&

je

Manuscript received February 28, 2020; revised July, 2020.

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, VOL. 66, NO. 3, PP. 443-448
DOI: 10.24425/ijet.2020.131897

Using SAT Solvers to Finding Short Cycles in
Cryptographic Algorithms

Wtadystaw Dudzic, and Krzysztof Kanciak

Abstract—A desirable property of iterated cryptographic al-
gorithms, such as stream ciphers or pseudo-random generators,
is the lack of short cycles. Many of the previously mentioned
algorithms are based on the use of linear feedback shift registers
(LFSR) and nonlinear feedback shift registers (NLFSR) and their
combination. It is currently known how to construct LFSR to
generate a bit sequence with a maximum period, but there is no
such knowledge in the case of NLFSR. The latter would be useful
in cryptography application (to have a few taps and relatively
low algebraic degree). In this article, we propose a simple
method based on the generation of algebraic equations to describe
iterated cryptographic algorithms and find their solutions using
an SAT solver to exclude short cycles in algorithms such as stream
ciphers or nonlinear feedback shift register (NLFSR). Thanks to
the use of AIG graphs, it is also possible to fully automate our
algorithm, and the results of its operation are comparable to the
results obtained by manual generation of equations. We present
also the results of experiments in which we successfully found
short cycles in the NLFSRs used in Grain-80, Grain-128 and
Grain-128a stream ciphers and also in stream ciphers Bivium
and Trivium (without constants used in the initialization step).

Keywords—NLFSR, short cycles, stream ciphers, Trivium,
Bivium, Grain-80, Grain-128

I. INTRODUCTION

HE phrase SAT solver is commonly used to refer to
Tsoftware that solves the boolean satisfiability problem
(sometimes called propositional satisfiability problem and ab-
breviated SATISFIABILITY or SAT). It finds the evaluation
of variables (0 or 1) for which all logical formulas of a given
problem are met. This problem is an NP-complete problem
as demonstrated by Stephan Cook in [17]. Currently there
is no known algorithm which would effectively solve every
SAT problem, and it is believed that such an algorithm does
not exist. However, proof of this hypothesis has not been
carried out. There are many recognized SAT solvers which
use heuristic methods of solving the SAT problem. These can
be grouped according to technique, e.g. DPLL (Davis-Putnam-
Logemann-Loveland [11]) and CDCL (Conflict Driven Clause
Learning [12]]).

In cryptology, SAT solvers are successfully used among
other methods in issues related to cryptanalysis of block
and stream ciphers [14], hash functions [7|], and in methods
related to formal verification, automatic test pattern generation
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and logic synthesis [18]]. The idea of using SAT solvers to
search for short cycles of length n in iterated cryptographic
algorithms (like stream ciphers) or primitives (like LFSR) is
based on describing the n-iteration of an algorithm by an
algebraic system of equations, adding equations where initial
internal state equals final internal state, and then solving this
system using an SAT solver. When the problem is unsatisfiable
(unsat) the cycle of length n does not exist, but when it is
satisfiable (sat), the n-cycle exists, and we get the initial value
of the internal state. No known algorithm can check whether
the NLFSR or stream cipher has a full period with at least
polynomial complexity.

II. PREVIOUS WORK

Using SAT solvers to find short cycles in cryptographic
algorithms is a relatively new approach, and the most promis-
ing results can be found in [6] and [5]. Table [I] shows the
results of searching for short cycles in the NLFSRs used in
Grain-80 and Grain-128 stream ciphers, and also in stream
ciphers Bivium and Trivium (without constants used in the
initialization step) presented in [5]. Cycles of length 1 consist
of all 0. The experiments were run on a PC with Intel Core
i7-4600U CPU at 2.1 GHz with 8 GB RAM running under
Ubuntu 14.04 LTS.

Due to the addition of further conditions during calculations,
the algorithm proposed in [5] makes it possible to find all
cycles; however, its operation time is not satisfactory.

