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  Abstract—Providing Privacy and security for aggregated data 

in wireless sensor networks has drawn the attention of practicing 

engineers and researchers globally. Several cryptographic 

methods have been already proposed to solve security and data 

integrity problems for aggregated data. Matrix cryptography is a 

better option for creating secure encryption/decryption 

algorithms to counter quantum attack. However, these algorithms 

have higher computational cost and increased communication 

overhead. Hence, a new technique of loss-less secure data 

aggregation in Clustered Wireless Sensor Networks is presented. 

The proposed method uses integer matrices as keys for data 

security and data integrity. Matrix operations are carried out in 

finite field Zp. Loss-less secure data aggregation is extended for 

homomorphic summation while the cipher text expansion ratio is 

kept substantially low. The proposed algorithm has inbuilt fast 

and efficient signature verification facility. The execution time of 

our signature verification mechanism is found to be 

approximately 50 percent less compared to a couple of standard 

existing signature verification schemes.  

 

Keywords—loss-less data aggregation, integer matrices as 

keys, finite field Zp, homomorphic aggregation 

 

I. INTRODUCTION 

HE main task of Data Aggregation (DA) in WSN is to 

combine the collected data from the sensor nodes into a 

meaningful aggregate [1-2]. The aggregate may be sum, 

average, count, min, max, median or any other aggregating 

function of the individual data. The aggregate type depends on 

the requirement of the users. In general, during the aggregation 

process, DA eliminates trivial, duplicate and redundant data 

values. DA effectively reduces the data size from the 

aggregator to the final End User (EU) through intermediate 

Relay Nodes (NSs), Base Station (BS), and Cloud Server (CS). 

The reduction in the data size in turn decreases the traffic load 

and consequently the computational time and energy 

consumption are also reduced. This increases the life of the 

Wireless Sensor Network (WSN). 

A. Secure Data Aggregation 

With DA, the aggregated data is located at the aggregator and 
at the intermediate relay nodes. If these locations are attacked, 
the entire data will be compromised. The exposure of 
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aggregated data is more detrimental than the leakage of 
individual data. Thus, the data security is very critical when 
DA is implemented compared to the non-aggregated data 
transmission. Secure Data Aggregation (SDA) provides both 
aggregation and security for the aggregate. The main security 
features are as follows. Data confidentiality (privacy): In 
WSN, data confidentiality ensures the secrecy of the sensed 
data. It should not be disclosed to unauthorized agents. Data 
confidentiality is an important ingredient in defense related 
(military) and medical applications. Data confidentiality is 
provided using suitable cryptographic schemes. Data integrity: 
Data integrity provides protection against data alteration due to 
noise, communication channel errors or active attacks, etc. 
Normally, Message Authentication Codes (MAC) and error 
detection codes are employed to provide data integrity. Data 
authenticity: Data authenticity ensures the data source is 
genuine and not fake. Compromised source nodes with fake 
identities are detected with appropriate digital signature 
scheme.  

B. Lossy and Loss less Secure Data Aggregation 

SDA can be lossy or loss-less. In lossy SDA, some of the 
information, which is insignificant for the concerned 
application, is lost. But the contextually essential data is 
retained. On the other hand, in loss-less SDA, the full data is 
retained. The final decoder can recover the full data from the 
encrypted and aggregated data.   

