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Simple Verification of Completeness of Two
Addition Formulas on Twisted Edwards Curves

Robert Dryło, and Tomasz Kijko

Abstract—Daniel Bernstein and Tanja Lange [9] proved that
two given addition formulas on twisted Edwards elliptic curves
ax2 + y2 = 1+ dxy are complete (i.e. the sum of any two points
on a curve can be computed using one of these formulas). In
this paper we give simple verification of completeness of these
formulas using a program written in Magma, which is based on
the fact that completeness means that some systems of polynomial
equations have no solutions. This method may also be useful to
verify completeness of additions formulas on other models of
elliptic curves.
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I. INTRODUCTION

ELLIPTIC curves are algebraic groups with efficient group
law which allows to apply them in number theory algo-

rithms such as primality testing [3] and integer factorization
[26] and in public key cryptography for Diffie-Hellman key ex-
change (ECDH), ElGamal encryption, and elliptic curve digital
signature algorithm (ECDSA). Security of these cryptographic
schemes is based on the discrete logarithm problem (DLP),
which is hard on classical computer but can be broken using
polynomial quantum Shor’s algorithm [18], [29] if sufficiently
efficient quantum computer would be constructed. On elliptic
curves also exist isogeny based cryptosystems [14], [28],
which are candidates on postquantum schemes, whose security
is based on hardness of computing isogenies of large degrees
between elliptic curves.

Basic operation in classical schemes based on the DLP
is point multiplication by large integers, which has essential
contribution to the cost of cryptographic protocols and was
motivation to develop methods for improving its efficiency.
If implemented insecurly, it may reveal bits of secret key
using side channel attacks when, e.g., the double and add
method is used and doubling is given by other formula that
addition of two different points, which is the case for standard
formulas on Weierstrass curves. To prevent this kind of attacks
one can try to use suitable algorithms, multiply a point after
compression applying the Mongomery ladder algorithm, or
use models of elliptic curves with unified addition formula,
i.e., where a formula for point addition may also be used
for doubling a generic point on a curve. Unified and efficient
addition formulas have been given for the following models of
elliptic curves: Jacobi quartic [10], [22], Hessian curves [8],
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[16], [19], Huff curves [24] and Edwards curves [5], [7], [17].
An addition formula on elliptic curves may be incomplete,
i.e., there may exist pairs of exceptional points whose sum
cannot be computed using a given formula. D. Bernstain and T.
Lange [9] proved that two addition formulas (see below (10))
on twisted Edwards curves Ea,d : ax2+ y2 = 1+dx2y2 form
a complete set of addition formulas. i.e., the sum of any two
points on Ea,d can be computed using one of these formulas.
In this paper we will give other verification of completeness
of addition formulas (10) over any field of characteristic
6= 2, which is based on a program written in Magma. In
brief completeness means that suitable systems of polynomial
equations have no solutions over any field. We first check that
formulas are complete for the curve Ea,d over the field of
rational functions Q(a, d), where a, d are variables over Q.
This is done by checking that 1 belongs to a suitable ideal,
and then we write 1 as a sum of given generators with suitable
polynomial coefficients. Then we check that these coefficient
polynomials can be reduced mod any prime p 6= 2 (i.e., there
are no denominators which is zero mod p), and we check that
the coefficient polynomials can be evaluated for any values
a, d ∈ K, which are allowed for Ea,d to be an elliptic curve.
This shows that formulas (10) are complete over any field
K with char(K) 6= 2. We give a code in Magma for this
verification. In the last section we also discuss (see also [25])
how one may use Gröbner bases to determine the space of
addition formuas of given degree (if such formulas exist),
which may be useful to study addtion laws on other models
of elliptic curves, our method is similar to the method in [15]
to determine formulas used in point compression.

II. EDWARDS AND TWISTED EDWARDS CURVES

H. Edwards [17] introduced the following model of elliptic
curves

x2 + y2 = c2(1 + x2y2),

where addition is given by the formula

(x1, y1)+ (x2, y2) =

(
x1y2 + y1x2

c(1 + x1x2y1y2)
,

y1y2 − x1x2
c(1− x1x2y1y2)

.

