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Abstract—The copy-move forgery detection (CMFD) begins 

with the preprocessing until the image is ready to process. Then, 

the image features are extracted using a feature-transform-based 

extraction called the scale-invariant feature transform (SIFT). The 

last step is features matching using Generalized 2 Nearest-

Neighbor (G2NN) method with threshold values variation. The 

problem is what is the optimal threshold value and number of 

keypoints so that copy-move detection has the highest accuracy. 

The optimal threshold value and number of keypoints had 

determined so that the detection has the highest accuracy. The 

research was carried out on images without noise and with 

Gaussian noise.  

 
Keywords—forgery, Gaussian noise, feature extraction, pattern 

matching, Euclidean distance 

I. INTRODUCTION 

HE rapid development of technology makes digital 

information manipulation easier. The form of digital 

information that is often manipulated is digital image. To detect 

the manipulation of digital images, a digital forensic method is 

needed [1]. One form of manipulation that is often done is copy-

move manipulation. 
Copy-move manipulation is a method of digital image 

manipulation in which an object on a digital image is copied and 
overwritten it on the object to be moved on the same image [2]. 
Given that the copied area is included in the same image, the 
properties of the copied area such as the noise components,  
color palette, dynamic range, and other properties will be similar 
to that of the other part of the image [3]. 

An example of copy-move forgery is depicted in Fig. 1(b) 

from the original image shown in Fig. 1(a). Forgery is done to 

hide some pieces of important evidence. In Fig. 1(a), two traffic 

signs can be seen on the right side of the image. However, these 

traffic signs have been hidden by copying some areas from the 

same image and pasting it onto the two traffic signs, as depicted 

in Fig. 1(b). 

Several methods have been used to detect copy-move forgery 

in images. These methods include the discrete cosine transform 

(DCT) [4], principal component analysis [5], and robust 

detection [6] methods. 
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In 1999, Lowe [7] introduced a method of detecting and 

describing the characteristics of digital images called the scale 

invariant feature transform (SIFT). The characteristics of this 

method do not change with the rotation, translation, and scaling 

treatments. The characteristics of digital images obtained by the 

SIFT method can be matched with the characteristics of other 

images that are also obtained by the SIFT method to detect the 

similarities between these images. This process is called the 

matching process. 
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Fig.1. An example of the effect of the copy-move forgery operation 

on an image: (a) original image with two traffic signs and (b) forged 
image without traffic signs 
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images automatically. First, one image is divided into several 
overlapping blocks, where the blur moment invariants are used 
to represent the blocks. The principal component transform or 
Karhunen Loeve transform is used to reduce the dimension of 
the blocks. To perform range queries efficiently, a k-d tree is 
used to analyze the similarity of blocks in multidimensional 
data. The output of the algorithm is a map of duplicated regions. 
The proposed method exhibits a high capability of detecting 
copy-move forgery in an image even when changes such as blur 
degradation, additional noise, and arbitrary contrast are present 
in the copied regions [8]. 

In 2011, Amerini, Ballan, Caldelli, Bimbo, and Serra [9] 
proposed a new feature matching method called the generalized 
2 nearest-neighbor (G2NN) methodd. The SIFT method can be 
used to obtain the characteristics of an image that is suspected 
to have undergone the manipulation process. The characteristics 
obtained from these images are matched between one segment 
or region and another segment or region in the same image as 
the G2NN method. The use of this method is expected to 
produce an accurate copy-move forgery detection (CMFD) 
algorithm. 

This research aimed to determine the optimal threshold 
value and number of keypoints so that the SIFT-based CMFD 
has the highest accuracy. This research was conducted on 
images without and with Gaussian noise. The results of this 
research are expected to identify the optimum values for both 
threshold and number of keypoints to obtain the highest level of 
accuracy in SIFT-based CMFD. 

II. LITERATURE REVIEW 

A new method for detecting copy-move forgery was 

proposed by Li, Li, and Zhu [10]. First, the image is filtered and 

divided into several overlapping circular blocks. Then the local 

binary patterns (LBP) is used to extract the circular block 

features. Subsequently, a comparison of feature vectors is 

performed and the location of forgery regions determined by 

tracking the corresponding blocks. The experimental results 

indicate that this scheme is robust to blurring noise, 

contamination, JPEG compression, and region flipping and 

rotation [10,11]. 

