ro
g

ra
m

m
in

g
T

es
ti

n
g

 a
n

d
 s

o
lv

in
g

 d
ef

ec
ts

R
eq

u
ir

em
en

t

an
al

y
si

s

Fig. 1. The representation of using different DM technologies on different

phases of software development

The main technologies of Data Mining, which can be used in
software development, are [6, 9-14]:
1. The technology of intellectual analysis of textual

information (correspondence, comments, documentation),
which allows identifying the most active participants in the
software development process.

2. A clustering technology that can be used to identify groups
of similar modules of the program based on the number of
modifications made; or to group the detected software
defects according to specific components, which will help
to more effectively correct these defects [15,16].

3. A classification technology that can help determine the
mechanism for identifying vulnerable software modules
based on the attributes of the module numbers.

4. Considerations based on precedents (case-based reasoning,
CBR) will allow us to find similar cases in the past, analyze
them and use this knowledge and information to a new
problem. For example, when testing the software, namely
after the program partition on the tested components, the
CBR is used to find the required set of test instructions for
a specific component, based on the data obtained when
testing similar components before.

5. The technology of obtaining partial patterns or associative
rules. An analysis of system errors that arose in the work of
program modules can invent the relationship between these
elements, based on the characteristic features of models and
error categories.

Searching of associative rules as a very powerful technology
can be used to solve or improve the next processes:
1. In the article [13] it is proposed to use associative rules to

identify violations in the architecture of object-oriented
software. This approach will help identify vulnerabilities in
the software architecture in the early stages of its
development, which will avoid additional material costs for
their correction in the future.

2. The approach described in [14] will allow project managers
to determine the amount of resources required and manage
them effectively throughout the software development
process by applying the theory of fuzzy sets and the search
for associative rules using the Apriori algorithm, to re-
evaluate the necessary human resources in the process of
software development.

3. In research [15], authors are considering the use of
associative rules search technology to determine the
developer who will be assigned to fix the defect found in
the program. Such an approach will allow automating the
process of assigning a responsible person to correct a
particular defect and can be used by project managers when
planning the activities of the participants in the software
development team.

Found during the software development the associative rules
can be used by product managers, to organize the development
process of high-quality software at a specified time and within
the allocated budget, due to the use of found dependencies
[18,19,20].

III. AIM OF THE RESEARCH

The purpose of the research is to search for more informative
associative rules, during the development of software, and at the
same time to increase the speed of this search.

Objectives of research:
1. To develop the information model of the process of

searching the associative rules.
2. Improve the method of searching associative rules FPG, by

using classification to divide tasks depending on their
difficulty.

IV. SOLUTION

In a result the associative rules, which allow to find

relationships between related events or elements [17] and can be

described like X → Y, X Y → will be found.

Any association rule can be described by two main

characteristics [18,19]:

1. Support 𝑠𝑢𝑝𝑝(𝑋 → 𝑌) of the associative rule X → Y is a

value equal to the ratio of the number of records X Y in

IMPROVED METHOD OF SEARCHING THE ASSOCIATIVE RULES WHILE DEVELOPING THE SOFTWARE 427

the database D, to the total number of records in the

database.

2. The confidence of 𝑐𝑜𝑛𝑓(𝑋 → 𝑌)an associative rule X → Y

is a value that is equal to the ratio of its support
𝑠𝑢𝑝𝑝(𝑋 → 𝑌) to the support ()supp X of the set X .