Currently, the search of NLFSRs with a maximum period
is also an important issue. The articles [15]] and [21] show
results of searching such primitives using FPGA and [20] using
GPGPU. However, a state of found registers is not to large.

It can be proved [19] that only nonsingular NLFSR may
have a maximum period. The register is nosingilar if his
feedback function has the form:

f(xo, @1, 2n1) =20+ g(T1,- -+, Tn—1)
when we rotate register in left or:
f(:EOaxlv T 7x71—1) =Tp-1+ g(x()v e axn—2)

when we rotate register in right.

In other case is called singular [[15]. However in general,
it is not know how to construct NLFSR with large state and
maximum period witch is cryptographically applicable.

III. EXPERIMENT

The proposed algorithm to find a cycle of length n consists
of three steps:

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.


https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

444

TABLE I
RUNTIME, T, AND PEAK MEMORY CONSUMPTION, M (IN
KBYTES), USED BY THE ALGORITHM TO FIND N CYCLES OF
LENGTHK. [3]]

Trivium Bivium Grain-80 (NLFSR part) Grain-128 (NLFSR part)
k N 1 m N 1 m N 1 m N 1 m
T T Om 0.041s 0 T Om 0.056s 0 T 0m 0.037s 0 T Om 0.206s 12740
2 Om 0.027s 0 Om 0.045s 0 Om 0.035s 0 Om 1.205s 24704
3 21 Om 0.038s 0 5 0Om 0.039s 0 1 0Om 0.042s 0 Om 1.883s 32672
4 Om 0.038s 1284 0Om 0.049s 0 0m 0.037s 0 0m 2.445s 41868
5 Om 0.043s 1288 0Om 0.059s 0 0m 0.043s 1568 Om 2.817s 49816
6 Om 0.044s 1548 0m 0.052s 0 0m 0.037s 1572 0m 3.0455 59588
7 0m 0.047s 1544 Om 0.048s 1428 0m 0.038s 1576 1 0m 2.646s 70416
8 Om 0.094s 1548 0m 0.049s 1276 0m 0.047s 1568 1 Om 3.231s 78092
9 Om 0.101s 1548 0Om 0.066s 1280 0Om 0.048s 1572 0m 4.113s 86804
10 1 Om 0.315s 1808 Om 0.079s 1484 Om 0.044s 1576 Om 4.132s 97580
11 1 Om 0.224s 1808 Om 0.111s 1540 0m 0.059s 1568 0m 4.965s 110812
12 2 Om 0.815s 2600 0Om 0.106s 1540 1 0m 0.062s 1576 0m 5.582s 117652
13 Om 0.047s 1804 Om 0.048s 1536 Om 0.042s 1572 0m 6.030s 128436
14 Om 0.678s 2340 0m 0.090s 1532 Om 0.081s 1576 0m 9.352s 144728
15 1 Om 0.350s 2072 Om 0.155s 1676 0Om 0.083s 1572 Om 16.012s 157388
16 Om 6.446s 4004 Om 0.197s 1796 Om 0.103s 1840 Om 15.262s 164444
17 Om 7.896s 3956 Om 0.895s 2480 0m 0.154s 3156 Om 32.113s | 180744
18 Om 41.498s | 6736 0m 0.912s 2332 0m 0217s 3420 Im 4.908s | 201104
19 Om 56.107s 8696 Om 2.371s 2596 0Om 0.397s 3688 2m 2.071s 217204
20 2m 19.115s 11844 Om 6.262s 3452 0m 0.230s 3684 2m 4.122s 220528
21 Im 59.727s 9888 Om L.711s 2632 0m 0.772s 4480 3m 52.535¢ 243900
22 Om 47.351s 8028 Om 11.121s 3976 Om 1.010s 4852 4m 47.395s 250860
23 0m 0.202s 2324 Om 0.114s 1668 Om 1.422s 5196 6m 30.634s | 278004
24 9m 32925 | 19916 Om 8.439s 3728 0m 0.492s 4328 6m 9.751s | 270916
25 8m 5.652s 20684 Om 7.581s 3472 Om 4.458s 7704 19m 8.558s 318784
26 Om 0.119s 2060 0Om 0.098s 1672 0m 0.905s 5128 17m 9.791s 315800
27 8m 47.293s 19708 Om 0.599s 2192 Om 7.466s 8948 50m 27.868s 381832
28 91m 19.361s | 61840 Om 11.522s 4304 Om 1.289s 5344 30m 3.206s 364652
29 Om 0.184s 2592 Im 18.495s 9104 0m 19.940s 11204 70m 20.679s | 422768
30 290m 9.726s | 94608 1m 38.653s 9432 Om 7.175s 8380 91m 44.888s | 463004
31 - - 2m 54.762s 13124 Om 58.225s 13608 227m 24.577s | 558228
32 - - Om 40.476s 7904 0m 23.957s 11876 182m 19.017s | 580328
33 - - Om 44 421s 8424 Im 38.085s 15012 - -
34 - - 16m 28.714s | 27116 5m 34.866s | 26660
35 - - 3m 30.944s 15096 0m 58.563s 15872
36 - - 23m 58.093s 29756 0m 56.514s 14948
37 - - 134m 14915s | 66292 Im 3.641s 16044
38 - - 99m 36.861s 65756 24m 0.992s 49916
39 - - Om 0.224s 2324 0m 40.753s 16024
40 - - Im 15.837s 9304 3m 58.102s | 27276
41 - - Om 12.274s 4992 6m41.412s | 30504
42 - - 33m 8.211s 43660 32m 25.806s 54752
43 - - 503m 28.785s | 124964 10m 54.320s 38092
44 - - - - 30m 11.795s 50580
45 - - - - 10m1L411s | 32060
46 - - - - 683m36.550s | 213228
47 - - -