Meanwhile, Fridrich, Soukal, and Lukas [4] conducted an 

investigation on the CMFD problem. They described an 

efficient and reliable method to detect copy-move forgery. Their 

method can successfully detect the parts of the forgery even 

when the copied area is enhanced and the forged image is saved 

as a compressed formatted file, i.e., JPEG. The performance of 

the proposed method on several forged images has been 

demonstrated in their research [4]. 

Rinjani and Poovendran [12] utilized two techniques, i.e., 

DCT and inverse DCT using the row and column reduction 

method to detect copy-move forgery in an image. In this 

scheme, the original image is initially divided into some 

matrices. Then the DCT technique is implemented. 

Subsequently, the matrices are transformed into some blocks 

with various dimensions. Finally, the duplicated images are 

grouped on the basis of the obtained threshold values. This 

method reduces the complexity of computation related to both 

cost and time. At the same time, this method increases the 

efficiency of the processed image [12]. 

An algorithm with the good CMFD performance was 

reported by Al-Qershi and Bee Ee [13]. Some features within 

their category are selected. They achieve a good performance by 

considering two aspects. First, reducing the complexity, the 

execution time is reduced as well. This reduction is achieved by 

utilizing the small sized feature vectors. Second, the robustness 

of the algorithm against  image processing operations is 

increased by adopting the robustness of the features that are 

invariant to a wide range of image processing operations [13]. 

A detailed review of existing CMFD techniques based on 

both discrete wavelet transform (DWT) and DCT was presented 

by Mukherjee and Mitra [14]. Their analysis proved that both 

techniques have advantages and disadvantages. The success of 

both techniques relies solely on the size of the block, size of the 

copy-moved region, type of sorting applied, geometrical 

transformations applied, and amount of compression introduced 

[14]. 

A hybrid approach was proposed by Ardizzone, Bruno, and 

Mazzola [15]. Their research compared triangle points with 

single points or blocks. Points of interest are extracted from the 

image. Then, on these points, objects are modeled as a set of 

connected triangles. Subsequently, the triangles are matched 

according to the shapes of their inner angles, local features, and 

content color information. Finally, the results are compared 

using a point-based method and a state-of-the-art block 

matching method. The results of their research indicated that the 

proposed method exhibits a good performance in case of simple 

scenes, where both the number of keypoints and triangles are 

low. In case of complex scenes, the poor performance of the 

matching process is influenced by the high number of detected 

triangles. A similar result can also be obtained by the keypoint-

based approaches. However, these methods cannot be used 

when no points of interest are detected, for example, when a 

homogeneous region is used to hide an object in the image. 

Moreover, in case of anisotropic deformations, the proposed 

method can be used in the future [15]. 

Sharma, Abrol, and Devanand [16] investigated the feature-

based analysis of copy-paste image tampering detection 

observation. The results of their research indicated that the 

proposed model works well for low to moderate levels of copy-

paste tampering and identifies the tampered area for all of the 

observed images. The results obtained can be used to enhance 

the tampering detection process by identifying the most likely 

cases of possible image tampering and providing the initial 

verification of the tampered images [16]. 

A method to implement CMFD with particle swarm 

optimization (CMFD-PSO) was investigated by Wenchang, Fei, 

Bo, and Bin [17]. The SIFT-based framework integrates and 

implements the PSO algorithm in this method to generate the 

values of the customized parameters for image processing, 

which are used to detecting copy-move forgery. The 

experimental results show that CMFD-PSO has a good 

performance. Moreover, CMFD-PSO outperforms SIFT-based 

methods and can increase the number of true matched keypoints 

to ensure accurate decisions for region duplication [17]. 

A fast exploration method for Copy-Move forgery images 

was proposed by Shin [18]. This method can reduce 

computational complexity better than conventional methods. In 

the proposed scheme, the author used a half-block size in spatial 

domain, rather than use an 8x8 pixel block, frequency 

algorithm, or exhaustive search method, to reduce 

computational complexity [18]. 

The performance of different widely used features for 

CMFD methods was evaluated by Christlein and Jordan [19]. 
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They evaluated the performance of previously proposed feature 

sets. They observed the 15 most prominent feature sets and 

analyzed the detection performance on a per-image basis and a 

per-pixel basis. The results of their experiments showed that the 

keypoint-based features have a similar performance to the 

block-based and keypoint-based methods. However, the 

keypoint-based features are sensitive to low-contrast regions 

and repetitive content of the image. In this case, the block-based 

methods can clearly improve the detection results [19]. 