When searching the most informative associative rules it is

necessary to find the set of all associative rules AR in which

the value of support is higher than minimum support suppmin

set by an expert manually. It is reflected in the expression:

 𝐴𝑅 = {𝐷|𝑠𝑢𝑝𝑝(𝑋 → 𝑌) > 𝑠𝑢𝑝𝑝𝑚𝑖𝑛}

To define the only interesting and valuable associative rule for

the expert confidence 𝑐𝑜𝑛𝑓(𝑋 → 𝑌) of these associative rues is

used. The value of the minimum confidence
minconf is given by

an expert and numerically greater than the value of the minimum

support:

min minsupp < conf

The set of useful associative rules UAR is a subset of the set

of all possible associative rules AR and can be described by:

min minUAR = {AR | supp < conf }

The information model of the search process of the associative

rules when developing the software displays its input and output

values, as well as their relationships, and can be described as a

tuple:

𝐼𝑀𝐴𝑅𝑀 = ⟨
𝑇𝑎𝑠𝑘, 𝐷𝑒𝑣, 𝑚𝑖𝑛𝑠𝑢𝑝𝑝, 𝑚𝑖𝑛𝑐𝑜𝑛𝑓,

𝑚𝑒𝑡ℎ𝑜𝑑, 𝑈𝐴𝑅, 𝑛𝑒𝑤𝑇𝑎𝑠𝑘, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑇𝑎𝑠𝑘
⟩

where Task – set of tasks, that were done during software

development; Dev – set of developers, which can perform the

tasks; minsupp – minimal value of associative rules support;

minconf – minimal value of associative rules confidence;

method – method, that will be used to search associative rules;

UAR – set of found associative rules; new Task – set of tasks,

for which it’s necessary to predict the time, necessary to perform

them by developer; Predict Task – set of tasks, for which the

time, necessary to perform them by specific developer, is

defined.

The determine scheme of the information model of the process

of finding and using associative rules in software development

is shown in figure 2.

Each iTask is described by:

iTask = Type,Priority,Severity,Component,t,Dl, Cx, Sx, Rl ,

where i = 1,n , n – number of tasks; Type – type of the i-th

task; Priority – priority of the i-th task; Severity – severity of

the i-th task;Сomponent – component of the developed

software; Dl – level of the developer skills, who will perform

this i-th task; t – time, necessary to perform the i-th task by

specific developer, Cx – complexity of the i-th task, that needs

to be resolved; Sx – the gender of the developer who completed

the task; Rl – release number during which the i-th task was

performed. Each of these elements has a set of values, which

vary depending on the project.

As not all characteristics of a task equally affect the duration

of its development, multivariate correlation analysis was

performed to determine the degree of correlation between the

characteristics of the tasks performed during software

development and the duration of their development.

As the set of possible values for the characteristics of the tasks
(software component, developer qualification level, task type,
complexity, priority, severity, developer gender, and software
release) are qualitative, Chuprov Mutual Coefficient was
calculated to determine the set of tasks characteristics, which
will be used after during the analysis.

After the performed calculation the closest was got between
the duration of development and the following characteristics:
the level of the developer skills; the type, severity, complexity,
priority of the task, and the component of the software. The
relationship between the duration of the task development and
the release during which the task is performed is lower than
other characteristics, so this factor will not be taken into account
when searching for the associative rules for the software
development duration

Also, was noticed that the closest link exists between the
developer's gender and the skill level, which means that these
two characteristics are redundant. If compare the impact of each
characteristic on the duration of the task, it can be seen that the
skill level has a higher correlation level than the developer's
gender, and therefore should be used when looking for
associative rules for the software development duration.

Therefore, the set of the task characteristics, which are taken
into account while searching the associative rules for the
software development duration, are as follows: the level of
developer skills; type, criticality, complexity, and priority of the
task; component of the software being developed.

Input:

Set of tasks for which it is necessary to predict the

implementation time

Method of searching

associative rules

minsupp minconf

Task

The scheme of information model of associative rules

search and use process

Type

Priority Time

Component

Dev

Characteristics of implemented tasks

Severity

TaskComponent

Priority Severity

Type

Characteristics of tasks to be implemented
Set of found associative rules

Output:

Set of tasks with defined time necessary for their implementation

Search of associative rules

Using of associative rules

Fig. 2. The scheme of information model of associative rules search and use

process

The set of found associative rules is described next:

𝐴𝑅𝑑 = {𝑇𝑎𝑠𝑘𝑖 ∩ 𝐷𝑒𝑣𝑗 → 𝑡𝑖𝑗
, 𝑇𝑎𝑠𝑘𝑖 ∩ 𝐷𝑒𝑣𝑗 ∩ 𝑡𝑖𝑗

→ ∅},

where d = 1,c d is the number of associative rules, jDev is the

name of the j-th developer, who will perform this i-th task,
jit

is the time, necessary to perform the i-th task by j-th developer.