II. RELATED WORK 

Several review articles [2-15] are available on SDA in WSN. 
In these papers, the authors have comprehensively described 
various methods for SDA for different topological 
configurations. Different types of security requirements and 
various cryptographic techniques to meet the above 
requirements suitable for SDA are discussed in these survey 
papers. Homomorphic encryption/decryption schemes for SDA 
are discussed by a few authors [16-19]. In [16], the authors 
Domingo-Ferrer [19] have used privacy homo-morphism 
method for SDA. Here the sensor data is split into several 
components at encryption and then recovered by combining 
them after decryption. This process increases the overall 
computational cost. In [17], Niu et al., have described lossy 
data aggregation with integrity scheme using bilinear maps. 
The disadvantage of this scheme is loss of data during 
aggregation and heavy computational overhead due to the use 
of bilinear maps. In [18], homomorphic Paillier encryption for 
protecting data privacy and homomorphic MAC to provide 
data integrity are adopted. This scheme involves the 
calculation of modular exponentiations and modular inverses 
which result in excessive computational overhead when the 
data from large number of nodes are to be aggregated. In [20-
21], the authors use the principle of CDMA to aggregate the 
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data. Here Message Authentication Codes are used for 
verifying data integrity. This increases the computational cost 
when the size of the data set is large. In [22-23], lattice 
(matrix) based cryptographic methods are used for secure data 
aggregation. Here low valued noise and scrambling matrices 
are used to randomize the encryption. Selection of these 
matrices is critical in the design of encryption/decryption 
process. The lengths of the public keys are relatively large. In 
[22-23] signature insertion/verification is substantially 
complex. In [30] and [31], matrix methods are used to provide 
digital signature. But when adopted for secure data 
aggregation, the length of the signature increases linearly with 
the number of data elements to be aggregated.  To overcome 
the above disadvantages, we propose a new method of SDA 
that uses integer matrices as keys with easy signature insertion 
and verification facility.    

III. PROPOSED WORK 

Our proposed method provides Loss-Less SDA using Matrices 

as Keys. The method is designated as SDA-MK. Here the 

individual data from the sensors are combined and encrypted 

to get the secure aggregated data which is decrypted by the 

final receiver. SDA-MK uses integer matrices in the finite field 

(Galois field) Zp. In Zp, all the elements are in the range 0 to 

p−1 and all the algebraic/arithmetic operations are carried out 

with respect to modulo p which is relatively a large prime 

number.    

A. Symbols, Notations and definitions 

The basic layout of the WSN is shown in Fig.1. It has a single 

Cluster Head (CH) which collects the data from the sensors 

and then aggregates the data and forwards the aggregated data 

to the Cloud Server (CS) via intermediate Relay Nodes (RNs) 

and Base Station (BS). The End User (EU) gets the aggregate 

from CS. Here the CH acts as the loss-less Aggregator. EU 

acts as de-aggregator. The number of sensors nodes attached to 

the CH is taken as N. 

 

 
Fig.1 Basic Layout of SDA 

 

B. Sensor Data Row Vector 

Let the Individual sensor data received by the CH be denoted 

by d1, d2… dN in appropriate units. Then the sensor data is 

represented by the Sensor Data Row Vector D as, 

 

     D = [d1, d2,…, dN]                            (1) 

 

The size of D is 1xN. Individual sensor data values d1, d2… dN 

are assumed to be integers in the range 0 to p−1. Here p is the 

modulus of the finite field Zp.  {If the original data from a node 

is a fractional number, it is converted into the corresponding 

integer by scaling up by 10, 100, or say 1000.Thus 2.34 → 

2.34*100 = 234. At the receiving side it is scaled down by 

100}. The modulus p is a prime number greater than the 

estimated maximum element of the data vector D. The 

elements of D belong to Zp.  

C. Secrete Key Matrix C 

Matrix C is the secret key of the SDA system. The elements of 

C belong to the finite field Zp. The size of C is M x (N+1) with 

M > N+1.Thus C∈ 𝑍𝑝
𝑀×(𝑁+1)

. The rank of C should be N+1. 

The reason for choosing a rectangular matrix for C of rank 

N+1, instead of a square matrix, is explained in section III E.   

D. Base Matrix B 

Base Matrix B is the Modular Matrix Inverse [24] of C.  The 

size of B is (N+1) x M and B ∈ 𝑍𝑝
(𝑁+1)×𝑀

. Thus, 
 

    B = mmi(C, p)                                                                    (2) 

Here, function mmi() stands for the modular matrix inversion 

with respect to the modulus p.  From the definition of mmi(),  

   mmi(C, p)*C = I(N+1)x(N+1)                                                  (3) 

Since C is a tall matrix (No. of rows > No. of columns) of rank 

N+1, it has the left inverse [25] as,    

 𝑪𝒍𝒆𝒇𝒕
−𝟏 = (𝑪𝑻 ∗ 𝑪)−1 ∗ 𝑪𝑻                        (4) 