1) generation of algebraic equations describing n iterations
of cryptographic algorithms in algebraic normal form
(ANF),

2) converting ANF to conjunctive normal form (CNF),

3) solving CNF problem using SAT solver.

In our experiments, we used two methods to generate alge-
braic equations that describe iterated cryptographic algorithms.
The first is based on manually generated equations. Handwrit-
ten equations seem to be the most natural and readable for
humans. For example, if the feedback function of NLFSR is:

f(zo,71,72,23) = 2o D21 © T2 O 71 - T3
we can describe 2 iterations of register using the equations:

Ty =ToDPxr1 Dro® X123

5 = To
Te = T1
T7 = T2
Tg =24 Dx5 D6 D5 T7
Tg = T4
T10 = T3
T11 = Te

and add conditions where the initial internal state is equal to
the final internal state:

Ty = Tg
T1 = T9
T2 = T10
T3 = T11
where:

e Xy T1 To T3 - initial internal state
e T4 Ty Tg X7 - state after first iteration
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e Xy Tg T1p XL11 - State after second iteration

The second method uses automatically generated equations
(based on Cryptol implementation which is translated to the
and-inverted-graphs (AIG [2[])) and converts them into ANF. In
this process we use SAW [9] and ABC [22] from UC Berkeley.
The idea of using an equation taken from implementation
was earlier explored by Courtois et al. [14] to conduct an
SAT attack on DES block cipher. In 2012, during SHA-
3 competition, Homsirikamol et al. [7] developed a similar
tool to obtain hardware equations that described SHA-3 final
candidates and evaluated their security margin.

The conversion of ANF to CNF is performed using a
modification of US open-source software available at https:
/Iwww.lukbettale.ze.cx/anf2cnf. During conversion, the CNF
CUT parameter is always set to 3. It is possible that other
conversion methods may affect the effectiveness of solving
CNF problems. However, we have not yet conducted research
in this area.

