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Abstract—In this paper, we continue a topic of modeling 

measuring processes by perceiving them as a kind of signal 

sampling. And, in this respect, note that an ideal model was 

developed in a previous work. Whereas here, we present its 

nonideal version. This extended model takes into account an 

effect, which is called averaging of a measured signal. And, we 

show here that it is similar to smearing of signal samples arising 

in nonideal signal sampling. Furthermore, we demonstrate in this 

paper that signal averaging and signal smearing mean principally 

the same, under the conditions given. So, they can be modeled in 

the same way. A thorough analysis of errors related to the signal 

averaging in a measuring process is given and illustrated with 

equivalent schemes of the relationships derived. Furthermore, the 

results obtained are compared with the corresponding ones that 

were achieved analyzing amplitude quantization effects of 

sampled signals used in digital techniques. Also, we show here 

that modeling of errors related to signal averaging through the 

so-called quantization noise, assumed to be a uniform distributed 

random signal, is rather a bad choice. In this paper, an upper 

bound for the above error is derived. Moreover, conditions for 

occurrence of hidden aliasing effects in a measured signal are 

given.   

 
Keywords—measuring process, sampling of signals, smearing 

and averaging of signal samples 

I. INTRODUCTION 

T has been shown in [1] that any measuring process can be 

viewed as a process of sampling signals. In [1], however, 

only preliminary results have been presented. That is this basic 

idea was illustrated via an idealized signal sampling, where  

the latter refers to as a pointwise operation of sampling. In 

other words, it refers to as such a one which produces perfect 

signal samples. However, as we know, this is not the case in 

practice. Signal samples are smeared and this effect must be 

taken into account in any realistic description of the signal 

sampling. And, it is also clear that this more realistic picture of 

the sampling operation transfers to the description of 

measuring processes we discuss here. Problems which go 

along with that are discussed here in detail. 

The remainder of this paper is organized as follows. In the 

next section, we present two possibilities of modeling a 

nonideal sampling, in case of modeling a measuring process, to 

take into account also nonidealities in a model suggested in 

[1]: through introducing in it a smearing operation or an 

averaging operation of samples. We show that in principle 

these two operations, under some conditions, lead to receiving 

the same results. Section III is devoted to detailed derivations 
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of equations governing a nonideal model. In section IV, a 

thorough analysis of errors related to the signal averaging in a 

measuring process viewed as a kind of signal sampling is 

presented. Moreover, this analysis is illustrated with the use of 

some equivalent schemes for the relationships derived. Section 

V discusses conditions under which the two sources of errors 

foreseen by our model appear, and the problem of their  

harshness. We draw also attention in this section to the 

possibility of occurrence of hidden aliasing errors in case of 

measurements performed in very high frequencies. The paper 

ends with some concluding remarks. 

II.  SMEARING OR AVERAGING OF SAMPLES WHEN MODELING 

MEASURING PROCESSES ? 

In the signal processing literature, the fact that the 

practically sampled values of a signal of a continuous time are 

not perfect “stamps” of this signal at the sampling instants is 

taken into account. How? Either by considering it as a kind of 

modulation of a carrier signal being a train of very short 

rectangular impulses by a continuous-time signal (to be 

sampled) [2] or by viewing it as an instantaneous local 

averaging of the latter signal [3], [4] (in the times between the 

successive sampling instants). It can be shown that under some 

assumptions these two approaches are equivalent to each other. 

Note further that smearing in sense of averaging of a physical 

quantity (as it is understood in physics; for example, see [5]), 

which takes place during its measurement, provides us also 

with a link to a special kind of signal (function) objects called 

distributions or generalized functions. This relationship is 

nicely explained in [5]. 

Consider now in more detail the averaging operation of a 

measured signal in the context of modelling measuring 

processes via sampling of signals. And to this end, consider a 

situation depicted in Fig. 1. 