)
(1)

Edwards model was generalized by Bernstein et al. [7] to the
form

x2 + y2 = 1 + dx2y2,

which covers more curves over a field K of char(K) 6= 2,
d 6= 0, 1. Later Bernstein et al. [5] introduced twisted Edwards
curves

Ea,d : ax2 + y2 = 1 + dx2y2, (2)
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over a field K of char(K) 6= 2, where a, d ∈ K are non-
zero and a 6= d. Addition formula on the twisted curve Ea,d
extends Edwards formula and is given by

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2
1− dx1x2y1y2

.

)
(3)

The neutral element is O = (0, 1) and the negation is given
by −(x, y) = (−x, y). If d and a/d are not squares in K,
then the above addition formula is complete in the set E(K)
of K-rational points on E, i.e., the sum of any two points in
E(K) can be computed using the above adition formula.

Twisted Edwards curves are birationally equivalent to Mon-
gomery curves, and conversely, Montgomery curves are bi-
rationally equivalent to Edwards curves. On Edwards curves
also exist efficient implementations of pairing computation
[2], elliptic curve factorization method [4], digital signature
EdDSA [6], and isogeny computation [27].

Hisil et al. [23] gave the following addition formula on the
twisted Edwards curve

(x1, y1) + (x2, y2) =

(
x1y1 + x2y2
ax1x2 + y1y2

,
x1y1 − x2y2
x1y2 − x2y1

)
(4)

Note that exceptional casses of formula (3) can be deter-
mined as follows. We denote the sum (x1, y1) + (x2, y2) by
(x3, y3) and assume that the point P = (x1, y1) is fixed.

Case 1: (x3 does not exists).
We want to find points (x2, y2) for which 1+dx1x2y1y2 = 0.
We will solve the following system of equations (two last
equations mean that points (x1, y1) and (x2, y2) lay on the
twisted Edwards curve): 1 + dx1x2y1y2 = 0

ax21 + y21 − 1− dx21y21 = 0
ax22 + y22 − 1− dx22y22 = 0

(5)

We get the following solutions of system (5) :
(

1√
dy1

, −1√
dx1

)
,(

−1√
dy1

, 1√
dx1

)
.,
(

1√
adx1

,
−
√
a/d

y1

)
and

(
−1√
adx1

,

√
a/d

y1

)
.

Case 2: (y3 does not exists).
We want to find points (x2, y2) for which 1−dx1x2y1y2 = 0.
We will solve the following system of equations 1− dx1x2y1y2 = 0

ax21 + y21 − 1− dx21y21 = 0
ax22 + y22 − 1− dx22y22 = 0

(6)

We get the following solutions of system (6) :
(

1√
dy1

, 1√
dx1

)
,(

−1√
dy1

, −1√
dx1

)
.,
(

1√
adx1

,

√
a/d

y1

)
and

(
−1√
adx1

,
−
√
a/d

y1

)
..

Corollary II.1. If a is a square and d is not a square in K,
then the law given by (3) is complete.

Now we examine the exceptional casses for formula (4). As
above we denote the sum (x1, y1) + (x2, y2) by (x3, y3) and
assume that the point P = (x1, y1) is fixed.

Case 1: (x3 does not exists).
We want to find points (x2, y2) for which ax1x2 + y1y2 = 0.
We will solve the following system of equations: ax1x2 + y1y2 = 0

ax21 + y21 − 1− dx21y21 = 0
ax22 + y22 − 1− dx22y22 = 0

(7)

We get the following solutions of system (7) :
(
y1√
a
,−
√
ax1

)
,(

− y1√
a
,
√
ax1

)
,
(

1√
adx1

,−
√
a/d

y1

)
,
(
− 1√

adx1
,

√
a/d

y1

)
.