Method Frequent Pattern Growth (FP-Growth, FPG) was

selected for generating frequent patterns to search the

associative rules in software development among them. The

performed analysis of comparing and choosing the most

appropriate method is described in [20]. The brief analysis is

also represented in Table I.

428 T. O. SAVCHUK, N. V. PRYIMAK, N. V. SLYUSARENKO, A. SMOLARZ, S. SMAILOVA, Y. AMIRGALIYEV

TABLE I
ANALYSIS OF THE METHODS OF SEARCHING ASSOCIATIVE RULES

Method Advantages Disadvantages

Set-

oriented

Processing large

databases, easy to
understand.

The need for a large amount of time,

space and memory of the computer for
the process of generating possible

frequent candidates, multiple-time

database scanning, the ability to work
only with static data.

Partition

The ability to quickly

search in large
databases, only two

database scans,

reducing the use of
the disk i / o.

The necessity to have a computer with

a large amount of operating memory,
an imperfect approach to dividing the

database into parts in the first stage

Itemset

Clustering

Using not a lot of

RAM, the lack of
building a hash

structure, only one

database scan.

The need to select parameters for the

clustering algorithm.

FP -

Growth

The size of the FP tree

is a small, high-speed

search for frequent
object sets.

The size of the FP tree can not be

larger than the main memory of the

computer, the existing modifications
of the method do not take into account

the peculiarities of the software

development process, which may
negatively affect the finite set of

associative rules found.

Using the FP-Growth method of searching associative rules in

software development allows you to find dependencies in the

database without generating candidates for frequent patterns,

but has the following disadvantages [21,22]:

• the size of the FP-tree, can not exceed the size of the main

memory of the computer;

• the existing modifications of the method do not take into

account the peculiarities of the software development

process, which may negatively affect the finite set of

associative rules found.

The identified disadvantages can be eliminated by improving

the FPG method (figure 2), which will improve the quality of

the found associative rules. Modification of the method consists

in the fact that there will be a classification of the entire set of

tasks into three groups, depending on the parameters of the task:

• quick wins (tasks which are easy for their realization);

• difficult tasks (tasks which are difficult for their

realization);

• medium tasks (tasks which are between quick wins and

difficult tasks).

Each group will be analyzed separately, which will increase

the efficiency of the identified APs. In turn, the parallel

processing of these three groups will reduce the time for

defining frequent subject sets, which will speed up the

implementation of the method [23,24].

For the classification of the tasks method of decision trees was

selected and algorithm C4.5 will be used. As the study sample

is not very large and it’s necessary to get easily interpreted data

in a short time, then this method is the most appropriate to use.

The disadvantage of this algorithm, which is slightest

fluctuations in the data can lead to the formation of different

decision trees, won’t have an influence on the results of the

classification [25,26,27].

Beginning

End

Class = quick win

Scan DB

Write down to the class

“quick wins”

+

Write down to the class

“long terms tasks”

Classification process

Set minсonf

Write down the as.rule to the set AR

 +

Count minsupp

Build FP-tree

Generation of the frequent

patterns

Search for as.rule

Count conf for the one

as.rule

conf>=minconf

+

AR is available

S
e
a
rc

h
 o

f
a
s.

ru
le

s
in

 c
la

s
s

“
q

u
ic

k
 w

in
s”

-

Class = medium tasks - f

-

Write down to the class

“medium tasks”

+

Count minsupp

Build FP-tree

Generation of the frequent

patterns

Search for as.rule

Count conf for the one

as.rule

conf>=minconf

+

AR is available

S
e
a
rc

h
 o

f
a
s.