 

Fig. 1. A fragment of a measured continuous-time signal between two 
successive instants t0 and Ts, which mean the beginning of the so-called 

“processing time” defined in [1] and the end of this period, respectively. In this 

period, it is assumed that the operation of signal averaging takes place in the 
time from an instant t0 = 0 to an instant Ta. 
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As shown in Fig. 1, we assume in our model here that the 

“processing time” as defined in [1] can be viewed as consisting 

of two parts: a one related strictly with a signal averaging 

operation, and the second, from the instant Ta to the instant Ts, 

devoted strictly to delivering the averaged value to a user (or 

archiving this value).  In the latter time, the signal in Fig. 1 is 

depicted by a dotted line, but when averaged by a solid one. 

By the way, note that for illustrating in terms used in 

telecommunications we could view the left-hand side solid 

vertical line at the instant t0 = 0 as a “transmitter”, but the most 

right-hand side solid vertical line at the instant Ts as a 

“receiver”. In between, we would then have a “communication 

channel”. This ”channel” would distort the input signal sample 

sent at t0 = 0, say ( )0x t , by performing the operation of 

averaging. Next, the “receiver” would detect the “distorted” 

sample value at Ta, process it in the time from Ta to Ts, and 

finally would deliver to the “user” at the instant Ts. 

Consistently, the sample received at Ts at the output of the 

above “communication tract”, we would denote then by 

( )sy T . 

Let us now describe mathematically the process we 

explained with the use of Fig. 1 above. And, to be more 

illustrative, let us imagine that that what happens in Fig. 1 

regards the measurement of temperature with the use of a 

thermometer. We refer here to this example because it is nicely 

described in [5] in the context that leads to formulation of the 

notion of distributions (generalized functions). Because of this 

reason the interested reader might want to become familiar 

with the explanations and description provided therein. 

Assume here, similarly as in the Strichartz’s example in [5],  

that a function ( ),f tr  represents a physical quantity, say 

temperature, at a point  r  in a room at a time instant t. Then, its 

measured value will be a result of averaging in both space and 

time. So, it can be written down in the following way: 

 

 ( ) ( ), ,f t t d dt r r r , (1) 

 

where the function ( ), t r  characterizes spatial and time 

averaging properties of a thermometer used. In the next step, 

assume to simplify further consideration that the operations of 

spatial and time averaging in a thermometer are performed 

independently. That is the variables r and t in the function 

( ), t r  can be separated from each other as follows       

 

 ( ) ( ) ( )1 2, t x t  =r , (2) 

 

where ( )1 r  and ( )2 t  are responsible for spatial averaging 

and time averaging, respectively. 

According to Strichartz [5], interpreting of (1) as an 

averaging operation in space and time requires that the 

functions ( ) ,  1,2,i iz i =  fulfil the following conditions: 

 

 ( ) 0,  1,2i iz i  = , everywhere, (3a) 

and 

 

 ( ) 1,  1,2i i iz dz i = = , (3a) 

 

where the integral is taken over all geometrical space or over 

all time space. The variables ,  1,2iz i = , in (3) mean 
1z = r  

and 
2z t= , respectively. 

Note now that using (2) in (1) we can rewrite the latter as 

 

 ( ) ( )( ) ( )1 2,f t d t dt   r r r . (4) 

 

Next, denoting the result of the inner integration in (4) by 

 

 ( ) ( ) ( )1,f t d g t = r r r , (5) 

 

we get finally from (4)  

 

 ( ) ( )2g t t dt . (6) 

 

We see that (6) expresses a pure averaging in time, and this 

will be a basis for our further considerations. So, we will apply 

(6) to the situation depicted in Fig. 1, where it is assumed that 

the operation of averaging takes place in the time from an 

instant t0 = 0 to an instant Ta. Thus, for this case, (6) can be 

rewritten as 
 

 ( ) ( )
0 0

aT

t

g t t dt
=

 , (7) 

 

where the subscript at ( )2 t  was dropped for simplicity of 

further notation. 

Now, to illustrate the averaging operation in time that is 

given by (7), let us choose the simplest possible form of ( )t  

in (7) that fulfils the conditions (3). We choose therein the 

following function: 
 

 ( )
1   for  0

0  elsewhere  .

a aT t T
t

 
= 



 , (8) 

 

This function is illustrated in Fig. 2. 

