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Abstract—In this paper, we show that signal sampling 

operation can be considered as a kind of all-pass filtering in the 

time domain, when the Nyquist frequency is larger or equal to 

the maximal frequency in the spectrum of a signal sampled. We 

demonstrate that this seemingly obvious observation has wide-

ranging implications. They are discussed here in detail. 

Furthermore, we discuss also signal shaping effects that occur in 

the case of signal under-sampling. That is, when the Nyquist 

frequency is smaller than the maximal frequency in the spectrum 

of a signal sampled. Further, we explain the mechanism of a 

specific signal distortion that arises under these circumstances. 

We call it the signal shaping, not the signal aliasing, because of 

many reasons discussed throughout this paper. Mainly however 

because of the fact that the operation behind it, called also the 

signal shaping here, is not a filtering in a usual sense. And, it is 

shown that this kind of shaping depends upon the sampling 

phase. Furthermore, formulated in other words, this operation 

can be viewed as a one which shapes the signal and performs the 

low-pass filtering of it at the same time. Also, an interesting 

relation connecting the Fourier transform of a signal filtered with 

the use of an ideal low-pass filter having the cut frequency lying 

in the region of under-sampling with the Fourier transforms of 

its two under-sampled versions is derived. This relation is 

presented in the time domain, too.   

 
Keywords—Signal sampling, filtering, discrete-time Fourier 

transform 

I. INTRODUCTION 

S far as sampling of signals, sampling theorem, and re-

construction formula are concerned, it seems that 

everything has been already fully explained and understood. 

Maybe? Although in this paper, we rather doubt it. For 

example, it seems to us that not all electrical engineers realize 

that the signal sampling operation is itself a filter and/or a 

signal shaping device. And that it has some intriguing con-

sequences, which can allow better understanding of the 

fundamentals of digital signal processing. As, for example, the 

fact that the discrete-time Fourier transform (DTFT) is not a 

periodic function (transformation). What is often taught to be 

the DTFT [1-7] is simply a periodic replicating this part of the 

DTFT which lies in the range between negative and positive 

values of the Nyquist frequency [4] - on the whole frequency 

axis. So, obviously, these two things do not mean the same. 
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In this paper, we can distinguish two parts. The first part is 

devoted to presentation of the filtering property of the signal 

sampling operation in the case when the Nyquist frequency is 

larger or equal to the maximal frequency in the spectrum of a 

signal sampled. Whereas the second one discusses what 

happens when the condition mentioned above is not satisfied. 

Note that the latter case is much more complicated and more 

difficult to understand than the first one because it 

encompasses also the effect which is called signal aliasing. 

Then, as we show in this paper, the signal sampling can be 

described as a specific operation containing both the filtering 

and signal shaping 

The remainder of this paper is organized as follows. In the 

next section, we present a definition of the notion of a signal 

object. The third section shows that the signal sampling 

behaves as an all-pass signal filtering operation in the case 

when the Nyquist frequency is larger or equal to the maximal 

frequency in the spectrum of a signal sampled. The behavior 

of  the signal sampling viewed as its shaping is a subject of the 

fourth section. Such behavior occurs when the Nyquist 

frequency is smaller from the maximal frequency in the 

spectrum of a signal sampled. The paper ends with some 

concluding remarks. 

II.  NOTION OF A SIGNAL OBJECT 

We introduce this notion here because it will allow us to 

define transparently the operation of sampling of signals as a 

kind of a filter and/or of a signal shaper at the same time. To 

this end, consider a signal ( )x t  of a continuous time variable 

t  and denote the maximal frequency present in its spectrum 

by 
mf . So, this signal can be sampled and reconstructed 

perfectly if the sampling period T fulfils the following: 
 

 1 2s mT f f=  , (1) 

 

where 
sf  means the corresponding sampling frequency. The 

reconstruction formula to be used has the form 

 

( ) ( ) ( )   ( ) sinc  sinc  .
k k

x t x kT t T k x k t T k
 

=− =−

= − = −   (2) 
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In (2),  ( )  , ... 1,0,1,...,x kT x k k= = −  mean the samples of 

the signal ( )x t  sampled with the frequency 
sf , whereas the 

function ( )sinc t  is defined as 

 

 ( ) ( )sinc sin   for 0   and  1 for 0t t t t t =  = . (3) 

  

Further, let us use here the symbol ( ) ( )  x k x kT x k= = , 

which was used above to denote the sequence of signal 

sampled values, to denote also the signal x  of the discrete 

time variable k kT→ , containing elements of this sequence. 