Here, CT is the transpose of C. The size of the product 

(𝑪𝑻 ∗ 𝑪) is {(N+1) xM} x {M x (N+1)} = (N+1) x (N+1) its 

rank is N+1. Therefore the inverse (𝑪𝑻 ∗ 𝑪)−1exists. All the 

algebraic operations of (4) are carried out in Zp. Then,   

mmi(C, p) can be expressed as,   

 

𝒎𝒎𝒊(𝑪, 𝑝) = 𝑪𝒍𝒆𝒇𝒕
−𝟏 = (𝑪𝑻 ∗ 𝑪)−1 ∗ 𝑪𝑻  (𝑖𝑛 𝑚𝑜𝑑 𝑝)             (5)  

 The condition for the existence of the modular matrix inverse 

of (𝑪𝑻 ∗ 𝑪) is  𝑔𝑐𝑑(𝑑𝑒𝑡(𝑪𝑻 ∗ 𝑪), 𝑝) = 1.  since, p is chosen to 

be a prime, and this condition is automatically satisfied. From 

(2) and (3), 

 B*C = I (N+1) x (N+1) (mod  p)                                                  (6) 

Equation (6) can be rewritten as, 

mod (B*C, p) =  I (N+1) x (N+1) 

When there is no ambiguity, with matrix multiplication 

implemented in Zp, the above Equation can be simply written 

as, 

 B*C = I (N+1) x (N+1)                         (7) 

In (7), the rectangular matrix B is called the Moore–Penrose 

inverse of C. The Moore–Penrose inverse of matrix C is 

unique [26] for a given C and p. In our proposed scheme, 

 

‘generalized inverse’ of C is used instead of Moore–Penrose 

inverse. The generalized inverse is not unique and this 

property is utilized to randomize our encryption to prevent 

Chosen Plaintext Attack as will be described in section VII.B. 

E. Generalized Inverse of C 

The size of CT is (N+1) xM with (N+1) < M. It is a fat matrix. 

Therefore it has modular null space [27]. Let the modular null 
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space of matrix CT be denoted by the matrix F. Then, by the 

definition of modular null space, Matrix F in Zp satisfies,   

CT*F = 0(N+1) x L                            (8)  

F is obtained by using the standard function ModNull(CT, p). 

The size of F is MxL where, 

 L = M − (N+1)                          (9) 

The RHS of (8) is an all zero matrix of size (N+1)xL. Taking 

the transpose of (8), we have,    
 

 FT*C = 0L x (N+1)                                 (10)  

Now, consider the matrix R derived from the base matrix B 

and FT as, 

R = B+Y*FT                                                                        (11)   

Where, Y is an arbitrary matrix of size (N+1)xL in Zp. The size 

of FT is LxM. The size of the product Y*FT as well as R is 

(N+1) xM. In (11) addition and multiplication are carried out 

in Zp. Now the product R*C, from (11) will be, 
 

R*C = (B+Y*FT)*C = B*C + Y*FT*C                               (12)   

From (6), B*C = I and from (10), FT*C = 0. Therefore, from 

(12), 

R*C = I (N+1) x (N+1)                               (13) 

Equation (13) can be expressed in terms of the rows and 

columns of R and C, respectively as, 

[
 
 
 
 
 

𝑹𝟏

𝑹𝟐

.

.
𝑹𝑵

    𝑹𝑵+𝟏]
 
 
 
 
 

∗ [𝑪𝟏 𝑪𝟐 . . 𝑪𝑵 𝑪𝑵+𝟏] = 

[
 
 
 
 
 
𝟏 𝟎 . . 𝟎 𝟎
𝟎 𝟏 . . 𝟎 𝟎
. . . . . .
. . . . . .
𝟎 𝟎 . . 𝟏 𝟎
𝟎 𝟎 . . 𝟎 𝟏]

 
 
 
 
 

 

This can be expressed as, 

         𝑹𝒊 ∗ 𝑪𝒋 = {
0  𝑖𝑓 𝑖 ≠ 𝑗
1  𝑖𝑓 𝑖 = 𝑗

                                 (14)   

 

Since, matrix R satisfies (13), it is the generalized inverse of C. 