Fig. 2. A plot of the function ( )t  given by (8). 

 

Substituting (8) in (7) gives 

 

t0 = 0   Ta 

1/Ta 

t  
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  ( ) ( ) ( )
0 00 0

1a aT T

at t

g t t dt g t dt
T


= =

=  . (9) 

 

So, clearly, the result on the right-hand side of (9) shows that 

choosing the function (8) in (7) leads to a “pure” averaging of 

the signal (function) ( )g t  in the period from t0 = 0 to Ta. 

Further note that choosing another form of the function ( )t  

that fulfils the conditions (3) would also result, besides of 

averaging, in a kind of “additional weighting” (of this 

averaging). In many cases, such a mixed operation proves to 

be very useful, as, for example, in signal (function) shaping 

with the use of a Gaussian impulse [6]. Moreover, it should be 

also noticed here that the functions  ( ),x t  in (1), ( )2 t  in 

(6), and ( )t  in (7) play a role of the so-called test function in 

the theory of distributions [7]. That is (1), (6), and (7) can be 

then interpreted as distributions. 

We will show now that (9) with ( )t  given by (8) can be 

expressed equivalently as a convolution integral. To this end, 

we rewrite (9) in the following way:  

 

  

( ) ( ) ( )

( ) ( )( )

0 00 0

1

  .

a aT T

a t t

a

g t dt g t t dt
T

g T d



   

= =



−

= =

= − −

 



  (10) 

 

In (10), a new variable   instead of t has been introduced. 

Moreover, we have applied therein the following facts: ( )t  

is identically equal to zero outside the range ( )0, aT , 

( ) ( )   = − , and ( ) ( )( )aT   = − − . These properties 

are illustrated in Fig. 3. 

  

 

Fig. 3. Properties of the function ( )t  given by (8) that are exploited in 

derivation of (10). 
 

And, finally, (10) can be rewritten as 

  

 ( ) ( ) ( ) ( )
0 0

1
 .

aT

a a

a t

g t dt g T d y T
T

   


= −

= − =    (11) 

 

It follows from (11) that the averaging operation carried out on 

the signal (function) ( )g t  can be interpreted as applying it as 

an input signal ( ) ( )x t g t=  to a filter having an impulse 

response, say ( )h t , equal to ( )t  given by (8). At the output 

of this filter, we get the value of ( )ay T  at the instant 
aT . 

Moreover, it follows immediately from the above derivation 

that for all the other functions ( )t  possessing the same 

properties as the function given by (8) the relationship (11) 

holds, too. 

 Also, equality (11) proves an equivalence of the operations 

of smearing and averaging of samples of measured signals, 

when describing a measuring process via sampling of signals. 

Obviously, this holds perfectly only when the conditions 

imposed on the function ( )t , which were given above, are 

fulfilled. 

III.  A NONIDEAL VERSION OF THE PROPOSED MODEL OF 

MEASURING PROCESS VIA SIGNAL SAMPLING 

We understand under a nonideal version of the model of a 

measuring process via sampling of signals, which was 

proposed in [1], a model taking into account the fact that 

sampling is not carried out pointwise. A basic idea of it is 

presented in Fig. 2 of the previous section. Moreover, further 

elements of this model are given by the expressions derived in 

the latter section. 

Let us now denote a measured signal, which is subject of 

averaging, by ( )ag t  and its “samples” at time instants of 

“picking up” its values as  ( ) ,  ...., 2, 1,0,1,2,....a sg nT n = − − . 