Obviously, the local meaning of the above symbol will follow 

from the context of place, where it is actually used. Example 

usage of the symbols ( )x t  and ( )x k  is visualized in Fig. 1.  

 
Fig. 1. Example discrete-time signal (upper curve), where the integers 

..., 1,0,1,...−  mean successive values of discrete time variable k, and equivalent 

signal in continuous time domain (lower curve), where t stands for continuous 

time variable. Figure taken from [8]. 

Note now that by virtue of the sampling theorem the signals 

shown in Fig. 1, which are represented there by the lower and 

upper curves, can be perceived as being equivalent. They are 

equivalent because they can be obtained from each other via 

the sampling fulfilling (1) and the reconstruction formula (2), 

where the latter regards the reverse direction. Further, observe 

that we can choose any value of T from the range ( )(0,1 2 mf  

to perform sampling of the signal ( )x t . As a result, we get an 

infinite number of discrete signals ( )x k  that will be 

equivalent to the signal ( )x t . So, all these discrete signals 

( )x k  together with their “source” signal ( )x t  can be 

perceived as a one object. And, after [8], we can call it a signal 

object. This object will be a specific object consisting of an 

infinite number of elements having such a property that each 

of them is only an image of all the others, in the sense defined 

above. 

As to the details of a concept of the signal object, the 

interested reader is referred to [8]. Moreover, in what follows, 

we will use a notation ( ),x t k  for denoting a signal object 

containing the whole family of signals ( )x k  associated with 

( )x t , including also ( )x t . 

III.  SIGNAL SAMPLING AS AN ALL-PASS FILTERING WHEN 

CONDITIONS OF SAMPLING THEOREM ARE SATISFIED 

The facts, which we shall be discussing now, are well 

known, but are not interpreted in the way as we will do here. 

Some might say that our interpretation of the signal sampling 

operation presented in this paper is irrelevant. On the contrary, 

we show that nothing could be more wrong. Here, we focus 

only on a one example to show the strength of our 

interpretation. Thanks to it we will able to derive in a simple 

way correct expressions for the DTFT.            

The signal sampling operation within the range ( )(0,1 2 mf  

of the sampling periods T is nothing else than a kind of all-

pass filtering. Why? After performing sampling of a signal 

( )x t  with a sampling period lying in the range mentioned 

above, we get its discrete version ( )x k . But, when applying 

the inverse operation to ( )x k  given by (2), we recover a 

perfect version of ( )x t . Therefore, the sampling of a signal 

can be interpreted as such a manipulation on this signal that 

essentially does not change that signal. Obviously, the above 

manipulation changes an “external” image of the signal 

considered, from a one of a continuous time to that which is 

its discretized version, with a concrete T chosen from an 

infinite number of values mentioned above. In other words, 

the above manipulation can be perceived as an operation that 

takes a one element of a given signal object ( ),x t k  (as 

defined in the previous section) and brings another one of the 

same signal object as a result. So, in this function, it perfectly 

resembles the behavior of an all-pass filter. 

On the other hand, when the frequency domain is 

considered, the signal sampling in the range ( )(0,1 2 mf  of 

sampling periods T or equivalently in the range )2 ,mf   of 

sampling frequencies 1sf T=  behaves as an ideal low-pass 

filter. That is it behaves as a filter that possesses the transfer 

function equal identically to 1 in the range of frequencies 

2, 2s sf f− , but having identically the zero value outside 

this range. This is very apparent when we calculate the Fourier 

transform of ( )x t  using (2). So, applying the definition of the 

Fourier transform (denoted symbolically by ( )F ) to both 

sides of (2), we get 
 

 
( )( )   ( )

  ( )( )

 sinc

 sinc   .

k

k

x t x k t T k

x k t T k



=−



=−

 
= − = 

 

= −





F F

F

 (4) 

x(k) 

k  0  -1  1 2  3  -2  -3  4  5  

x(t) 

t  0  -T  T 2T  3T  -2T  -3T  4T  5T  
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Further, taking into account in (4) the fact that the Fourier 

transform of the function ( )sinc t T k−  is given by 

 