CMFD using a system based on the color coherence vector 

was proposed by Ulutas and Ulutas [20]. Their algorithm can 

detect the forged areas with high accuracy ratios [20]. Other 

experiments conducted by Farooque and Rohankar [21] focused 

on various noises and techniques for denoising the color image. 

The results of their research showed that the method can detect 

forged region even when the forged image is hidden using 

Gaussian blurring [21]. 

A technique based on DWT was proposed by Khan and 

Kulkarni [3]. In this technique, initially, DWT is applied to the 

input image to reduce the representation dimension. Afterward, 

the image is divided into some overlapping blocks. These blocks 

are sorted. Then, the duplicated blocks are identified using 

phase correlation based on similarity criteria. This approach 

drastically decreases the detection time consumed. The results 

of their experiments indicated that the method is robust to 

ordinary post-processing operations. However, this method 

cannot detect the duplicated regions with rotation based on 

scaled regions and scaled angles [3]. 

A survey on keypoint-based methods based on various 

parameters was conducted by Chauhana, Katasb, Jainc, and 

Thakared [22]. They concluded that SIFT is an efficient 

technique and can detect forgery in both single and multiple 

regions of an image. The method obtains good results in case of 

both geometric transformation, such as translation, rotation, or 

scaling, and plain copy-move forgery. However, SIFT is 

invariant to affine transformation, scaling, and rotation. SIFT 

also exhibits a higher computational efficiency than speeded up 

robust features (SURF). However, the accuracy of SIFT is lower 

than that of SURF [22]. 

Pun, Yuanand, and Bi [23] conducted research on a CMFD 

scheme using feature point matching and adaptive over-

segmentation. The proposed detection scheme integrates both 

keypoint-based and block-based forgery detection methods. 

Initially, the proposed algorithm adaptively segments the host 

image into both irregular and nonoverlapping blocks. Then, 

from each block regarded as block features, the feature points 

are extracted. Finally, the block features are matched with other 

block features to locate the labeled feature points. The 

experimental results show that the proposed CMFD scheme can 

achieve better detection results under various challenging 

conditions, such as JPEG compression, down-sampling, and 

geometric transformation, than previously existing CMFD 

schemes [23].  

According to Kaur and Dutta [24], several approaches can 

be utilized to forge digital images. However, the main classes of 

digital image forgery are enhancing, splicing, morphing, 

retouching, and copy-move [24].  

A method for detecting copy-move forgery was proposed by 

Ustubioglu, Ulutas, Ulutas, and Nabiyev [25]. They claimed 

that the method can calculate the threshold value automatically. 

To analyze the similarity of the blocks, the method uses 

element-by-element equality between the feature vectors, rather 

than the cross correlation or Euclidean distance. The method 

also utilizes the history of compression to determine 

automatically the threshold value of the current test image 

automatically. Their experimental results indicated that this 

method can detect the copied areas using different scenarios and 

achieve higher accuracy levels and lower false negatives than 

similar methods [25]. 

III. MATERIALS AND METHODS 

A. Test Images 

The data that will be tested by the application that we have 

developed to detect forgery copy-move in digital images 

consists of 20 input data consisting of 14 images from the 

MICC-F220 dataset and six images that we made ourselves. 

From those 20 images, we made 20 images with Gaussian noise, 

for testing with Gaussian noise. Thus, there are 40 test images 

used. 

B. Application Design 

Broadly speaking, the detection process of copy-move 

forgery on digital images in this application consists of three 

stages, namely, preprocessing, feature extraction using SIFT, 

and CMFD using G2NN. Fig. 2 shows the block diagram of 

these stages. 
 
 

 
 

Fig. 2. Block diagram of the application design 

 

In the preprocessing stage, the test image is resized to 400 × 

300 pixels. This stage aims to accelerate the computational time 

because the size of the input image is varied and relatively large. 

Afterward, the RGB image is converted into a gray-level image 

so that the feature extraction process using the SIFT algorithm 

can be implemented because the SIFT algorithm can only be 

applied to gray level image. The processes that occur in this 

software simulation are shown in more detail in Fig. 3. 

The flow diagram of the application software shown in Fig. 3 

can be explained as follows: First, the test image is resized and 

converted into a gray-level image. Moreover, interference in the 

form of Gaussian noise can be added before the image 

undergoes the feature extraction process [3]. The addition of 

Gaussian noise aims to test its effect on the accuracy of CMFD. 