So, using this and results given by (9-11), we can write 

 

 

( ) ( )
( )

( )

( )( ) ( )

( )( ) ( )( )

( )( ) ( )

1

1

0

1

1

1 =

= 1   .

s a

s

a

n T T

a s

a n T

T

s

s a

s a

g nT g t dt
T

g n T d

g n T T d

g n T T d

   

   

   

− +

−



−



−

= =

= − + =

= − + − −

− + −









  (12) 

 

Further, note that according to Fig. 1 the following relation:  

 

 
a sT T   (13) 

 

holds in our model. Furthermore, it follows from the sampling 

theorem and the reconstruction formula [3], [4] that if  

 

 
1 1

2   or   
2

s ma ma s

s

f f f T
T

=     (14) 

 

is satisfied, where 
maf  stands for the maximal frequency 

present in the spectrum of the signal ( )ag t  and 1s sf T= , 

then a perfect reconstruction of this signal from its “samples” 

( ) ,a sg nT   ..., 2, 1,0,1,2,...,n = − − is possible. And, the latter 

signal will be then given by  

 

φ(-τ) 

t0 = 0   -Ta 

1/Ta 

t
  

τ 

1/Ta 

φ(-(τ-Ta)) 

t0 = 0   Ta t
  

τ 
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 ( ) ( ) ( ) sinca a s s

n

g t g nT t T n


=−

= −  , (15) 

 

where the function ( )sinc t  is defined as 

 

 ( ) ( )sinc sin  for 0  and  1 for 0t t t t t =  =  . (16) 

 

Obviously, under the assumption that in case of our 

unknown signal ( )g t  the following 

 

 
1 1

2   or  
2

s m m s

s

f f f T
T

=     (17) 

 

also holds, where now 
mf  stands for the  maximal frequency 

present in the spectrum of ( )g t , the latter signal can be, 

similarly as ( )ag t , expressed through its “samples” as  

 

 ( ) ( ) ( ) sincs s

n

g t g nT t T n


=−

= −  . (18) 

 

See now that the difference between the “distorted” (through 

a measuring process we model here) values of “samples” 

( )a sg nT  and their unknown counterparts ( )sg nT  (that is 

“true” values) can be expressed as 

 

 ( ) ( ) ,   ..., 2, 1,0,1,2,...a s sg nT g nT n− = − −  . (19) 

 

Further, the difference given by (19) can be understood as an 

error in the values of samples referred to the time instant 
snT  

(or picked up at this time instant). Denote it as ( )g se nT . So, 

in the next step, using (15), (18), and (19), we can express the 

“error signal”, ( )ge t . It is given by 

 

 ( ) ( ) ( )( ) ( ) sincg a s s s

n

e t g nT g nT t T n


=−

= − −  . (20) 

 

Now, let us use (12) in (19). This gives 

 

 

( ) ( ) ( )

( )( ) ( ) ( )
0

1  ,

  ..., 2, 1,0,1, 2,... .

a

g s a s s

T

s s

e nT g nT g nT

g n T d g nT

n

   

= − =

= − + −

= − −

   (21) 

 

Observe that a simplification of (21) is possible if we 

assume that the function ( )g t  is a continuous function on the 

intervals ( ) ( )1 , 1 ,  .., 1,0,1,..,s s an T n T T n − − +  = −  and 

the function ( )t  is a positive continuous one on the interval 

0, aT  . We see that this is the case in (21). So, using then 

the so-called mean value theorem (for integrals) [7], we can 

rewrite (21) as 
 

 
( ) ( )( ) ( ) ( )

0

1  ,

  ..., 1,0,1,... ,

aT

g s s n se nT g n T d g nT

n

   = − + −

= −

   (22) 

 

where ( )1 ,  .., 1,0,1,..,s nn T n− + = −  means a certain point 

in the interval ( ) ( )( )1 , 1 ,  .., 1,0,1,..,s s an T n T T n− − + = −   

for which (22) is satisfied (its existence follows from the 

theorem mentioned above). And, applying (3a) in (22), we 

arrive finally at 

 

 
( ) ( )( ) ( )1 ,

  ...., 1,0,1,.... .

g s s n se nT g n T g nT

n

= − + −

= −
  (23) 

 
Equation (23) will be a basis in the next section for a 

framework of an analysis of the error occurring in the 

measuring process of a signal or, in other words, of a jitter in 

the measured values of a signal. 

IV. A FRAMEWORK FOR ANALYSIS OF ERROR OR JITTER IN 

VALUES OF MEASURED SIGNALS 

At first glance, it seems that any qualitative and/or 

quantitative analysis of errors (which are also called here jitter) 

in the measured values of a signal, can be carried out similarly 

as that performed in analyzing processes of amplitude 

quantization of acoustic or other low-band signals [8], [9]. 