ru
le

s
in

 c
la

s
s

“
m

e
d

iu
m

 t
sa

k
s”

-

Count minsupp

Build FP-tree

Generation of the frequent

patterns

Search for as.rule

Count conf for the one

as.rule

conf>=minconf

+

AR is available

S
e
a
rc

h
 o

f
a
s.

ru
le

s
in

 c
la

s
s

“
lo

n
g

 t
e
rm

s
ta

sk
s”

-

 +
 +

Fig. 3. The scheme of information model of associative rules search and use

process

Found associative rules of software development duration
can be used to predict the time required for task completion by
a developer with a certain level of skills. The resulting
information can later be used by project managers to manage the
software development process and to build a plan for the
effective use of human resources.

Formally, the algorithm for using associative rules for the
duration of software development consists of the following
basic steps:
1. There is a load of tasks for which it is necessary to

determine the duration of development by the developer.
2. The first task of the set is selected.
3. An associative rule is selected from the set of associative

dependencies with which the characteristics of the task
will be compared.

4. There is a comparison of the values of the characteristics
of the tasks from the set of associative rules and the new
task.

5. If the values of the characteristics of the tasks do not
match, then the next associative rules are selected from the
found set, and the values of the characteristics described
in step 2 are compared.

6. If the characteristics are the same, then the duration of task
development by the developer with the specific level of
skills is determined for this task. This information is
derived from the relevant associative rule.

7. Obtained data time and skill level of a developer is added
to a task that is saved into a plurality of time-bound tasks.
The information from it is subsequently used to determine
the duration of software development and build an optimal
software development plan.

8. If the characteristics of all ARs do not coincide with the
values of the characteristics of the new task, it is recorded
in a set of tasks for which the duration of the development
is not determined.

IMPROVED METHOD OF SEARCHING THE ASSOCIATIVE RULES WHILE DEVELOPING THE SOFTWARE 429

9. For tasks in this set, the duration of development is
determined by a developer survey. After determining the
time required for their development by a developer of a
certain qualification, they are also added to the set.

As the software development process is dynamic and most of
the modern software is developed using Agile technologies,
namely Scrum. One of the key elements in Scrum is the amount
of time the team creates the part of the program that can be
presented to the customer – "sprint". During such intervals,
there is an accumulation of newly developed tasks in the
database, so there is a need to search for new possible ARs after
each sprint. This approach will allow more accurately determine
the duration of the task by the developer of a certain
qualification since new ARs on the duration of software
development will be formed on the basis of a more powerful
sample of data.

V. RESULTS OF THE EXPERIMENTS

The experiment was performed to find the results of the
modified method of searching associative rules during the
software development process. The big software project
PCOUNTER was selected for research. All tasks for this
software are stored in the managing tracking systems.

The number of found associative rules and time spent on their
search are represented in table 2. The experiment was performed
3 times for the different total number of tests in the database
(DB).

TABLE II

 NUMBER OF FOUND ASSOCIATIVE RULES AND TIME SPENT ON THEIR SEARCH

 Experiment 1 Experiment 2 Experiment 3

Method original

FPG

modified

FPG

original

FPG

modified

FPG

original

FPG

modified

FPG

Number of
tasks

100 500 1000

Time spent

to find
associative

rules (sec)

1.988 1.981 6.258 6.184 12.754 12.502

Number of

associative

rules found

10 9 32 27 57 48

The value of minimum support was different depending on the

total number of the tasks in the database and for minimum
confidence, the value was 1 higher than minimum support. The
results of this study are also shown in the plot in figure 3.

As it is possible to see from the plot the time necessary for the
search of the associative rules in increasing depending on the
total number of tasks in the database. Also, the difference
between the time spent for the search of associative rules during
the software development by using the original FPG method and
modified is bigger with the increasing of the total number of the
test. As a result: it’s more useful to use the modified algorithm
when the total number of tests is big (more than 800 items in
DB).