 ( )( ) ( ) ( )sinc rect exp 2t T k T fT j fkT− =  −F , (5) 

 

where the function ( )rect x  means the following:  

 

 ( )
1 1

rect 1  for   and   0  for 
2 2

x x x=   , (6) 

 
we finally arrive at 

 

 
( )( )   ( ) ( )

 

 rect exp 2

1
 rect exp 2   .

k

ks s s

x t T x k fT j fkT

f f
x k j k

f f f







=−



=−

= − =

   
= −   

   





F

 (7) 

 
Note that a further simplification of (7) is possible when we 

take into account (6) in (7). Then, we get from the latter the 

following:  
 

 

( )( )   ( )

 

( )( )

exp 2

1
exp 2   for   and

2

1
0   for  ,

2

k

k s s

s

x t x k j fkT

f f
x k j k

f f

f
x t

f







=−



=−

= − =

 
= −  

 

 





F

F

 (8) 

 

where signal samples defined as    x k T x k=   are used. 

It is clear from (8) that the right-hand side expression in the 

first line of (8), which is used to define the DTFT [1-7], is 

nothing else than the usual Fourier transform of an un-

sampled signal ( )x t . This is however valid only for the 

region of frequencies f fulfilling 2sf f . Outside this 

range, the expression   ( )exp 2
k

x k j fkT


=−

−  replicates 

( )( )x tF  infinitely many times, what can be easily deduced 

from (8), too. So, these two observations lead us to draw the 

following conclusion: exclusively (8) should be used as the 

definition of DTFT. The function   ( )exp 2
k

x k j fkT


=−

−  of 

a variable f allowed to assume any value on the frequency axis 

will be then a periodic function, as stated in the literature [1-

7]. And, it can be perceived as a “periodic extension” of the 

DTFT defined by (8). 

Let us summarize now some other important conclusions 

which follow from the above considerations. First, (8) is an 

equivalent of (2) in the frequency domain. So, we can call it a 

perfect signal reconstruction formula in the frequency domain. 

It allows to calculate directly the Fourier transform of a signal 

being a member of a corresponding signal object which is 

given only by its samples. Thereby, we omit then a calculation 

that uses the Fourier integral. Second, note that in our 

formulation of the DTFT we do not need to operate with 

sampled signals represented by curves involving Dirac 

impulses as shown, for example, in Fig. 2. 

 

 

Fig. 2. Visualization of Dirac comb signal (top) and graphical representation 

of signal ( )x t  multiplied by Dirac comb (bottom). 

 

A way commonly used in modelling of the signal sampling 

process involves the use of the so-called Dirac comb ( )T t  

defined as 

 

 ( ) ( )T

k

t t kT 


=−

= −  , (9) 

 

where ( )t  means the so-called Dirac impulse, which is not a 

usual function, but distribution. And, the Dirac comb is 

visualized in Fig. 2 by the upper curve. So, then, the sampled 

signal is assumed to have the form shown by the lower curve 

of Fig. 2. Mathematically, this sampled signal, we call here 

( )Tx t , is a multiplication of its continuous time version by 

( )T t . That is ( ) ( ) ( )T Tx t x t t=  . 

Note that the above kind of modelling of the signal 

sampling process is a little bit cumbersome and artificial 

because it uses non-physical objects like Dirac impulses and 

Dirac comb. Unlike to that our approach avoids this. It is a 

natural way and obviously this is its advantage. 

Thirdly, observe that the signals depicted in Fig. 1 (upper 

curve) and in Fig. 2 (lower curve) differ from each other not 

only graphically. They have also different spectra (Fourier 

transforms). Therefore, they belong to two different signal 

objects ( ),x t k . 