Case 2: (x3 does not exists). We want to find points (x2, y2)
for which x1y2−x2y1 = 0. We will solve the following system
of equations:  x1y2 − x2y1 = 0

ax21 + y21 − 1− dx21y21 = 0
ax22 + y22 − 1− dx22y22 = 0

(8)

We get the following solutions of system (8) : (x1, y1),
(−x1,−y1),

(
1√
dy1

, 1√
dx1

)
and

(
− 1√

dy1
,− 1√

dx1

)
.

Corollary II.2. The formula (4) can not be used to double
a point and there are exceptions for additions when a is a
square and d is not a square in K.

On the other hand if both formulas (3) and (4) produce
results, the results are the same.

In the product of projective lines P1 × P1 the twisted
Edwards curve is by the equation

Ea,d : aX2T 2 + Y 2Z2 = T 2Z2 + dX2Y 2. (9)

The addition formulas (3) and (4) in homogeneous coordinates
are given by

((X1 : Z1), (Y1 : T1)) + ((X2 : Z2), (Y2 : T2)) =

((X1Y2Z2T1 +X2Y1Z1T2 : Z1Z2T1T2 + dX1X2Y1Y2),
(Y1Y2Z1Z2 − aX1X2T1T2 : Z1Z2T1T2 − dX1X2Y1Y2))

if in P1(F)× P1(F)
((X1Y1Z2T2 +X2Y2Z1T1 : aX1X2T1T2 + Y1Y2Z1Z2),

(X1Y1Z2T2 −X2Y2Z1T1 : X1Y2Z2T1 −X2Y1Z1T2))
if in P1(F)× P1(F)

(10)

Bernstein and Lange [9] proved that these addition formulas
are complete on Ea,d over any field K of char(K) 6= 2.
We will give alternative verification of completeness of these
formulas using Magma.

III. VERIFICATION OF COMPLETENESS OF TWO ADDITION
FORMULAS

We start by recalling some elementary properties of alge-
braic sets in the product of projective spaces. Let K be a field
with algebraic closure K. Let n1, . . . , ns ∈ N>0. A polyno-
mial f ∈ K[X10, . . . , X1n1

, . . . , Xs0, . . . , Xsns
] is homoge-

neous of degree di with respect to variables Xi0, . . . , Xini

if writing f =
∑
α∈Nni+1 gαX

α0
i0 . . . X

αni
ini

, where α =
(α0, . . . , αni) and gα are polynomials which do not depend
on Xij , we have gα 6= 0 =⇒ |α | = α0 + . . . + αni

= di.
Algebraic sets in the product Pn1×. . .×Pns are given as sets of
common zeros of a system of polynomials homogeneous with
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respect to each set of variables Xi0, . . . , Xini for i = 1, . . . , s.
We have covering of Pn1 × . . . × Pns by open affine sets
U1j1 × . . . × Usjs isomorphic to Kn1 × . . . × Kns , where
Uiji = {(Xi0 : . . . : Xini

) ∈ Pni : Xiji 6= 0} and
0 ≤ ji ≤ ni. In particular to show that some system of
polynomial equations has no solutions in Pn1 × . . . × Pns

over K one can equivalenty show that substituting X1j1 =
. . . Xsjs = 1 to the polynomials form the system we have that
1 belongs to the ideal generated by the new polynomials for
each 0 ≤ ji ≤ ni, i = 1, . . . , s. For an irreducible algebraic set
V ⊂ Pn1 × . . .×Pns a rational map V → Pn can be given in
the form F = (F0 : . . . : Fn) such that for each set of variables
Xi0, . . . , Xini the polynomials F0, . . . , Fn are homogeneous
of the same degree with respect to these variables.