From (11), we see that matrix R depends on the arbitrary 

matrix Y. Therefore, R is not unique and it can take a large 

number of multiple values depending on the selected dissimilar 

values of Y. In this paper, these multiple distinct random R’s 

are designated as R{1}, R{2}… R{i}  and so on. Realization of 

multi-valued R{i}’s is possible due to the existence of the 

modular null space matrix F whose size is MxL. Therefore, for 

the existence of F, the value of L should be greater than 0. 

That is, from (9), M > (L+1) which means the number of rows 

of C should be greater than the number of columns of C. If C is 

a square matrix, this condition is not satisfied and we cannot 

have multi-valued R{i}’s.Let R{i} be the ith instance of R, 

Then, from (13), 

R{i}*C = I(N+1)x(N+1)                                                              (15)  

For i = 1, 2… so on. In general, when there is no ambiguity, 

we use the symbol R to represent any one version of R{i}’s. 

The multi-valued property of R is an essential requirement to 

prevent chosen plaintext attack as will be explained in section 

VII.B  

F. Key setup and Distribution 

Key Setup and Distribution is implemented by the Key 

Generation Center (KGC). A suitable, relatively large prime 

number p is selected as the modulus for Zp. Here, p is the 

security parameter. Higher the value of p, greater is the 

security. Since, modular arithmetic is used throughout all the 

operations, all operand values should be in the range 0 to p−1.  

Hence the selected p should be greater than the estimated 

maximum value, say dmax of the data set. Then dmax < p and all 

d’s belongs to Zp. Hence, the data sequence D gets aggregated 

correctly. 

G.  Selection of Matrix C and Digital signature Parameter S 

After selecting p, the secret key matrix C of size (N+1)xM is 

generated randomly by KGC, such that the elements of C are 

in Zp. Parameter N is same as the number of sensors assigned 

to the CH. The extra row of C is used for signature verification 

as will be explained later. The value of M is chosen to be 

greater than (N+1). Here, M is taken as M = N+1+L where L is 

in the range 2 to 4. A higher value of L increases the size of the 

keys and cipher text which in turn increases the 

communication overhead. A smaller value of L decreases the 

security level. While selecting matrix C, it should be ensured 

that its modular inverse B exists. 

The digital signature parameter, represented by S is a scalar 

in Zp. In general, it is relatively a large number in Zp so that it 

is difficult to predict by a hacker.  

H.  Calculation of B, F and R 

After selecting C, its modular matrix inverse B is calculated 

using the function B = mmi(C, p) as given by (2). Standard 

built functions based on Gauss Jordan row reduction 

method and extended Euclid’s algorithm are available [24], 

[28] to find B. The modular null space F of C is also calculated 

based on the row reduction method [29]. From B and F, R{i}’s 

are calculated as given by (11). 

I. Key Distribution 

The calculated values of R{i}’s along with the signature 

parameter S and the modulus value p are sent by the KGC to 

the CH through a secured channel. The CH encrypts and 

aggregates using these values. The KGC also sends C, S and p 

to the End User for decryption/de-aggregation. 

IV. PROPOSED SYSTEM MODEL 

The basic model of the Secure Data Aggregator and De-

aggregator is shown in Fig.2. In the layout shown in Fig. 2, the 

intermediate relay nodes (RNs), BS and the Cloud Server (CS) 

do not have access to R {i}’s, signature parameter S and p. 
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Fig.2 Basic model of the Secure Data Aggregator and De-aggregator 

 

But the End User (EU), which is the de-aggregator, has access 

to these parameters. 

A.  Secured Loss less Data Aggregation with digital signature 

at CH 

On receiving all data values from the sensors (over one TDMA 

cycle), the CH formulates the data vector as, 

 D = [d1, d2… dN] 

The size of D is 1xN. Then, CH appends the signature 

parameter S to D to get the augmented data vector E as, 

E = [D, S] = [d1, d2… dN, S]                             (16)                                                                                 

Now, the size of E is 1x (N+1). The secure aggregate vector, 

designated by A is generated as, 

A = mod (E*R{i}, p)    can be rewritten as, 

 

A = E*R{i}                                                                       (17) 

Size of A is (1x (N+1)) x ((1+N) xM) = 1xM.  Here, matrix     

R{i} is an instance of multivalued matrix R. Row vector A is 

sent to CS through RNs and the BS. The EU receives 

aggregate A from the CS. Here, row vector A is the encrypted 

aggregate of data vector E. Therefore, from the encryption 

point of view, A is the cipher text and E is the plain text.  