And fourth, see also that we do not need to use the notion of 

a Fourier series and the “periodic extension” of the DTFT 

mentioned before to obtain a definition of the inverse DTDF 

(that is the IDTFT) in our approach. It naturally derives here 

from applying a standard inverse Fourier transform to the 

DTFT given by (8). That is 

δT(t) 

t  0  -T  T 2T  3T  -2T  -3T  4T  5T  

xT(t) 

t  0  -T  T 2T  3T  -2T  -3T  4T  5T  
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( )( ) ( )

( )( ) ( )

  ( )( )

   

 
  ( )

2

2

2

2

2

2

exp 2

exp 2

exp 2

1 1

2 2

  .

s

s

s

s

s

s

f

f

f

n f

f

f

x t j kT df

x t j fkT df

x n j fT k n df

x n k f x k
T T

x k
x k x kT

T









−

−



=− −

−

=

= =

= − =

  
= =  =  − − =  

  

= = =





 

F

F

 (10) 

 

In derivation of (10), we have used the result given by (8), 

the fact that 1sf T= , and some other defining equations 

introduced before. We have also used the following: 

 

 
( )( )

( )

( )( )

2

2

2

2

1
exp 2

2

exp 2 0    for    .

s

s

s

s

f

f

f

f

j fT k n df
j T k n

j fT k n k n






−

−

− = 
−

 − = 


 (11) 

 

IV. SIGNAL SAMPLING VIEWED AS ITS SHAPING  

Let us start this section with recalling the condition under 

which the signal sampling operation can be considered as a 

kind of pure all-pass filtering as shown in the previous section. 

This holds when the sampling operation on a signal ( )x t  is 

carried out with a sampling frequency 
sf  fulfilling (1). Let us 

rewrite however (1) for the needs of this section with a 

slightly modified notation as follows: 

 
 1 2s s mxT f f=  , (12) 

 

where 
mxf  means the maximal frequency present in the 

spectrum of the signal considered and 1s sT f=  denotes the 

sampling period related with 
sf . Obviously, if (12) is not 

satisfied, then there are frequencies in the signal spectrum for 

which the so-called aliasing effect occurs [1], [4], [6]. We call 

here this effect a signal shaping. Why? The reasons for this 

will be derived and presented in this section. 

Further, note that we introduce here the notion of a signal 

shaping because it will allow us to define transparently the 

operation of signal sampling as a kind of signal filtering and 

its shaping at the same time. And, we will also show that these 

two processes depend upon the segment of the signal spectrum 

considered at a given moment. 

Now, to explain the mechanism of this combined behavior, 

let us first choose the following value: 3 2s mx mxf f f=   of 

the sampling frequency of the signal ( )x t  mentioned above.  

 

So, in this case, a perfect reconstruction of the signal ( )x t  is 

possible and it will have the following form:  

 
( ) ( ) ( )

  ( )

 sinc

 sinc

s s

k

k

x t x kT t T k

x kT t T k



=−



=−

= − =

= −





 (13) 

 

with ( )1 1 3s s mxT f f T= = =  and the function ( )sinc x  

defined in (3).  

But, second, if we choose the sampling frequency to be 

equal to 3 2 2s mx mxf f f=  , then the condition (12) will be 

violated. In this case, we will have to do with the so-called 

aliasing effect [1], [4], [6], and obviously the usage of the 

reconstruction formula as the one used in (13) with the 

doubled value of 2sT T=  will not be possible.  

To proceed further, let us now divide the sequence of the 

signal samples ( )  , ..., 2, 1,0,1,2,...,x kT x k k= = − −  into 

two subsequences gathering separately all of them having 

even indices and those which possess odd ones. Definition and 

scheme illustrating how to build them up is shown below. 

 

( )  ( ) ( ) ( ) ( ) ( ) ( ) 

( )  ( ) ( ) ( ) 

( )  ( ) ( ) ( ) 

...  2     0     2   3  ...

...  2               0               2            ...

...                                          3  ...

x kT x T x T x x T x T x T

x kT x T x x T

x kT x T x T x T

= − −

 = −

 = −

 (14) 

 

From (14), it follows that the following relation:  
 

 ( )  ( )  ( ) x kT x kT x kT = +  (15)  

 

holds for the sequences ( ) x kT , ( ) x kT , and ( ) x kT  

defined in (14). Further, the latter two sequences can be put 

into another form as follows:  
 

 
( )  ( )  ( ) 

( )    

2

2

e

e e

x kT x k T x nT

x n T x n

 = = =

=  =
 (16) 

and 
 

 
( )  ( )  ( ) 

( )    