Now let V ⊂ (P1)4 be an irreducible algebraic set and let
f : V → P1 × P1 be a rational map defined on the whole of
V , which can be given by two formulas F = ((F1 : F2), (F3 :
F4)) and G = ((G1 : G2), (G3 : G4)). Let V be given by
equations H1 = H2 = 0. We will apply this to the product
V = E × E, where E is an elliptic curve and F,G are two
addition formulas. Assume that we want to show that values
of the map f can always be obtained using F or G. Let VF =
{P ∈ V : F1(P ) = F2(P ) = 0 or F3(P ) = F4(P ) = 0}
and DF = V \ VF , and similarly define the sets VG and DG

for G. We want to show that DF ∪DG = V , or equivalently
VF ∩VG = ∅. This means that for each i, j ∈ {1, 3} the system

H1 = H2 = Fi = Fi+1 = Gj = Gj+1 = 0 (11)

has no solutions in (P1)4. Let (Xi : Yi) for i = 1, . . . , 4 be
homogeneous coordinates on the ith P1 in the product (P1)4.
For each (z1, . . . , z4), where zi ∈ {Xi, Yi} for i = 1, . . . , 4,
let Uz1,...,z4 =

∏4
i=1{zi 6= 0}, which is an affine open set

isomorphic to the affine space K
4
. Since these sets cover

(P1)4, we want to show that for each (z1, . . . , z4) as above
and for each i, j ∈ {1, 3} the system

h1 = h2 = fi = fi+1 = gj = gj+1 = 0 (12)

has no solutions in K
4
, where the polynomials in (12) are

obtained by substituting z1 = . . . = z4 = 1 in polynomials
from (11). Equivalently we want to show that 1 belongs to the
ideal generated by h1, h2, fi, fi+1, gj , gj+1 over K, but then
1 also belongs to the ideal I generated by these polynomials
over K. This can be checked computing a Gröbner basis of I
which will contain 1 or non-zero constant from K. If 1 ∈ I ,
for some polynomials wi ∈ K[x1, . . . , x4] for i = 1, . . . , 6 we
can write

1 = w1h1 + w2h2 + w3g1 + w4g2 + w5f1 + w6f2. (13)

For example, one can search for such polynomials wi as
follows. If we want to check existance of wi of degree
deg(wi) ≤ b for a given bound b, we can regard unknown
coefficients of wi as variables and equation (13) leads to
the system of linear equations from which we can compute
coefficients if exist.

Note also that 1 ∈ I if and only if (z1 . . . z4)
α for some

α ∈ N belongs to the ideal generated by the polynomials
H1, H2, Fi, Fi+1, Gj , Gj+1, because if 1 ∈ I , then writing

1 as in (13) for some polynomials wi, and multiplying this
equation by suitable power (z1 . . . z4)

α we obtain that this
power belong to the second ideal, and conversely.

Completeness of two addition formulas on twisted Edwards
curves. We will apply the above method to check complete-
ness of two addition formulas (10) on twisted Edwards curves
over any field K of char(K) 6= 2, and any non-zero different
a, d ∈ K. First we assume that coefficients a, d are variables
over Q, so the twisted Edwards curve Ea,d is defined over the
field of rational functions Q(a, d) by the equation

H = aX2T 2 + Y 2Z2 = T 2Z2 + dX2Y 2 = 0. (14)

Let Hi = H(Xi, Zi, Yi, Ti) for i = 1, 2. The product V =
E × E ⊂ (P1)4 is given by the equations H1 = H2 = 0.
Let F,G : E × E → E be the first and second addition
formula (10), and let F = ((F1 : F2), (F3 : F4)), G = ((G1 :
G2), (G3 : G4)), where

F1 = X1Y2Z2T1 +X2Y1Z1T2,

F2 = Z1Z2T1T2 + dX1X2Y1Y2,

F3 = Y1Y2Z1Z2 − aX1X2T1T2,

F4 = Z1Z2T1T2 − dX1X2Y1Y2,

(15)

and

G1 = X1Y1Z2T2 +X2Y2Z1T1,

G2 = aX1X2T1T2 + Y1Y2Z1Z2,

G3 = X1Y1Z2T2 −X2Y2Z1T1,

G4 = X1Y2Z2T1 −X2Y1Z1T2.