The difference between found associative rules with the help

of the original FPG method and modified method is also visible,

which means that associative rules are more efficient and

valuable for the expert.

A study was also conducted on the relationship between the

number of completed tasks during software development and

the number of ARs found among them. Also, research about the

accuracy of determining the duration of the task using found

rules was performed.

Fig. 4. Graphical view of the found associative rules and time spent on their

search

As can be seen from figure 4 with the increasing number of

completed tasks stored in the database, the number of

associative rules found among them is also increased. Thus,

among 100 tasks, 9 ARs were found, and among 1000 tasks –

48 rules, which means that when the number of tasks increased

by 20 times, the number of ARs found increased more than 5

times, respectively.

In turn, with the increasing number of associative rules, the

accuracy of determining the duration of the task, characterized

by error, increases. The simulation results are shown in figure 5.

With 14 associative rules found, the accuracy of determining

the duration of the task was 12%, while increasing the number

of rules to 153, the accuracy increased 2.3 times (5.2%), which

allowed managers to plan the software development process

more efficient.

Fig. 5. Dependency between the accuracy of determining the tasks

implementation time and the number of associative rules found during the

software development process

VI. CONCLUSIONS

1. There was done an analytical review of the possibility to

use data mining technologies during software development,

and it also was defined that the technology of searching

associative rules is very powerful and can help to solve

different tasks during the software development process.

The information model of finding associative rules during

software development was developed.

2. Method of searching associative rules FPG was modified,

by using classification algorithm C4.5, which will classify

the tasks to the three groups depending on their difficulty.

Due to what, the time of searching associative rules is less

compare to the original algorithm and the efficiency of

associative rules is improved.

430 T. O. SAVCHUK, N. V. PRYIMAK, N. V. SLYUSARENKO, A. SMOLARZ, S. SMAILOVA, Y. AMIRGALIYEV

3. To verify the functioning of the modified method FPG of

finding associative rules during software development, the

experimental studies were performed. They showed that the

speed of searching associative rules using the modified

algorithm is increasing with the increment of the total

number of tasks in DB. The number of found associative

rules is less compare to the original method FPG, but it

means that they are more efficient and valuable for the

expert, which can use them to define the time necessary to

perform the specific task by specific dev.

4. Also, the result of the research showed the accuracy of

determining the time, needed to implement the task,

increases by 2.3 times, with increasing the number of found

associative rules by 11 times, which proves the expediency

of finding such dependencies for the software development

duration.

REFERENCES

[1] K. Wiegers, Software Requirements 3rd Edition, NY, USA: Microsoft

Press, 2013.
[2] V. K. Batovrin, Explanatory dictionary on system and software

engineering, Moscow: Press, pp. 280, 2012.

[3] S. Wang, D. Samadhiya, and D. Chen, “Software Development and
Quality Problems and Solutions by TRIZ,” in International Symposium

on Frontiers in Ambient and Mobile Systems, Ontario, 2011, pp. 730 –

735.
[4] M. Halkidi, D. Spinellis, G. Tsatsaronis, and M. Vazirgiannis “Data

mining in software engineering,” in Intelligent Data Analysis,

Amsterdam, 2011, pp. 413 – 441.
[5] S. J. Greenspan, and C. L. McGowan, “Structuring software development

for reliability”, in Microelectronics Reliability, vol. 17, no. 1, pp. 1987,

pp. 75 – 83.
[6] T. Xie, S. Thummalapenta, D. Lo, and C. Liu, “Data Mining for Software

Engineering,” in Institutional Knowledge at Singapore Management
University, Singapore, 2009, pp. 55 – 62.

[7] А. А. Barseagian, М. S. Kuprianov, V.V. Stepanenko, and I. I. Holod.,

Data mining technologies: Data Mining, Visual Mining, text mining,
OLAP, Saint-Petersburg, 2007, pp. 384.