Precisely because the fact that we view here any measuring 

process as a kind of signal sampling, which, on the other hand, 

is inherently connected with the signal amplitude quantization. 

However, we will show in this section that these two processes 

have rather different characteristics. And, to this end, let us 

start with recalling shortly the modelling of amplitude 

quantization of acoustic signals as given, for example, in [8] or 

[9]. A basic scheme of it is shown in Fig. 4. 

Fig. 4. A basic scheme of signal amplitude quantization after [8] and [9]. 

 

It follows from Fig. 4 that the error (difference) ( )se nT  

between the values of continuous-amplitude but discrete-time 

samples ( )sx nT  of a signal and their quantized values 

( )q sx nT  is given by 

 

signal 

amplitude 

quantizer 

x(nTs) 

xq(nTs) 

e(nTs) 

+ 

_ 
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 ( ) ( ) ( ) ,   .., 1,0,1,.. .s q s se nT x nT x nT n= − = −   (24) 
 

 
Note now that using the same convention, which was 

applied above to illustrate (24) in Fig. 4, we can visualize (23) 

as depicted in Fig. 5. 

 

  
Fig. 5. A scheme illustrating relation (23). 

 

Furthermore, observe that we can rewrite (23) and (24) in a 

form that applies operator convention. That is in the following 

way: 

 

 
( ) ( ) ( )( )

( ) ( ) ,    .., 1,0,1,..

s q s Q s

s s

y nT x nT P x nT

x nT e nT n

= = =

= + = −
  (25) 

 

and 
 

 
( ) ( )( ) ( )( )

( ) ( )

1

,    ..., 1,0,1,... ,

s s n M s

s g s

y nT g n T P g nT

g nT e nT n

= − + = =

= + = −
  (26) 

 

where ( )( )Q sP x nT  and ( ) ( )( )M s sP g nT x nT=  are operators 

describing the behavior of a quantizer in Fig. 4 and of a 

measuring equipment in Fig. 5, respectively. The descriptions 

given by (25) and (26), and their corresponding visualizations 

shown in Figures 4 and 5 represent mappings of input samples  

( )sx nT  and ( ) ( )s sx nT g nT=  into the corresponding output 

ones ( )sy nT . 

In digital signal processing [8], [9], [11], a widely used way 

for interpretation of amplitude quantized samples of a signal is 

to treat them as “true values” ( )sx nT  distorted by additive 

“noise samples” ( )g se nT . And that is what (25) expresses. 

Moreover, the latter can be also viewed as a description of an 

“equivalent device” having no memory that processes the 

signal samples. 

At first glance, it may seem that the model presented in Fig. 

4 does not support the above interpretation. In what follows, 

we will show that this is merely an illusion. To convince the 

reader of this, we need however to carry out some 

rearrangements in the lower branch of the scheme of Fig. 4. 

They are visualized in Fig. 6; and note that the lowest 

(resulting) graph in Fig. 6 corresponds with equation (25). 

The so-called quantization noise represented by the samples 

( ) ,  .., 1,0,1,..,se nT n = −  in (25) is most often modeled, in the 

digital signal processing literature [8], [9], [11], as a discrete 

stochastic process with a uniform distribution. This model 

follows from the Widrow’s quantization theorem [10] and 

works good when the following two assumptions: 1. a dynamic 

range of the signal amplitude samples ( )sx nT  is enough wide; 

2. the error signal samples ( )se nT  are very weakly correlated 

with the signal amplitude samples ( )sx nT , hold. 

Fig. 6. Rearrangements of the lower branch of the scheme in Fig. 4 proving 

graphically relation (25). 
 

Note now that because of the same forms of relations (25) 

and (26) - specifically, see the second lines in (25) and (26) - it 

may be supposed that there exist measuring processes in which 

the measuring errors can be modeled similarly as the 

quantization noise in digital signal processing. Which ones? 