(16)

As above let zi for i = 1, . . . , 4 be one of the coordinates
on the ith copy of P1 in the product (P1)4. Choosing all
combinations of zi for i = 1, . . . , 4 and substituting zi = 1
for i = 1, . . . , 4 to polynomials in (11) with above Fi, Gi, we
want to show that 1 ∈ I for ideal I generated by polynomials
in (12). The program below in Magma checks that 1 ∈ I and
determines polynomials wi ∈ Q(a, b)[x1, x2, x3, x4] such that
(13) is satisfied.

Assume that we want to reduce this equation mod p for
prime p 6= 2. It turns out that polynomials wi can be
reduced mod p, i.e., reducing coefficients of wi we never get
zero in denominator. The program below checks this. First
taking all denominators of coefficients of polynomials wi, the
program below computes the least common multiplicity of
these denominators, and it turns out that lcm always divides
a2d3(a − d), this is the lcm over Q[a, b]. It turns also that
all coefficients in the denominator of coefficients of wi are
equal ±1. All coefficients in the numerator of coefficients of
wi have denominators at most 2. Thus all coefficients can
be reduced mod p 6= 2. Thus if a′, d′ ∈ K∗ are different
and char(K) 6= 2, then substituting a′, d′ to Ea,d, formulas
F,G and coefficients of wi we obtain that denominators of
coefficients of wi are non-zero and (13) holds for the curve
Ea′,d′ over K.

Below we give a Magma code to check complete-
ness of addition formulas on twisted Edwards curves in
the above way (which can be performed in Magma cal-
culator http://magma.maths.usyd.edu.au/calc/).
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During computation 64 systems of equations (13) were con-
sidered. Below we give one example of a system obtained
during computations.

Q:=Rationals();
Z:=Integers();
R<a,d>:=FunctionField(Q,2);
pF<X1,Z1,Y1,T1,X2,Z2,Y2,T2>:=
PolynomialRing(R,8);
pF4<x1,x2,x3,x4>:=PolynomialRing(R,4);

x:=[x1,x2,x3,x4];

// Twisted Edwards curve equations
H1:=a*X1ˆ2*T1ˆ2+Y1ˆ2*Z1ˆ2
-Z1ˆ2*T1ˆ2-d*X1ˆ2*Y1ˆ2;
H2:=a*X2ˆ2*T2ˆ2+Y2ˆ2*Z2ˆ2
-Z2ˆ2*T2ˆ2-d*X2ˆ2*Y2ˆ2;

// Addition formula F = (F12 , F34)
// F12 = (F1 : F2)
F12:=[X1*Y2*Z2*T1+X2*Y1*Z1*T2,
Z1*Z2*T1*T2+d*X1*X2*Y1*Y2];
// F34 = (F3 : F4)
F34:=[Y1*Y2*Z1*Z2-a*X1*X2*T1*T2,
Z1*Z2*T1*T2-d*X1*X2*Y1*Y2];

// Addition formula G = (G12 , G34)
// G12 = (G1 : G2)
G12:=[X1*Y1*Z2*T2+X2*Y2*Z1*T1,
a*X1*X2*T1*T2+Y1*Y2*Z1*Z2];
// G34 = (G3 : G4)
G34:= [X1*Y1*Z2*T2-X2*Y2*Z1*T1,
X1*Y2*Z2*T1-X2*Y1*Z1*T2];

F:=[F12,F34]; G:=[G12,G34];

for A in F do
for B in G do

S:= A cat B cat [H1,H2];
for s in CartesianPower({0,1},4) do

sq:=[];
for i in [1..4] do

if s[i] eq 0 then
sq:=sq cat [1,x[i]];

else
sq:= sq cat [x[i],1];

end if;
end for;

U:=[];
for f in S do

U:=U cat [pF4!Evaluate(f,sq)];
end for;
I:=IdealWithFixedBasis(U);
1 in I; cg:=[];
C:=Coordinates(I,pF4!1);
for g in C do

cg:=cg cat Coefficients(g);

end for;