To solve a CNF problem, we used a Plingeling SAT solver
on 44 cores Intel(R) Xeon(R) CPU E5-2699 v4 2.20 Ghz.
These results are presented in this article. We also used SAT
solvers CaDiCaL, Treengeling and Lingeling. A description
of the solvers we used and their benchmarks is presented in
article [1]. The maximum time limit for solving a task was
set at 3600 seconds. During testing, it was assumed that after
finding a cycle with the length n, there would be no further
search for cycles with the length kn, where k is an integer
greater than 0.

A. Analysis of 80-bit NLFSR from stream cipher Grain-80

The Grain-80 stream cipher was proposed in [[13[]. It has
been selected for the final eSTREAM portfolio for profile 2 by
the eSSTREAM project. Grain stream ciphers are designed pri-
marily for restricted hardware environments. The key stream
generator contains 80-bit NLFSR and an 80-bit LFSR. The
LFSR is known to have the maximum period of 23° — 1 since
it uses a primitive generator polynomial of degree 80. The
period of NLFSR is unknown and its feedback function F is:

F(zg,...,279) = 14+ x16+ 219+ To7 + T34 + T2+ Ta6 + 251 +
Tss+Tea+Tr0+T79+T16T19+T42T46 +T64T70+T19227T 34+
T46251%58 T L16T34T51270 T T19T27T42%46 T T16T19T58%64 +
T16L19%27T34T42 + T46T51T58L64L70 + T27T34T42L46T51T58

During testing of 80-bit NLFSR from a Grain-80 cipher
(results in table [l) we rotated register in right, periods of
length 2 and 3 were detected. Furthermore, it was found that
the examined register does not include periods from length 5
to 55 (excluding cycles of length 2%k and 3k, where k is an
integer greater than 0 -— those lengths were omitted from the
calculation). Found cycles we present in table [[TI] In article [5]
and results show in table (]| the cycle of length 2 was not found.
Probably authors not consider of 1 which is add to NLFSR
feedback function in original specification of Grain80.

B. Analysis of 128-bit NLFSR from stream cipher Grain-128

The Grain-128 stream cipher was proposed in [3]]. The
design is very small in hardware, and targets environments
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TABLE 11

ANALYSIS OF 80-BIT NLFSR FROM GRAIN-80.

result result time time
n manual automated manual automated

method method method method
2 sat sat Om 00.08s Om 00.05s
3 sat sat Om 00.07s Om 00.06s
5 unsat unsat Om 00.24s Om 00.07s
7 unsat unsat Om 00.24s Om 00.09s
11 unsat unsat Om 00.26s Om 00.15s
13 unsat unsat Om 00.34s Om 00.18s
17 unsat unsat Om 00.45s Om 00.69s
19 unsat unsat Om 00.81s Om 01.02s
23 unsat unsat Om 01.37s Om 01.96s
25 unsat unsat Om 03.22s Om 04.19s
29 unsat unsat Om 08.95s Om 11.50s
31 unsat unsat Om 10.03s Om 10.92s
35 unsat unsat Om 08.79s Om 12.33s
37 unsat unsat Om 11.57s Om 10.64s
41 unsat unsat Im 03.11s Om 48.29s
43 unsat unsat Om 42.09s Om 33.52s
47 unsat unsat 7m 05.38s 3m 25.04s
49 unsat unsat 16m 24.07s 2é6m 15.56s
53 unsat timeout 58m 27.69s | @ ——————-
55 unsat timeout 55m 26.48s | @ ———————
59 timeout timeout | - | @ ——————=

TABLE III

CYCLES FOUND IN NLFSR FROM GRAIN-80.

n state [hex]
2 AAAAAAAAAAAAAAAAAAAA
3 92492492492492492492

with very limited resources in gate count, power consumption,
and chip area. Similar to Grain-80, it contains 128-bit NLFSR
and 128-bit LFSR.