B. Signature Verification and De-aggregation at EU 

On receiving the encrypted aggregate A, the EU verifies the 

signature and if successful, de-aggregates A. 

1) Signature Verification 

In SDA-MK, the signature parameter S is embedded in 

aggregate vector A and S is recovered from A as follows. 

At EU, consider the product W = A*C. From (17), substituting 

for A, we get,  

W=A*C=E*R {i}*C                                                              (18)  

Here, size of A is 1xM and size of C is M x (N+1). Therefore 

size of W is 1x (N+1). From (13), (18) and (16),         

W =E*R{i}*C = E*I=E = [d1, d2… dN, S]                            (19) 

From (18) and (19),  

 A*C = [d1, d2… dN, S]                                                           (20) 

Expressing C in terms of its columns, (20) can be expressed as,           

A*[C1, C2… CN, C (N+1)] = [d1, d2… dN, S]                            (21) 

From (21), A*C (N+1) = S. Therefore the calculated value of S 

recovered from A by EU is, 

Scal = A*C (N+1)                                                                       (22) 

The EU calculates Scal using (22) and verifies the signature by 

comparing Scal with S which has been already received from 

KGC. If Scal ≠ S, the signature verification fails. When the 

signature verification fails, the authenticity/integrity of the 

received aggregate A is lost. Therefore, received A is discarded 

without de-aggregation.If Scal = S, the signature verification is 

successful. The signature verification at EU provides source 

and data authenticity.  Then the EU de- aggregates the data as 

follows. 

2) De-aggregation/Decryption at EU  

From (21), taking the first N elements from RHS and LHS,    

we get,  

[d1, d2… dN]=A*[C1, C2… CN] = D                                       (23) 

Since, matrix C is available to EU, the EU de- 

aggregates/decrypts A to recover original data D using (23). 

C. Authentication and data integrity with signature 

The aggregator CH attaches the signature S which is known to 

CH and EU only. When there is no error or alteration in A, 

signature Scal should be same as the original S. On the other 

hand,  during aggregation and transmission, if A gets corrupted 

or altered (say by a malicious attacker or noise etc.), Scal   

would be different from S. Thus, our signature verification 

scheme is unforgeable. The example given below demonstrates 

Signature verification, De-aggregation and authentication 

process in WSN. 

Example1: p = 499; N = 4; M = 7; L=M−N−1=2. All 

operations are in Zp. Matrix C is generated randomly. From 

C, matrix R’s are obtained for different values of random 

matrix Y, two such samples of R’s are given below. 

 

Matrix C =       





























3823292813

8531426590

9179264690

6855560352

9816034530

9445600671

3970682156

 

 

Matrix R{1} =  























202475199215154349168

104358283137360233246

5822026338128745312

4692201124543321791

561362212864716291
  

 

Matrix R{2} =  























20036040670362150109

45228113149323452259

459189295001351455221

39059004451015350399

00447237837541449645

 
 

It can be verified that R{1}*C = I and R{2}*C = I. In this 

example, let R = R{1}. Data vector D is taken as, 

        D = [7    23    74    76]. Signature S is taken as, S = 27.  

Augmented data is E = [7    23    74    76    27] = [D, S] 

Encrypted Aggregate A = E*R is found to be, 

                   A = [148   348   316   468    67   449   386]. 
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Signature verification: The last column of C is CN+1 =         

[39    94    98    68    91    85    38] T.   Then, Scal = A*CN+1, 

found to be same as, S = 27.Then, the data vector D is 

recovered as D = A*[C1, C2… CN] = [7    23    74    76]. 