D:=[]; N:=[]; cD:=[]; cN:=[];

for u in cg do
D:=D cat [Denominator(u)];
N:=N cat [Numerator(u)];
cD:= cD cat Coefficients(Denominator(u));
cN:= cN cat Coefficients(Numerator(u));

end for;
dcN:=[];
for i in cN do dcN:= dcN cat [Denominator(i)];
end for;
dcD:=[]; ncD:=[];
for i in cD do dcD:= dcD cat [Denominator(i)];

ncD:= ncD cat [Numerator(i)];
end for;

Factorization(Lcm(D)); Lcm(dcD); Lcm(ncD);
Lcm(dcN);

end for;
end for;
end for;

The following example gives polynomial computed by the
above algorithm in one of the 64 cases.

Example 1. Let z1 = x1, z2 = x2, z3 = x3 and z4 = y4.
Substituting zi = 1 for i = 1, . . . , 4 leads to the following
formulas for the twisted Edwards curves

H1((1 :Z1), (1 :T1)) = −Z2
1T

2
1 + aT 2

1 + Z2
1 − d = 0

H2(((1 :Z2), (Y2 :1))) = Z2
2Y

2
2 − dY 2

2 − Z2
2 + a = 0

(17)
and addition formulas

F1(((1 :Z1), (1 :T1)), ((1 :Z2), (Y2 :1))) = T1Z2Y2 + Z1

F2(((1 :Z1), (1 :T1)), ((1 :Z2), (Y2 :1))) = Z1T1Z2 + dY2
F3(((1 :Z1), (1 :T1)), ((1 :Z2), (Y2 :1))) = Z1Z2Y2 − aT1
F4(((1 :Z1), (1 :T1)), ((1 :Z2), (Y2 :1))) = Z1T1Z2 − dY2
G1(((1 :Z1), (1 :T1)), ((1 :Z2), (Y2 :1))) = TZ1T1Y2 + Z2

G2(((1 :Z1), (1 :T1)), ((1 :Z2), (Y2 :1))) = Z1Z2Y2 + aT1
G3(((1 :Z1), (1 :T1)), ((1 :Z2), (Y2 :1))) = −Z1T1Y2 + Z2

G4(((1 :Z1), (1 :T1)), ((1 :Z2), (Y2 :1))) = −Z1T1Y2 + Z2

(18)
The system of equations (13) for i = 1 and j = 1 in affine
space K

4
has a form

h1 = −y21y22 + ay22 + y21 − d = 0
h2 = y23x

2
4 − dx24 − y23 + a = 0

f1 = y2y3x4 + y1 = 0
f2 = y1y2y3 + dx4 = 0
g1 = y1y2x4 + y3 = 0
g2 = y1y3x4 + ay2 = 0

(19)

The ideal I generated by polynomials h1, h2, f1, f2, g1, g2
contains 1 (the system has no solutions). Now we can write

1 = w1h1 + w2h2 + w3f1 + w4f2 + w5g1 + w6g2

where
wi =

vi
2(a2d2 − ad3)

, i ∈ {1, . . . , 6}
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and

v1 = −dy22y43 + 2ady22y
2
3 − 2ady23 + 2d2y23

v2 = −ady42y23 + ady22y
2
3 + d2y22y

2
3 + 2ad2 − 2d3

v3 = −ay1y42y43 + ady1y
4
2y

2
3 + ay1y

2
2y

4
3 + dy1y

2
2y

4
3−

− 2ady1y
2
2y

2
3 + 2ady1y

2
3 − 2d2y1y

2
3

v4 = ay42y
4
3x4 − ady42y23x4 + ay1y

3
2y

3
3 − dy1y32y33−

− ay22y43x4 − dy22y43x4 + ady1y
3
2y3 + ady22y

2
3x4+

+ d2y22y
2
3x4 − ay1y2y33 − 2ady1y2y3 + 2d2y1y2y3−

− 2ady23x4 + 2d2y23x4 + 2ad2x4 − 2d3x4

v5 = ady22y
3
3 − ad2y22y3

v6 = −ady32y23 + ady2y
2
3

Denominator of wi is zero if a = 0 or b = 0 or a = b or
char(K) = 2.