The LFSR is known to have the maximum period of 2128 —1
since it uses a primitive generator polynomial of degree 128.
The period of NLFSR is unknown, and its feedback function
F is:

F(xo,...,x127) = T127 + T101 + T71 + 36 + T31 + T124T60 +
1162114 + 1102109 + T100%68 + T87T79 + TeeLe2 + L59T43

During testing of 128-bit NLFSR from a Grain-128 cipher
(results in table we rotated register in right, periods of
length 7, 8 and 59 were detected. Furthermore, it was found
that the examined register does not include periods from length
2 to 44 (excluding cycles of length 7k and 8k, where k is an
integer greater than 0 — those lengths were omitted from the
calculation). Found cycles we present in table [V]

C. Analysis of 128-bit NLFSR from stream cipher Grain-128a

The Grain-128a stream cipher was proposed in [10]. The
algorithm is a new version of Grain-128 and is strengthened
against all known attacks and observations, with built-in
support for optional authentication. The period of the new
128-bit NLFSR is also unknown, and its feedback function
F is:

TABLE IV
ANALYSIS OF 128-BIT NLFSR FROM GRAIN-128.
result result time time
n manual automated manual automated
method method method method
2 unsat unsat Om 00.04s Om 00.04s
3 unsat unsat Om 00.05s Om 00.04s
4 unsat unsat Om 00.05s Om 00.05s
5 unsat unsat Om 00.05s Om 00.07s
6 unsat unsat Om 00.05s Om 00.05s
7 sat sat Om 00.06s Om 00.06s
8 sat sat Om 00.06s Om 00.06s
9 unsat unsat Om 00.07s Om 00.11s
10 unsat unsat Om 00.06s Om 00.11s
11 unsat unsat Om 00.09s Om 00.10s
12 unsat unsat Om 00.08s Om 00.13s
13 unsat unsat Om 00.09s Om 00.12s
15 unsat unsat Om 00.16s Om 00.49s
17 unsat unsat Om 00.17s Om 00.64s
18 unsat unsat Om 00.60s Om 00.81s
19 unsat unsat Om 00.93s Om 01.42s
20 unsat unsat Om 00.86s Om 00.77s
22 unsat unsat Om 01.07s Om 01.34s
23 unsat unsat Om 02.31s Om 01.42s
25 unsat unsat Om 02.23s Om 02.47s
26 unsat unsat Om 02.80s Om 03.43s
27 unsat unsat Om 08.94s Om 08.04s
29 unsat unsat Om 07.95s Om 12.42s
30 unsat unsat Om 08.42s Om 06.53s
31 unsat unsat Om 24.80s Om 27.63s
33 unsat unsat Im 07.11s Im 08.25s
34 unsat unsat Om 16.37s Om 31.43s
36 unsat unsat Im 15.63s 2m 20.12s
37 unsat unsat Om 58.69s Im 01.83s
38 unsat unsat 3m 16.68s 3m 33.52s
39 unsat unsat Om 51.58s Im 06.15s
41 unsat unsat 4m 39.11s 4m 46.36s
43 unsat unsat 17m 48.66s 15m 15.22s
44 unsat unsat 25m 56.06s 20m 06.97s
45 timeout timeout | —-——--——— | ——————=
50 timeout timeout | - | @ ——————-
51 timeout timeout | -——————— | ——————-
52 timeout timeout | - | ===
53 timeout timeout | - | @ ——————=
54 timeout timeout | - | @ ——————=
55 timeout timeout | -—-——-——— | @ ——————=
57 timeout timeout | - | @ ——————-
58 timeout timeout | -—-—————— | @——————-
59 sat timeout | 31m 58.28s | ——————-
60 timeout timeout | - | @ ——————=

F(xo,...,x127) = 1 + @31 + 36 + T71 + T101 + T127 +
T43%59 + T60T124 + Te2T66268T100 + T79287 + T109ZT110 +
T114T116 T T45249T57 + £10221032105 + T32T34T35%39