The next step is the feature extraction stage using the SIFT 

method. Afterward, the process of selecting the input or the 

input threshold value T is implemented. The threshold values T 

that are available in this software are 0.3, 0.4, and 0.5. 

After inputting the threshold value selected, the next step is 

to choose the minimum number of suitable features. The results 

of the selection of the minimum number of suitable features are 

stored in the min_feat variable. The three choices of min_feat 

that are available are min_feat = 2, min_feat = 5, and min_feat 

= 10. 
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Fig. 3. Flow diagram of the application software. 

 

After the minimum number of suitable features is selected, 

the next step is the characteristic matching process using G2NN. 

The number of suitable features will determine whether the 

input image has copy-move forgery or not. 

In the final stage, i.e., the stage in which the status of the 

image is determined, the number of suitable features is 

compared with the variable min_feat. If the number of matching 

features is greater than or equal to the value of min_feat, then 

the image has undergone copy-move forgery. By contrast, if the 

number of matching features is smaller than the value of 

min_feat, then the image has not undergo copy-move forgery. 

C. Scale-Invariant Feature Transform  

The first stage of the SIFT algorithm is the detection of 

extreme values on the space scale. This extreme value is the 

keypoint of SIFT. The space scale of an image is defined as the 

function L (x, y, σ), which is the result of the convolution 

between Gaussian function G (x, y, σ) and input image I (x, y, 

σ), where σ is a constant factor for true scale invariance. After 

the space scale of the image is obtained, the next step is to 

calculate the difference of Gaussian (DoG) function [7] from the 

image using Equation 1. 

 

𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦. 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)) × 𝐼(𝑥, 𝑦)  (1) 

 where  𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2 𝑒
−(𝑥2+𝑦2)

2𝜎2  (2) 

 

The illustration of spatial scale generation is shown in Fig. 

4(a). To detect extreme values in DoG images, the value of each 

pixel on the DoG space scale is compared with eight pixels 

around it and nine pixels corresponding to the previous and 

following DoG images. This process is shown in Figure 4(b). 

The second stage of the SIFT method is determining keypoints. 

The location of the keypoints is determined using Equation 3. 

The keypoints are detected by analyzing the DoG images, i.e., 

by finding the local maxima or the local minima. For every pixel 

in a DoG image, it is compared to its eight surrounding 

neighbors in the same DoG image, and the nine surrounding 

neighbors in its upper-level DoG image, and the nine 

surrounding neighbors in its lower-level DoG image, as shown 

in Fig. 4(b). The pixel is identified as a keypoint candidate if it 

is the maximum or the minimum out of the total 26 neighboring 

pixels. Each keypoint candidate will have to pass a subsequent 

stability checking procedure in order to become a true keypoint. 

During this process, the candidates with relatively low contrasts 

(considered as flat points) are rejected, and the candidates 

located on the edges (considered as not distinct) are also 

eliminated as well [26]. 

 

 
（a） 

 

 
(b) 

 
Fig. 4. (a) Illustration of spatial scale generation and (b) determination of 

extreme values in DoG images. 
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The second stage of the SIFT method is determining 

keypoints. The location of the keypoints is obtained by Equation 

3, where the keypoint value is obtained using Equation 4. 

 

�̂� = −
𝜕2𝐷−1

𝜕𝑥2

𝜕𝐷

𝜕𝑥
                          (3) 

 

𝐷(�̂�) = 𝐷 +
1

2

𝜕𝐷𝑇

𝜕𝑥
�̂� 

 

   (4) 

To eliminate keypoints with low contrast, extreme values 

|𝐷(�̂�)| lower than a threshold value are removed. To eliminate 

the candidate keypoints that are unclear and located along the 

edge, a Hessian matrix of second-order H is used, as shown in 

Equation 5: 

 

𝐇 = [
𝐷𝑥𝑥 𝐷𝑥𝑦

𝐷𝑥𝑦 𝐷𝑦𝑦
] where 

𝐷𝑥𝑥+𝐷𝑦𝑦

𝐷𝑥𝑥𝐷𝑦𝑦−(𝐷𝑥𝑦)2 <
(𝑟+1)2

𝑟
,                  (5) (4) 

where r is the threshold of the principal curvature allowed. The 

keypoint that has a principal curvature value greater than r will 

be omitted. The keypoints will be used are that after the keypoint 

candidates with low contrast, which are unclear and located 

along the edge, are removed. 

The third stage of the SIFT method is orientation 

determination, which aims to obtain an invariant or unchanged 

characteristic after rotation treatment. Orientation determination 

is done using Equations 6 and 7. 