This is a problem for further investigations. 

In general, however, we must admit that these two processes 

of error or jitter generation mentioned above differ from each 

other. That is the character of a signal amplitude quantization 

error differs from that which occurs in measured values of a 

signal. This follows from the fact that actually in the latter case 

no input signal should be indicated in the scheme of Fig. 5. 

Rather, in this case, we should use an equivalent scheme which 

is shown in Fig. 7. 

Fig. 7. A scheme illustrating relation (25); it is equivalent to the scheme of Fig. 5. 
 

measuring 

equipment 

+ 

_ 

( )g se nT

( )( )1 s ng n T − +( )sg nT

x(nTs) xq(nTs) 

e(nTs) 

+ 

_ 

x(nTs) xq(nTs) 

e(nTs) 

+ 

_ 

_ 

_ 

x(nTs) xq(nTs) 

e(nTs) 

+ 

( )1 n sT
z

− −
  

+ 

_ 

( )g se nT

( )( )1 s ng n T − +( )sg nT

( )sy nT

output terminal 
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Note that the scheme of Fig. 7 resembles a generator loop 

that “generates measured samples of a signal” and makes them 

available on the “output terminal”. The loop incorporates a 

time delay of the length ( )1 n sT−  between the “left-hand side 

and right-hand side nodes”; it is visualized in Fig. 7 by an 

element  
( )1 n sT

z
− −

 (using a notation similar to that used for a 

delay element in equivalent circuits of digital filters). 

Furthermore, observe that the variable ,  .., 1,0,1,..,n n = −  

changes from sample to sample, making the delay ( )1 n sT−  

variable. Fig. 7 expresses also the fact that the error signal 

samples ( )g se nT  are very strongly dependent upon the 

samples ( )( )1 s ng n T − +  and ( )sg nT . For this, see what 

happens in a summation element at the lower branch of the 

scheme of Fig. 7. The sum of these three samples mentioned 

above equals zero there, for all .., 1,0,1,.. .n = −  

Let us now expand ( )( )1 s ng n T − +  in (26) in a Taylor 

series of a variable 
n  and leave only the first two terms in it 

(a first component that is independent of 
n  as well as a linear 

one). We get then from (26) 

  
 

 

( )( )

( )( )
( )

( )

( ) ( )

1

1

1

,    ..., 1,0,1,... .

s

s n

s n

n T

s g s

g n T

dg t
g n T

dt

g nT e nT n




−

− + 

 − +  =

= + = −

  (27) 

 

In the next step, let us also expand the sample ( )sg nT =  

( ) ( )( )( )1 1s s sg n T nT n T= − + − −  in a Taylor series of a 

variable ( )( )1s s snT n T T− − =  in the vicinity of the time 

instant ( )1 sn T− . This gives 

  

 
( ) ( )( )

( )

( )1

1

  ..., 1,0,1,... .

s

s s s

n T

dg t
g nT g n T T

dt

n

−

 − + 

= −

  (28) 

 

In (27) and (28), ( )
( )1 sn T

dg t dt
−

 means a derivative of the 

function ( )g t , calculated at the time instant ( )1 sn T− . 

Moreover, we assume here that the function ( )g t  is 

continuous and its derivative exists everywhere. 

Substituting (28) into (27), we arrive at 

  
 

 ( )
( )

( )

( )
1

,   .., 1,0,1,.. .

s

g s n s

n T

dg t
e nT T n

dt


−

  − = −   (29) 

 
Taking into account the fact that the maximal value of the 

magnitude of ( )n sT −  equals 
sT , we can write 

  
 

 
( )

max maxg s

dg t
e T

dt
     .  (30) 

The relation (30) states that the maximal error in a 

measuring process max ge  is approximately equal to the 

maximal value of the derivative of the function ( )g t  times the 

period 
sT . It can be expressed in the following equivalent 

form:  

  
 

 max g

s

SR
e

f
  , (31) 

 

where 1s sf T=  means “a sampling frequency associated with 

the model of a measuring process which is proposed in this 

paper”, and SR  means the so-called slew-rate that is used in 

the literature for denoting the maximal change of a signal per 

time unit. That is in our case ( )maxSR dg t dt= . 