During testing of 128-bit NLFSR from a Grain-128a cipher
(results in table [VI) we rotated register in right, periods of
length 3, 31, 37 and 65 were detected. Furthermore, it was
found that the examined register does not include periods from
length 2 to 41 and length 44 (excluding cycles of length 3k,
31k and 37k, where k is an integer greater than O -— those
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TABLE V
CYCLES FOUND IN NLFSR FROM GRAIN-128.
n state [hex]
7 3A74E9D3AT74E9D3A74E9D3A74E9D3A74
8 2F2F2F2F2F2F2F2F2F2F 2F2F 2F 2F 2F 2F
59 C83BBB78A6B74C1907776F14D6E98320

lengths were omitted from the calculation). Found cycles we
present in table

D. Analysis of Bivium and Trivium

We also applied the presented algorithm to Trivium [4]
stream ciphers and his simpler version Bivium [8f. Referring
to figure [T] in Bivium we can distinguish two LFSR’s: 93-bit
register A and 84-bit register B. The Internal state of Bivium
consists 177 bits.

keystream
Vt
.Vt
g g g g g S |-
r, AGL—{COC e }J—{ ﬂ— b Trivium
C, C, C, keystream

1
1
1
1
1
I
1
|
1
1
I
1
1
I
! s
: Bivium
I
T
1
1
I
1
1
1
1
I
I
1
I
1
I

Fig. 1. Bivium and Trivium stream ciphers

The Trivium stream cipher includes an additional 111-bit
register C'. All used LFSRs are known to have the maximum
period, since Trivium uses a primitive generator polynomials
of degree 93, 84, 111. The internal state of Trivium consists
of 288 bits. Trivium was submitted to the profile 2 (hardware)
of the eSTREAM competition and has been selected as part
of the portfolio for low area hardware ciphers profile 2 by
the eSTREAM project [[16]. It is not patented and has been
specified as an International Standard under ISO/IE. The
algorithm generates up to 254 bits of output keystream from
an 80-bit key and an 80-bit IV vector.

During testing Bivium key stream generator (results in ta-
ble were not included constants used in the initialization
step. A period of length 3 was detected. Furthermore, it was
found that the examined construction does not include periods
from length 2 to 46 or from length 52 to 55 (excluding cycles
of length 3k, where k is an integer greater than 0 — those
lengths were omitted from the calculation). Found cycle we
present in table [IX| (|| is bitwise concatenation).

During testing Trivium key stream generator (results in
table [X)) were not included constants used in the initialization
step of Trivium. Periods of length 3, 10 and 11 were detected.
Furthermore, it was found that the examined construction does
not include periods from length 2 to 31 (excluding cycles

W. DUDZIC, K. KANCIAK

TABLE VI
ANALYSIS OF 128-BIT NLFSR FROM GRAIN-128A.

result result time time
n manual automated manual automated
method method method method
2 unsat unsat Om 00.05s Om 00.29s
3 sat sat Om 00.04s Om 00.33s
4 unsat unsat Om 00.05s Om 00.39s
5 unsat unsat Om 00.05s Om 00.27s
7 unsat unsat Om 00.06s Om 00.33s
8 unsat unsat Om 00.05s Om 00.30s
10 unsat unsat Om 00.07s Om 00.36s
11 unsat unsat Om 00.07s Om 00.41s
13 unsat unsat Om 00.10s Om 00.45s
14 unsat unsat Om 00.09s Om 00.51s
16 unsat unsat Om 00.39s Om 00.79s
17 unsat unsat Om 00.17s Om 01.00s
19 unsat unsat Om 01.38s Om 02.01s
20 unsat unsat Om 01.00s Om 01.68s
22 unsat unsat Om 01.16s Om 02.15s
23 unsat unsat Om 02.11s Om 02.55s
25 unsat unsat Om 05.51s Om 06.29s
26 unsat unsat Om 04.11s Om 04.49s
28 unsat unsat Om 04.00s Om 05.18s
29 unsat unsat Om 11.42s Om 18.47s
31 sat sat Om 01.11s Om 06.75s
32 unsat unsat Om 30.62s Om 54.72s
34 unsat unsat Om 30.00s Im 22.09s
35 unsat unsat Om 35.77s Om 46.86s
37 sat sat Om 03.84s Om 10.74s
38 unsat timeout 19m 19.39s | ——————-
40 unsat unsat 2m 05.77s 5m 17.70s
41 unsat timeout 29m 58.56s | @ ———————
43 timeout timeout | —-————-—— | @ ——————-
44 unsat unsat 17m 45.83s 47m 14.03s
46 timeout timeout | -————-—— | @——————-
47 timeout timeout | - | ===
49 timeout timeout | - | @ ——————=
50 timeout timeout | - | @ ——————-
52 timeout timeout | —-——--——— | ——————=
53 timeout timeout | - | @ ——————-
55 timeout timeout | -——————— | ——————-
56 timeout timeout | - | ===
58 timeout timeout | - | @ ——————=
59 timeout timeout | - | @ ——————=
61 timeout timeout | -—-——-——— | @ ——————=
64 timeout timeout | - | @ ——————-
65 timeout sat | —-————- 57m 56.46s