IV. DETERMINING SPACE OF ADDITION LAWS OF A GIVEN
DEGREE

Given an elliptic curve E together with an addition formula
we want to describe the space of addition formulas of given
degree if is non-zero (see also [25]). For simplicity we assume
that E is contained in P2 and we are given an addition formula
A : E×E → E, but a similar method can be used for elliptic
curves in Pn1 × Pn2 . Let (X,Y ), where X = (X0 : X1 :
X2), Y = (Y0 : Y1 : Y2), be homogeneous coordinates on
P2×P2. Let A = (a1/a0, a2/a0) be given on the affine open
subsets X0 6= 0, Y0 6= 0 in P2 × P2 and X0 6= 0 in P2, where
a0, a1, a2 ∈ K[x1, x2, y1, y2] and xi = Xi/X0, yi = Yi/Y0
for i = 1, 2. For a given bidegree (n,m) let F be the set of
addition laws (F0 : F1 : F2) : E×E → E such that each Fi is
homogeneous in variables X and Y of degrees degX Fi = n
and degY Fi = m, respectively. Then F ∪ {0} is a vector
space over K in the usual way

λ(F0 : F1 : F2) + µ(G0 : G1 : G2)

= (λF0 + µG0 : λF1 + µG1 : λF2 + µG2)

for λ, µ ∈ K. Assuming the F is non-empty our goal is to
determine all coefficients λk αβ ∈ K such that (F0 : F1 : F2)
belongs to F for Fk =

∑
|α |=n,| β |=m λk αβ X

αY β and k =
0, 1, 2, where α = (α0, α1, α2), Xα = Xα0

0 Xα1
1 Xα2

2 , |α | =
α0 +α1 +α2 similarly for β. Substituting X0 = Y0 = 1 and
xi, yi to Fk for i = 1, 2 we have fk = Fk(1, x1, x2, 1, y1, y2),
where deg(x1,x2) fk ≤ n and deg(y1,y2) fk ≤ m. We want to
determine coefficients λk αβ such that we get addition formula
on E, so ai

a0
= fi

f0
for i = 1, 2, thus vi = aif0 − fia0 belongs

to the ideal I = (h1, h2) of E × E, where h = 0 is an
equation of E in the affine part X0 6= 0, and h1 = h(x1, x2),
h2 = h(y1, y2). So we want to determine λk αβ ∈ K such that
vi ∈ I for i = 1, 2. This the ideal membership problem vi ∈
I ⇐⇒ N(vi, Gr) = 0 for i = 1, 2, where N(wi, Gr) is the
normal form of wi with respect to a Gröbner basis Gr of I (see
[1], [13]). Since the coefficients λk αβ are in the first power
in vi and a Gröbner basis Gr of I do not depend on λk αβ ,
computing the normal form N(vi, Gr), which is the remainder

of division of vi by Gr, the coefficients λk αβ in N(vi, Gr)
also appear in degree 1. Thus the coefficients of N(vi, Gr)
are linear in λk αβ , and to determine when N(vi, Gr) = 0,
we can solve a system of linear equations with λk αβ . Note that
a similar method was applied in [15] to determine formulas
used in point compression.

V. CONCLUSION

In this paper we gave a simple method of verification of
completeness of a system of two addition formulas on twisted
Edwards curves over any field K of char(K) 6= 2 using
program written in Magma, which checks that some systems
of polynomial equations over algebraic closure of rational
function field Q(a, d) do not have solutions and that some
obtained formulas may reduced mod any prime p 6= 2 and
evaluated at any values a, d ∈ K allowed in the equation
of twisted Edwards curve Ea,d. This approach may also be
useful to study completeness of addition formulas on other
models of elliptic curves. We also described method based
on Gröbner bases, which may be useful to obtain space of
addition formulas of given degree.
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