V. SECURED SUM AGGREGATION 

In this section security for the sum is achieved using SDA-MK 

approach. The sum aggregate provides the overall quantitative 

status of the sensed data values. Secured Sum Aggregation 

(SSA) generates the aggregate that represents the sum of data 

values. From the sum of data values average values can be 

easily determined.  Let the time slots at which sensor readings 

are taken be denoted by t1, t2,…,tK where t1< t2< … < tK.  Let 

us assume that the time slots are uniform. Total number of 

time slots taken is K. For brevity, time slot corresponding to tj 

be referred as time slot TS(j). Let the data value generated by 

sensor i at TS(j) be denoted by d(i, j). The data values of N 

sensors form data matrix D at time slots TS(j) for j = 1 to K, is 

augmented with signature parameter S for each j, to get the 

augmented matrix Q of size (N+1)xK  and the data matrix D is 

represented in yellow background as shown in Table I. U(j)’s 

& V(i)’s are columns and  rows of matrix Q respectively as in 

Table I.  

 
TABLE I 

AUGMENTED MATRIX Q OF SIZE (N+1) XK 

 
 

Here, column U(j), corresponding to time slot TS(j) is given 

by, 

U(j) = [d(1, j), d(2, j) ,…,d(i, j),….,d(N, j), S ]T                   (24) 

for j = 1 to K. Column vector U(j) gives the data values of all 

the N sensors at time slot TS(j) appended with S. Then matrix 

Q can be expressed as, 

 𝐐 = [𝑼(1), 𝑼(2), … , 𝑼(𝑗), … , 𝑼(𝑘)]                  (25) 
  

A.  Temporal Data Summation 

Consider the Sum of Columns of Q represented by SU. From 

(24), 

 SU = U(1) + U(2) +…+ U(j) +…+ U(K)                           (26)  

Here, SU gives the sum of Columns of matrix Q. That is,   

SU =

[
 
 
 
 
 
𝑑(1,1)

𝑑(2,1)
.

𝑑(𝑖, 1)
.

𝑑(𝑁, 1)
𝑆 ]

 
 
 
 
 

+

[
 
 
 
 
 
𝑑(1,2)

𝑑(2,2)
.

𝑑(𝑖, 2)
.

𝑑(𝑁, 2)
𝑆 ]

 
 
 
 
 

+ ⋯+

[
 
 
 
 
 
𝑑(1, 𝑗)

𝑑(2, 𝑗)
.

𝑑(𝑖, 𝑗)
.

𝑑(𝑁, 𝑗)

𝑆 ]
 
 
 
 
 

+ ⋯ 

+

[
 
 
 
 
 
𝑑(1, 𝐾)
𝑑(2, 𝐾)

.
𝑑(𝑖, 𝐾)

.
𝑑(𝑁, 𝐾)

𝑆 ]
 
 
 
 
 

 

 

Column vector SU can be expressed as, 

𝑺𝑼 =

[
 
 
 
 
 
 
∑ 𝑑(1, 𝑗) 𝐾

𝑗=1

∑ 𝑑(2, 𝑗) 𝐾
𝑗=1

.
∑ 𝑑(𝑖, 𝑗) 𝐾

𝑗=1
.

∑ 𝑑(𝑁, 𝑗) 𝐾
𝑗=1

𝐾 ∗ 𝑆 ]
 
 
 
 
 
 

                                                            (27) 

The term ∑ 𝑑(𝑖, 𝑗)  𝐾
𝑗=1   represents the sum of the elements of 

row V(𝑖) of matrix 𝑄.  Summation ∑ 𝑑(𝑖, 𝑗) 𝐾
𝑗=1 is the temporal 

sum of data of  sensor i. Let us represent the temporal sum by 

sv(i) as,                                                  

𝑠𝑣(𝑖) = ∑𝑑(𝑖, 𝑗) 

𝐾

𝑗=1

                                                                      (28) 

Then, from (27) and (28),                              

 𝑆𝑼 = [𝑠𝑣(1), 𝑠𝑣(2) … 𝑠𝑣(𝑖). , 𝑠𝑣(𝑁), 𝑠𝑣(𝑁 + 1 )]𝑇           (29) 

Here, sv (N+1) is the sum of the (N+1)th row of Q, which is 

equal to K*S. From (29) and (26), 

 𝑺𝑼 =  [𝑠𝑣(1), 𝑠𝑣(2) … , 𝑠𝑣(𝑖) … , 𝑠𝑣(𝑁), 𝑠𝑣(𝑁 + 1)]𝑇 = 

                        𝑈(1) + 𝑈(2) + ⋯+ 𝑈(𝑗) + ⋯+ 𝑈(𝐾)          (30) 

SU is a column vector of size (N+1) x 1. The ith element of 

SU, represented by sv (i) gives the temporal sum of the data 

values of sensor i, for i = 1 to N. The value of sv (N+1) = K *S, 

where S is signature parameter as in Table I. 