 

𝑚(𝑥, 𝑦) √𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦) + 𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)         (6)                 

𝜃(𝑥, 𝑦) = tan−1 (
𝐿(𝑥,𝑦+1)−𝐿(𝑥,𝑦−1)

𝐿(𝑥+1,𝑦)−𝐿(𝑥−1,𝑦)
)              (7) 

The final stage of the SIFT method is obtaining the 

keypoint descriptor. This stage is to transfer the detected key 

points and their neighboring pixels into specified feature 

descriptors. Descriptor is an orientation histogram with size of 

4 × 4 pixels. This histogram is calculated from the magnitude 

and orientation value of the sample in the region of 16 × 16 

around the keypoint. Magnitude is calculated by a Gaussian 

function with σ equal to one half the width of the descriptor. 

Taking a keypoint as the center, its keypoint-region is divided 

into 4 × 4 = 16 square sub-regions on the Gaussian-filtered 

image hosting the target keypoint, as illustrated in Fig. 5(a) and 

Fig. 5(b). The gradient histogram of orientation is computed for 

each sub-region, and each histogram now has eight orientation 

bins as shown in Fig. 5(c). In other words, each bin covers 45°. 

There is a subtle detail—the gradient histograms of orientations 

are weighted by a Gaussian function as specified in Lowe’s 

algorithm [7]. To achieve rotation invariance, the pixels within 

each sub-region are further rotated with the key-point 

orientation as we have computed previously. Overall, these 16 

histograms will be represented by 16×8 = 128 values [26]. 

 

 
 

Fig. 5. Generation of feature descriptor: (a) keypoint region around a key point 

(b) 4x4 sub-regions within a keypoint region (c) Gradient histogram of one 
sub-region. 

D. Generalized 2 Nearest-Neighbor 

After the feature extraction process using the SIFT method 

is completed, the number of n-keypoints and their descriptors 

are obtained. The next step is inter-descriptor matching of each 

keypoint to identify the same segment in the test image. For 

example, the SIFT method is applied to a test image so that it 

produces a collection of keypoints 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} with 

each descriptor {𝑓1, 𝑓2, … , 𝑓𝑛}. The 2 Nearest Neighbor (2NN) 

method is applied to each 𝑓𝑖 of the keypoints. The match for 

each keypoint is identified using the 2NN method by finding the 

nearest neighbor between keypoint 𝑥𝑖 and all (n - 1) other 

keypoints found in the test image [10]. The closest neighbor is 

the keypoint with the smallest Euclidean distance. The 

Euclidean distance is the most well-known tool for measuring 

similarity. D is defined as the similarity vector of the descriptor 

of a keypoint containing Euclidean distances sorted from the 

smallest to the largest with the descriptor of another keypoint. 

The function used to calculate Euclidean distance is expressed 

in Equation 8 [6]. 

 

𝐷 = {𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑛−1}, where 𝑑 = √(𝑓𝑎 − 𝑓𝑏)2           (8) 

 

where D is the similarity vector of a keypoint, d is Euclidean 

distance of a descriptor, 𝑓𝑎 is the descriptor vector of a keypoint, 

𝑓𝑏 is the descriptor vector of another keypoint, and n is the 

vector length of the test image descriptor. 
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After the Euclidean distance is obtained, the next step is to 

calculate the operation of the division between the distance of 

the first and second closest neighbors. The results of the division 

are compared with the threshold value T. In this manner, the 

keypoint will be categorized as suitable if it meets the 

requirements [6], as follows: 

 
𝑑1

𝑑2
< 𝑇     where   𝑇 𝜖 (0,1)                  (9) 

The 2NN matching method is unsuitable for detecting 

forgery in images with multiple duplicated regions because this 

method only evaluates the two closest neighbors at each 

keypoint. To overcome this problem, Amerini, Ballan, Caldelli, 

Bimbo, and Serra [9] proposed a new method, which is a 

development of the 2NN method called G2NN. In this method, 

the calculation 𝑑1 𝑑2⁄  is repeated until the results obtained are 

greater than the threshold value. If the looping process stops at 

this value, then each keypoint with distance {𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑘} 

where 1 ≤ 𝑘 < 𝑛, is grouped as a “match” [9]. 
 