2

    2  ,

o

o o

x kT x k T x nT T

x n T x n

 = = + =

=  =
 (17) 

 

where 2ek n=  and 2 1ok n= +  mean the corresponding even 

and odd integers, respectively, with nZ , where Z  denotes 

the whole set of integers. Also, it is worthy to see that the 

sequences ( )    e ex x =   and ( )    o ox x =   formulated 

in (16) and (17) can be considered as two possible sets of 

samples chosen from an infinite number of possible ones 

which can be achieved by sampling the signal ( )x t  with the 

sampling period 2sT T= . And, this observation will be 

utilized later. 
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Consider now the sequence ( )    e ex x =  , but in 

isolation from any relation with the signal ( )x t . Knowing that 

the elements of this sequence lie in the distance of 2T  from 

each other, we can connect them through an interpolating 

function. And, one of the possible choices for doing this is the 

use of an interpolating function of the form which has that in 

(13). So, if we decide to do it this way, we get  

 

 ( )   ( )( ) sinc 2  ,e

k

y t x k t T k


=−

= −  (18) 

 

where ( )y t  denotes an interpolating function obtained in the 

procedure described above. In the next step, let us calculate 

the Fourier transform of the function ( )y t  given by (18). 

Applying directly the result presented in (8), we obtain 

 

 

( )( )   ( )

( )

( )( ) ( )

exp 2 2

    for   1 4

and

0   for 1 4  ,

e

k

y t x k j kf T

f T

y t f T




=−

= −



 

F

F

 (19) 

 

where  ex k  means the following:    2e ex k T x k=  . This 

result indicates that the function ( )y t  represents a low-pass 

signal having the maximal frequency ( )1 4myf T= . Next, 

interpreting the distance 2T  between the elements of the 

sequence ( )    e ex x =   as the sampling period used for 

sampling the interpolating function ( )y t , we can reconstruct 

this function from its samples. This reconstruction given by 

(18) is perfect because the sampling frequency in this case 

satisfies (12), where 
mxf  occurring there should be replaced 

now by 
myf . That is we have now ( )1 2 2s myf T f=  =  

( ) ( )2 4 1 2T T= = . 

Let us return now to the signal ( )x t  and consider its 

relation with the signal ( )y t . In view of that what was said 

above, the latter represents the former as its distorted version, 

with distortion caused by the so-called aliasing effect [1], [4], 

[6]. However, as we saw above, it is hard to see any aliasing 

products in the under-sampled signal. That is in ( )y t . It is 

rather a kind of filtering of the signal ( )x t  which leads to 

receiving a low-pass signal with the maximal frequency 

( )1 2my sf f=  . But, as we will show in what follows, this 

kind of filtering is a special one because apart from 

performing filtering out all the signal spectrum components at 

frequencies ( )1 2 sf f   it shapes the signal at the same time. 

 

 

 

So, because of this reason, this operation of signal under-

sampling is called here signal shaping. This name seems to be 

more proper than the term signal aliasing. In particular that in 

terms of the notion of signal objects [8] ( )x t  and ( )y t  

represent two different objects ( ),x t k  and ( ),y t k , 

respectively. For more details on this topic, see [8]. 

We notice also that by taking into account the sequence 

( )    o ox x =   instead of the sequence ( )    e ex x =   in 

our considerations presented above we would arrive at the 

same conclusions. However, we would then work with a 

rather different interpolating function, say,  ( )z t . Why? 

Because it is rather hard to expect the sequences mentioned 

above to be identical. For more details regarding this fact, see 

[9].  

Further, note that the sequence ( )    o ox x =   is shifted 

on the time axis by T with respect to the sequence 

( )    e ex x =  . And, if we assume that the sampling period 

2T corresponds to a phase of 2  radians, the shift by T will 

correspond, respectively, to a phase of   radians. So, using 

this phase-oriented interpretation connected with the previous 

observation, we can express the latter shortly in this way: 

signal shaping effects (or equivalently aliasing effects in the 

terminology that is used) associated with the signal under-

sampling are sampling phase dependent. 