of length 3k, 10k and 11k, where k is an integer greater
than 0 -— those lengths were omitted from the calculation).
We also examined Trivium with key stream generators as
included constants used in the initialization step, but no cycles
were found from length 2 to 177. Found cycles we present in

table X1

E. Manualy generation of equantions versus automated gen-

eration of equantions

In our experiments we used two methods to generate equa-
tions in algebraic normal form: manual (based on handwritten
equations) and automated (based on AIG graphs). The main
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TABLE VII
CYCLES FOUND IN NLFSR FROM GRAIN-128A.

n state [hex]

3 6DB6DB6DB6DB6DB6DB6DB6DB6DB6DB6D
31 0E739A721CE734E439CE69C8739CD390
37 FBA40E3E6FDD2071F37EE9038F9BF748
65 049D61EB869158AE824EBOF5C348AC57

TABLE VIII

ANALYSIS OF BIvium
(WHITHOUT CONSTANTS USING IN INITIALIZATION STEP)

n result automated time automated
method method
2 unsat Om 00.05s
3 sat Om 00.03s
4 unsat Om 00.03s
5 unsat Om 00.03s
7 unsat Om 00.03s
8 unsat Om 00.04s
10 unsat Om 00.05s
11 unsat Om 00.08s
13 unsat Om 00.05s
14 unsat Om 00.07s
16 unsat Om 00.10s
17 unsat Om 00.17s
19 unsat Om 00.24s
20 unsat Om 00.33s
22 unsat Om 00.36s
23 unsat Om 00.08s
25 unsat Om 00.32s
26 unsat Om 00.06s
28 unsat Om 00.44s
29 unsat Om 01.67s
31 unsat Om 05.69s
32 unsat Om 01.01s
34 unsat Om 28.18s
35 unsat Om 04.36s
37 unsat 3m 19.98s
38 unsat 2m 22.31s
40 unsat Om 01.78s
41 unsat Om 00.37s
43 unsat 53m 20.32s
44 unsat 39m 57.73s
46 unsat 2m 33.90s
47 timeout | = ——=———=
49 timeout | = ===
50 timeout | = ——————=
52 unsat Om 03.90s
53 unsat 58m 16.13s
55 unsat Om 40.02s
56 timeout | = ——==——=

differences between the two sets are the number of equations
and the maximal algebraic degree. For the method based on
handwritten equations, the maximal algebraic degree depends
on the form of the NLFSR feedback function, and for the
method based on AIG graphs, the maximal algebraic degree
is always equal to 2. This is a natural consequence of the
construction of AIG graphs. For this reason, the number of
equations is higher when the second method is used.