IV. TEST RESULTS AND ANALYSIS 

A. Supporting Devices 

The software used to simulate CMFD software on digital 

images is MATLAB R2016a. Meanwhile the hardware used is 

a personal computer with the following specifications: 

1) Hardware: Laptop Lenovo Yoga IdeaPad 520, Intel 

Core i5-8250U Processor; 

2) RAM 4GB DDR4; 

3) Operating system: Microsoft Windows 10 Home. 

B. Testing without Gaussian Noise 

Testing without Gaussian noise involves testing images with 
variations in the use of the threshold value T and the number of 
keypoints in test images without Gaussian noise. The use of 
Gaussian noise was proposed in the research conducted by 
Farooque and Rohankar [21]. A total of 20 images were tested, 
with variations of the minimum number of keypoints, i.e., 2, 5, 
and 10, and variations of the threshold value T, i.e., 0.3, 0.4, and 
0.5. Table I shows the results of detection accuracy testing 
without Gaussian noise. Meanwhile, Figure 6 shows the graph 
of the results of the test shown in the table. 

 
TABLE I 

DETECTION ACCURACY TESTING WITHOUT GAUSSIAN NOISE 

Minimum number of 

matching keypoints 
Threshold value T Accuracy rate (%) 

 0.3 90 

2 0.4 1001 

 0.5 90 

 0.3 60 

5 0.4 85 

 0.5 85 

 0.3 55 

10 0.4 65 

 0.5 80 

1The best results 

Figure 6 shows that the results of testing images with a 

minimum number of suitable features of two characteristics and 

variations of the threshold value T = 0.4 have the highest 

accuracy value of 100%. From this table, the average of 

accuracy rate from 9 observation is 78.89%.  This accuracy 

value can be compared with that obtained by Amerini, Ballan, 

Caldelli, Bimbo, and Serra [9] using a SIFT-based forensic 

method. They claimed that the true positive rate (TPR) of 

gamma correction processing is 99.37%, whereas the TPR of 

both JPEG and SNR (dB) processing is 100% [26].  

 

 

Figure 6. Graph of detection accuracy testing without Gaussian 

noise. 

The highest accuracy of 100% reached with variations of 
the threshold value T = 0.4 can be compared with the results of 
the research conducted by Wang, Zhang, and Zhou [27]. They 
used an image CMFD scheme based on Accelerated-KAZE (A-
KAZE) and SURF. Their experimental results indicated that the 
performance of the proposed scheme is superior to that of other 
tested CMFD methods [28]. However, they did not state the 
highest accuracy level of their proposed scheme. Variations of 
the threshold values T = 0.3 and T = 0.5 have the same accuracy 
value of 90%. The results of testing images with a minimum 
number of characteristics matching as many as five features and 
variations of the threshold values T = 0.4 and T = 0.5 have an 
accuracy value of 85%. 

The highest accuracy of 100% reached in this research also 

can be compared with the results of the research conducted by 

Prakash, Panzade, Om, and Maheshkar [28]. They proposed a 

keypoint-based CMFD technique, which is a combination of A-

KAZE and SIFT. Their experimental results showed that their 

proposed method can detect the duplicated regions even if the 

image is post-processed with scaling, rotation, noise, and JPEG 

compression operations [28]. However, they did not state the 

highest accuracy level of their proposed technique. 

Variations of threshold value T = 0.3 have the lowest 

accuracy value of 60%. The results of testing images with a 

minimum number of features matching as many as 10 features 

and variations of the threshold value T = 0.5 have the highest 

accuracy value that is equal to 80%. Variations of the threshold 

value T = 0.3 have an accuracy value of 55%, and variations of 

the threshold value T = 0.4 have an accuracy value of 65%. 

Figure 7 shows an example of forgery detection in an image 

without Gaussian noise. 
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Figure 7. Detection results of test image without Gaussian noise 

C. Testing with Gaussian Noise 

Testing with Gaussian noise involves testing images with 

variations in the use of the threshold value T and the minimum 

number of keypoints in test images with Gaussian noise. As 

mentioned previously, the use of Gaussian noise was proposed 

in the research conducted by Farooque and Rohankar [21]. A 

total of 20 images were tested, with variations of the number of 

keypoints. i.e., 2, 5, and 10, and variations of the threshold value 

T, i.e., 0.3, 0.4, and 0.5. Table II shows the accuracy percentage 

for the detection of test images with Gaussian noise. Meanwhile, 

Figure 8 shows the graph of the results of the test shown in the 

table. 
 