[8] I. A. Chubukova, “Data Mining,” in Internet-University of Information

Technologies, Binom. Knowledge lab., 2008, pp. 384.
[9] D. Hand, H. Mannila, and P. Smyth, “Principles of data mining (adaptive

computation and machine learning),” in Cambridge: The MIT Press,

2001, p. 546.
[10] A. Berson, and S. Smith., “Data Warehousing, Data Mining and OLAP,”

2007, pp. 612.

[11] T. O. Savchuk, and N. Pryimak., “Using the methods of data mining
intelligence when testing software,” Intelligent Information

Technologies, pp. 87, 2016.

[12] M. Sharma, and M. Kumari, “Bug Assignee Prediction Using Association
Rule Mining,” Springer, pp. 444 – 457, 2015.

[13] C. Maffort, M. Valente, and M. Bigonha, “Mining Architectural Patterns

Using Association Rules,” in International Conference on Software
Engineering and Knowledge Engineering (SEKE'13), Boston, 2013.

[14] D. White, and J. Fortune, “Current practice in project management – an

empirical study”, International Journal of Project Management , vol. 20,
no. 1, pp. 1 – 11, 2002.

[15] M. Azzeh, D. Neagu, and P. Cowling, “Software Stage-Effort Estimation
Using Association Rule Mining and Fuzzy Set Theory,” Badford, pp. 154

– 160, 2010.

[16] M. Sharma, M. Kumari, and V. Singh, “Bug Assignee Prediction Using
Association Rule Mining,” in Department of Computer Science

University of Delhi, Delhi, 2015, p. 445.

[17] T.A. Zayko, A. A. Oliinyk, and S. A. Subbotin, “Association rules in data

mining,” Herald of the National University "KhPI", no. 39 (1012), pp. 82

– 96, 2013.

[18] C. Zhang, and S. Zhang, “Association Rule Mining, Models and
Algorithms,” pp. 244, 2002.

[19] T.O Savchuk, and N. Pryimak., “Modeling of software development

process with the markov processes,” Eastern-European journal of
Enterprise technologies, pp. 33 – 38, 2017.

[20] T.O Savchuk, and N. Pryimak., “Submission of the selection of the

method of generation of particular subjects for search of associative rules
for the project development of the programmable supply,” Internet,

Education, Science, pp. 43 – 44, 2018.

[21] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” SIGMOD, vol. 29, pp. 3 – 12, 2000.

[22] M. Kacprowicz, “An interval type-2 fuzzy systems in the management of

emissions of nitrogen oxides,” Informatyka, Automatyka, Pomiary w
Gospodarce i Ochronie Srodowiska – IAPGOS, vol. 5, no. 1, pp. 20–23,

2015.

[23] V. Vassilenko, S. Valtchev, J. P. Teixeira, and S. Pavlov, “Energy
harvesting: an interesting topic for education programs in engineering

specialities,” Internet, Education, Science, pp. 149-156, 2016.

[24] M. Górecka, K. Górecki, “Comparison of selected tools for computer
analysis of digital circuits,” Przeglad Elektrotechniczny, vol. 94, no. 4,

pp. 72–75, 2015.

[25] A.P. Rotshtein, and H.B. Rakytyanska, “Diagnosis problem solving using
fuzzy relations,” IEEE Transactions on Fuzzy Systems, vol. 16, pp. 664-

675, 2008.

[26] L. I. Timchenko, “A multistage parallel-hierarchic network as a model of
a neuronlike computation scheme,” Cybernetics and Systems Analysis,

vol. 36, pp. 251-267, 2000.

[27] L. I. Timchenko, Y. F. Kutaev, V. P. Kozhemyako et al., “Method for
training of a parallel-hierarchical network, based on population coding

for processing of extended laser paths images,” Proceedings of SPIE

4790, 2002.

http://ir.lib.vntu.edu.ua/handle/123456789/13413
http://ir.lib.vntu.edu.ua/handle/123456789/13413
http://ir.lib.vntu.edu.ua/handle/123456789/13413