Now, we will concentrate on showing that really the signal 

under-sampling operation is not the usual kind of low-pass 

filtering. And, to this end, let us take into account the signal 

( )x t  once again and an ideal low-pass filter having the 

following transfer function: 
 

 

( ) ( )

( )

( )

1   for   1 4  

   and   0

         for  1 4

H f f T

H f

f T

= 

=



 (20) 

 

for carrying out its filtering. The Fourier transform of the 

signal ( )x t , that is ( )( )x tF , can be easily calculated as, for 

example, in (8). Then, we arrive at 
 

 

( )( )   ( )

( )

( )( )

( )

exp 2

   for 1 2

 and

0

   for  1 2

k

x t x k j fkT

f T

x t

f T




=−

= −



=



F

F

 (21) 

 

with  x k  denoting    x k T x k=  . So, using (20) and (21), 

we can express the filtering mentioned above, in the frequency 

domain, as 
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( ) ( )( )   ( )

( )

( ) ( )( )

( )

exp 2

    for 1 4

       and

0

    for  1 4  .

k

H f x t x k j fkT

f T

H f x t

f T




=−

 = −



 =



F

F

 (22) 

 

In the next step, let us group all the components under the sum 

in the first line of (22) which contain the indices k that are 

even integers, and separate this group from the one which 

gathers all the components having k indices being odd 

integers. This will allow us to rewrite the first line of (22) in 

the following form:  
 

 

( ) ( )( )   ( )

  ( )

  ( )

  ( )

  ( )

  ( ) ( )

exp 2

exp 2

exp 2 2

exp 2 (2 1)

1
exp 2 2

2

1
exp 2 2 exp 2

2

e

o

e e

k

o o

k

e

n

o

n

e

n

o

n

H f x t T x k j fk T

T x k j fk T

T x n j f nT

T x n j f n T

x n j fn T

x n j fn T j fT











 



=−



=−



=−



=−



=−



=−

 = − +

+ − =

= − +

+ − + =

= − +

+ − −













F

 (23) 

 

for ( )1 4f T  . And, connecting (23) with the second line of 

(22), we arrive finally at 

 

 

( ) ( )( )   ( )

( )   ( )

( )

( ) ( )( )

( )

1
exp 2 2

2

1
exp 2 exp 2 2

2

     for 1 4

     and

   0

   for  1 4  .

e

n

o

n

H f x t x n j fn T

j fT x n j fn T

f T

H f x t

f T



 



=−



=−

 = − +

+ − −



 =







F

F

 (24) 

 

Comparing now (24) with (19), we see that evidently the 

following: 

 

 ( ) ( )( ) ( )( ) ( )   for 1 4H f x t y t f T  F F  (25) 

 

holds. That is the signal under-sampling operation is not the 

usual kind of low-pass filtering. It is a specific kind of signal 

shaping, involving also filtering. Its mechanism and effects are 

precisely explained above. 

By the way, note that an interesting result, which regards 

our example studied throughout this paper, can be easily 

deduced from (24) and the remarks regarding the signal ( )z t  

introduced above. This result relates the outcome of filtering 

of the signal ( )x t  with the use of the low-pass filter having 

the characteristic given by (20) and the outcomes of two 

under-samplings of this signal represented by the signals ( )y t  

and ( )z t . It has the following form: 

 

 
( ) ( )( )

( )( ) ( ) ( )( )
1

exp 2
2

H f x t

y t j fT z t

 =

 = + − 

F

F F

 (26) 

 

and holds for all frequencies f . Finally, note that using the 

inversed Fourier transforms in (26), we get 

 

 ( ) ( ) ( )
1

2
Hx t y t z t T= + −  

 , (27) 

 

where ( )Hx t  denotes the signal ( )x t  filtered with the use of 

an ideal low-pass filter having the transfer function given by 

(20). 

V. CONCLUDING REMARKS 

It has been shown in this paper that the signal sampling 

operation can be considered as a kind of all-pass filtering in 

the time domain in the case when the Nyquist frequency is 

larger or equal to the maximal frequency in the spectrum of a 

signal sampled.  

Obviously, if the Nyquist frequency is smaller from the 

maximal frequency in the spectrum of a signal sampled, then 

filtering occurs, too. However, it assumes then a specific form, 

which we have called here a signal shaping.  

In this paper, we have proposed and illustrated a scheme for 

explanation of the signal shaping effects that occur in the case 

of signal under-sampling. Obviously, this scheme can be put 

into a more general framework. 
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