TABLE IX
CYCLES FOUND IN BIVIUM
(WITHOUT CONSTANTSUSED IN THE INITIALIZATION STEP).

n | state [hex || bit]
R 00000000000000000000000124
924924924924924924 || True
TABLE X

ANALYSIS OF TRIVIUM
(WHITHOUT CONSTANTS USING IN INITIALIZATION STEP)

0 result automated time automated
method method
2 unsat Om 00, 05s
3 sat Om 00, 06s
4 unsat Om 00,07s
5 unsat Om 00,07s
7 unsat Om 00, 09s
8 unsat Om 00, 09s
10 sat Om 00, 14s
11 sat Om 00, 09s
13 unsat Om 00,07s
14 unsat Om 00, 14s
16 unsat Om 00,31s
17 unsat Om 00,37s
19 unsat Om 01,14s
23 unsat Om 00,11s
25 unsat Om 14,38s
26 unsat Om 00,11s
28 unsat 2m 49,88s
29 unsat Om 00,11s
31 unsat 51m 54, 39s
32 timeout | = ——————=

The task in the CNF can be characterized by the number of
variables and the number of clauses. Due to the ANF systems
from which our CNF tasks were generated, it was typical
that CNF systems generated from the AIG based method
had many more variables and clauses than those generated
from handwritten equations. In both cases, it is clear that the
increase in both indicators is linear. The relevant dependencies
are shown in figure 2] and [3]

number of variables
@
3
2
s

2 3 5 7 11 15 17 19 23 25 29 31 35 37 41 43 47 49 53 55 5

e}

=3

n-th iterartion

— mranual sssees gutomated

Fig. 2. Number of variables in CNF on n-th iterationfor Grain-80

Despite the significant differences between CNF generated
by the handwritten equations method and the AIG graph



448

TABLE XI
CYCLES FOUND IN TRIVIUM
(WITHOUT CONSTANTSUSED IN THE INITIALIZATION STEP).

n [ state [hex]
3 000000000000000000000004924924924924
924924920000000000000000000000000000
10 94E5394E5394E5394E5394E733CCF33CCF33
CCF33CCF6F5BD6F5BD6F5BD6F5BD6F5BD6ES
11 4148290520R4148290520A413E27C4F89F13
E27C4F899BC3786F0DE1BC3786F0DE1BC378

number of clauses
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Fig. 3. Number of clauses in CNF on n-th iterationfor Grain-80

method, the time to find solutions is similar. The time dif-
ference is due to heuristic methods of solving the CNF task
by Plingeling SAT solver. Considering this fact, it is difficult
to assess which method of generating equations is better. Both
methods allow the occurrence of short cycles in tested NLFSRs
and stream ciphers to be easily checked.

IV. CONCLUSION

In summary, our experiments discovered short cycles in the
NLFSRs used in Grain-80, Grain-128 and Grain-128a stream
ciphers (all examineted registers are nonsingular in case when
they will be rotate in right) and also in stream ciphers Bivium
and Trivium (without constants used in the initialization step).
Furthermore, by obtaining proof of the contradiction of the
SAT problem, we also determined the number of iterations
for which such cycles do not exist.

The time needed to find a cycle or proof of its absence is
better than that of the algorithm used in [5]. This is clearly
shown as the iteration of the given transformation increases.
This fact allowed us to evaluate a larger range of iterations
than was tested in [5]. Unfortunately, due to the nature of
the SAT problem, it we did not estimated the computational
and memory complexity. This is the main disadvantage with
respect to the method proposed in [5].

In the future, we want to use the divide-and-conquer strategy
in solving SAT. We believe that this approach can significantly
reduce the calculation time, which will allow for evaluation of
a larger range of iterations.

In our opinion, the presented method may prove to be a
good approach to check whether a given iterated cryptographic
algorithm has short cycles. Certainly, it is useful when no other
algorithms exist (except brute force) to check this property (i.e.

W. DUDZIC, K. KANCIAK

in the case of NLFSR). It can also be useful in determining
the distribution of cycles of tested transformation.

From the cryptanalysis point of view, it will be interesting to
check how the cycles found affect the security of the examined
algorithms. The occurrence of short cycles in the key stream
generator in practice discredits such an algorithm
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