From (31), we see that the maximal error max ge  is larger 

for larger values of SR . But, its dependence upon the 

frequency
sf  is reversed. That is the maximal error max ge  is 

inversely proportional to 
sf . Additionally, it seems that both 

these dependencies are intuitively understandable. 

Finally, observe that it follows from (31) that if 
sf  goes to 

infinity, then the error estimate max ge  approaches zero. 

V. TWO SOURCES OF ERRORS FORESEEN BY OUR MODEL 

From the discussion presented in sections II, III, and IV, it 

follows that our model foresees occurrence of two kinds of 

errors, which can appear in a measuring process. These are the 

following ones: 1. aliasing effects when the inequality (17) is 

not satisfied; 2. errors or jitter in values of a measured signal 

caused by averaging or smearing of signals by a measuring 

equipment. 

Note that the first of the errors mentioned above rather does 

not appear in practice because of the fact that in measurements 

performed correctly 
sT  is “chosen” to be so small that the 

following: 2s mf f  holds. Hence, 2s mf f  is satisfied all 

the more. However, problems can occur with fulfilling the 

inequality 2s mf f  when measuring signals that contain very 

high frequency components, for example, in the ranges above 

100 Gz. Then, it can happen that we will not have simply a 

measuring equipment working with the parameter 
sf  

satisfying 2s mf f . And, we will not even be aware of this 

fact (because 
sf  is an abstract parameter). In other words, we 

will confronted then with a kind of hidden aliasing effects.   

And once again, in this context, we remind that 
sT  in our 

model is rather an abstract variable. So, its value is not 

“chosen” by anybody. It characterizes inertia of a measuring 

equipment modeled and assumes a value that follows from 

characteristics of this inertia. 
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The second kind of errors mentioned above is always 

present. It is sometimes less and sometimes more troublesome 

or acute in measurements. Equation (29) shows that it has a 

random character, mostly because of a very random character 

of the variable 
n . The maximal value of error in (29) is 

estimated to be as given by (30). However, it seems that this is 

rather a pessimistic estimate for practical cases because the 

variable 
n  in (29) rather does not seem to approach zero value 

for none of the indices ..., 1,0,1,...n = − . Because of this 

reason, we will write 
  

 

 max g

s

SR
e

f
   (32) 

 

in what follows, instead of the relation given by (31). 

Note now that the upper bound 
sSR f  for max ge  in (32), 

before the occurrence of aliasing effects, assumes its greatest 

value for 2s mf f= . Then, we can rewrite (32) as 
  

 

 
2

max
2s m

g f f
m

SR
e

f=
  . (33) 

 

And when, for example, 5
102s mf f= , then we get from (32)  

  
 

 
5

10

5

52
10

10

max
2 2s m

g f f
m m

SR SR
e

f f

−

=
 =  . (34) 

 

Comparison of (33) with (34) shows a role of the parameter 

sf ; it characterizes a measuring equipment in keeping 

measuring errors as small as possible. This parameter should 

have so large value as possible, and substantially greater than 

the value of 2 mf . 

VI. CONCLUDING REMARKS 

This paper is a continuation of the previous one [1], in 

which a model of a measuring process via sampling of signals 

has been proposed. Here, this model is extended to take into 

account an effect of averaging or smearing of samples when 

modelling measuring processes. So, the model developed in 

this paper can be viewed as a nonideal version of that 

presented in [1]. 

In this paper, differences which exist between the model of 

a measuring process via sampling of signals, derived here, and 

the model used for modeling of operation of signal sampling in 

digital techniques are pointed out and discussed in detail. 

Furthermore, their analysis is illustrated with some equivalent 

schemes of the relations derived. And, it seems that some of 

them, as, for example, (26) can be modeled with the use of 

Markov processes with continuous sets of events. Moreover, in 

this context, note that such an approach would lead 

automatically to a probabilistic treatment of errors discussed in 

section III. So, this perspective could give impetus to further 

investigations in the area. 
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