TABLE II 
ACCURACY PERCENTAGE FOR THE DETECTION OF TEST IMAGES WITH 

GAUSSIAN NOISE 

Minimum number of 

matching keypoints 
Threshold value T Accuracy rate (%) 

 0.3 50 

2 0.4 651 

 0.5 651 

 0.3 30 

5 0.4 40 

 0.5 55 

 0.3 30 

10 0.4 40 

 0.5 40 
1The best results 
 

Figure 8 shows that the results of testing images with a 
minimum number of suitable features of two characteristics and 
variations of the threshold value T = 0.3 have the lowest 
accuracy value of 50%. Variations of threshold values T = 0.4 
and T = 0.5 have an accuracy value of 65%. The results of 
testing images with a minimum number of suitable features 
matching as many as five features and variations on the 
threshold value T = 0.3 have an accuracy value of 30%. 
Meanwhile, variations of the threshold value T = 0.4 have an 
accuracy value of 40% and variations of the threshold value T = 
0.5 have the highest accuracy value of 55%. The results of 
testing images with a minimum number of characteristics 
matching as many as 10 features and variations of the threshold 
value T = 0.4 and T = 0.5 have the same accuracy value that is 
equal to 40%. Variation of the threshold value T = 0.3 have the 

lowest accuracy value of 30%. Compared with the results of the 
research conducted by Elaskily et al. [29], the results of this 
research have a lower accuracy level. They claimed that the best 
result occurs when Gaussian noise with gamma correction 
processing is applied to the image, with TPR of 100% and false 
positive rate of 7.14% [29]. However, we cannot conclude that 
our results are worse because, in fact, the test images used and 
the conditions applied are different from those of Elaskily et al. 
[29]. 

 

 
 

Figure 8. Graph of accuracy percentage for the detection of test images 
with Gaussian noise 

 
The accuracy of testing with Gaussian noise is relatively 

lower than the accuracy of testing without Gaussian noise. This 
finding can be attributed to the fact that Gaussian noise leads to 
suboptimal operation of the SIFT algorithm, which is a 
keypoint-based algorithm, because the keypoints that can be 
detected become undetectable, resulting in the lower number of 
traits obtained from test images with Gaussian noise than test 
images without Gaussian noise. Figure 9(a) shows an example 
of an image that has Gaussian noise, whereas Fig. 9(b) shows 
an example of its detection results. 

D. Discussion 

 Furthermore, our experiment to combine the SIFT and 

G2NN (shortnamed SIFT-G2NN from now on) is compared 

with other efforts from some researchers. Following are a few 

publications from other authors which we summarize the results 

of their experiments. 

According to Wu, Abd-Almageed, and Natarajan who 

introduced BusterNet, a two-branch DNN (deep neural network 

architecture), they claimed that the accuracy of the proposed 

BusterNet jumps to 77.49% [30]. Whereas, D’Amiano, 

Cozzolino, Poggi, and Verdoliva had proposed a PatchMatch 

based dense-field algorithm for video copy-move detection and 

localization. Their experimental results show that the proposed 

method to detect and localize video copy-moves with good 

accuracy even in adverse conditions [31], without declaring 

specific number to indicate the accuracy level. 

In their publication on CMFD based on PatchMatch. 

Cozzolino, Poggi, and Verdoliva declared that their experiment 

results show the proposed technique to perform almost 

uniformly all tested reference techniques in terms of both 

accuracy and speed. The basic PatchMatch implemented in 

RGB pixels (B-PM + RGB) provides a very good performance 

in general, with F = 0.906 in case of simple translation [32]. 

While, in their paper on CMFD based on polar cosine transform 

(PCT) and appropriate nearest neighbour searching and 

accomplished by means of locality-sensitive hashing (LSH), Li 
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declared that the proposed algorithm has a precision of 0.98, 

higher than that of Zernike-CMFD that has a precision of 0.92 

[33]. We shortname the algorithm as PCT-LSH. 

 
(a) 

 

 

(b) 

Fig. 9. Detection process on a noisy image: (a) an example of an image with 

Gaussian noise; (b) detection result of an image with Gaussian noise. 

In another publication, Cozzolino, Poggi, and Verdoliva 

proposed a new algorithm named PatchMatch (PM) for the 

accurate detection and localization of copy-move forgeries, 

based on rotation invariant features computed densely on the 

image. With all features, the proposed technique behaves very 

well on rigid copy-moves, with F-measure going from 0.9 for 

Fourier-Mellin Transform (FMT) to 0.94 for Zernike-polar [34]. 

The method for detecting copy-move forgery also had been 

introduced by Bayram, Sencar, andd Memon. Their 

experimental results show that the proposed features can detect 

duplicated region in the images very accurately, even when the 

copied region was undergone severe image manipulations [35]. 

Again, in this paper, the authors did not declare what specific 

number to indicate the accuracy level. 

Marra, Gragnaniello, Verdoliva, and Poggi had worked on 

research on a full-image full-resolution end-to-end-trainable 

convolutional neural network (CNN) framework for image 

forgery detection. They also claimed that the experiments on 

widespread image forensics datasets prove the good 

performance of the proposed approach, which largely 

outperforms all baselines and all reference methods. They 

compute the area under the ROC curve (AUC) as a synthetic 

measure of performance. Over the whole dataset, the best AUC, 

obtained with E2E-Fusion (end-to-end fusion), grows from 

0.846 to 0.932 on NC2017 [36]. In another experiment, Li, Li, 

Yang, and Sun proposed a scheme to detect the copy-move 

forgery in an image, mainly by extracting the keypoints for 

comparison. The experimental results prove the good 

performance of the proposed scheme via comparing it with the 

state-of-the-art schemes on the public databases. In this 

research, false positive rate (FP) is 17/48 = 0.354, better than the 

other experiments using SIFT which results in FP = 9/48 = 

0.188 or SURF with TP = 8/48 = 0.167 [37]. 

We conclude the above results in Table III. From 9 (nine) 

algorithms observed, there are only 6 (six) algorithms that 

declared their numerical results. 

TABLE III 

TEST RESULTS ON SOME CMFD ALGORITHMS 

Algorithm Test results Conditions 

BusterNet [31] Accuracy = 77,49% Overall accuracy is the ratio of corrected samples to total samples [31] 

B-PM+RGB [33] FM = 0.906 = 90.6% 
FM = F-measure = 2TP/(2TP + FN + FP), where TP = true positive, FN = 

false negative, and FP = false positive [33] 

PCT-LSH [34] Precision = 0.98 = 98% Precision = (Forged Region ∩ Detected Region)/Detected Region [34] 

PM [35] F-measure = 0.94 = 94% 
F = 2TP/(2TP + FN + FP); where TP = true positive, FN = false negative, and 

FP = false positive [35] 

CNN [37] AUC = 0.932 = 93.2% 
AUC is the area under the ROC curve; as a synthetic measure of performance 

[37] 

Proposed method: 

SIFT-G2NN 

Average accuracy  

= 78.89%  

Accuracy is the ratio of corrected samples to total samples; The highest 

accuracy of 100% reached with variations of the threshold value T = 0.4 

  

From Table III it can be seen that the test results above are 

from different measurement parameters. Two algorithms: 

BusterNet and SIFT-G2NN use accuracy measurements with 

the same formula. From the two algorithms, it can be shown that 

the proposed method SIFT-G2NN has an accuracy rate of 

78.89%, slightly higher than BusterNet which has an accuracy 

of 77.49% [30]. Thus, the SIFT-G2NN algorithm yields slightly 

improved results compared to the BusterNet algorithm. 
Two other algorithms: B-PM + RGB [32] and PM [34] use 

the same size, i.e., F-measure, which is obtained by the same 
formula. While the other 2 (two) algorithms use different 
measures. The PCT-LSH algorithm uses a precision measure 

[33], while CNN uses an AUC measure, which is the area under 
the ROC curve [36]. 

V. CONCLUSION 

The experimental results show that the detection accuracy 
decreases when the image has Gaussian noise. Simulations of 
CMFD without Gaussian noise achieve the highest accuracy 
with a value of 100% at a threshold value T = 0.4 and a 
minimum number of traits or keypoints of 2. At this scheme, it 
can be shown that the proposed method SIFT-G2NN has an 
average accuracy rate of 78.89%, slightly higher than BusterNet 
which has an accuracy of 77.49%. Simulations of CMFD with 
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Gaussian noise achieve the highest accuracy with a value of 
65% at the threshold value of T = 0.4 and T = 0.5 and a minimum 
number of traits or keypoints of 2. The higher the minimum 
number of keypoints, the lower the detection accuracy. The 
threshold value T = 0.3 produces a relatively low accuracy value 
compared with other threshold value T in all test scenarios. In 
future research, this simulation can be combined with clustering 
methods, such as J-linkage or agglomerative hierarchical 
clustering after feature matching, to increase the detection 
accuracy.  
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