B. Secured Sum Aggregation to get temporal sum 

Consider the summation represented by ATU i.e, Aggregate of 

Total of U’s as, 

 

ATU=U(1)T*R{1}+U(2)T*R{2}+...+U(j)T*R{j}+....+U(K)T 

*R{K}                                                                                   (31) 
 

Here, the size of U (j) T is 1x (N+1) and that of R {j} is  

(N+1)xM. The size of ATU is 1xM. In (31), matrix R {j} is the 

jth generalized inverse of C. Therefore, for j = 1 to K, 
 

R{j}*C= I (N+1) x (N+1)                                                             (32) 

 

  

     TS(j)s 

Sensors 

 
TS(1) TS(2) … TS(j) … TS(k) 

  U(1) U(2) … U(j) … U(K) 

Sensor 1   V(1) d(1,1) d(1,2) … d(1 j) … d(1, K) 

Sensor 2 V(2) d(2,1) d(2,2) … d(2,j) … d(2, K) 

…. … … … … …  … 

Sensor i V(i) d(i, 1) d(i, 2) … d(i, j) … d(i, K) 

… … … … … … … … 

Sensor N V(N) d(N,1) d(N,2) … d(N j) … d(N, K) 

Signature V(N+1) S S … S … S 
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Temporal sum block diagram is shown in Fig. 3.The CH 

executes the summation given by (31) to encrypt as well as to 

aggregate U (i)’s. At the CH, the sensor data vectors U (1) 

arrives at TS (1), U(2)  arrives  at TS(2),…, U(K) arrives at 

TS(K). Therefore, the time interval between adjacent time slots 

is the delay between the arrivals of the consecutive U (j)’s. 

Hence the CH can do summation cumulatively one term at a 

time as, 
ATU = 0; 

for i = 1 to K   

ATU = ATU+U(i)T *R{i}; //all operations  

                         are in Zp  

End of for 

C.  Decryption at End User 

Decryption of ATU is carried out at EU to get the decrypted 

output DTU (De-aggregate of Total of U’s) as,      

DTU =ATU*C                                                                      (33) 

Correctness of decryption: From (31) and (33),           

                                          

 DTU=(U(1)T*R{1}+U(2)T*R{2}+..+U (j) T*R {j} +...+       

U (K) T *R {K})*C 

= U(1)T *R{1}*C+ U(2)T *R{2}*C+…+ U(j)T *R{j}*C+…+ 

U(K)T *R{K}*C 

From (32), R{j}*C = I for all j’s, we have, 

DTU = U(1) T + U(2) T +…+ U(j) T +…+ U(K) T =  

[U(1) +U(2) +…+ U(j) +…+ U(K)]T                                   (34) 

 

The size of row vector DTU is 1x (N+1). From (34) and (30),  

(DTU)T= U(1) + U(2) +…+ U(j) +…+ U(K) = SU 

=[𝑠𝑣(1), 𝑠𝑣(2)… , 𝑠𝑣(𝑖) … , 𝑠𝑣(𝑁), 𝑠𝑣(𝑁 + 1)]𝑇             (35) 

From (35), 

DTU = [𝑠𝑣(1), 𝑠𝑣(2) … , 𝑠𝑣(𝑖) … , 𝑠𝑣(𝑁), 𝑠𝑣(𝑁 + 1)]     (36)   

  

The ith element, DTU (i) gives sv(i) for i = 1 to N. That is the 

row vector DTU(1: N) gives the temporal sum of N sensors. In 

other words,    

DTU(1: N) = Temporal_sum_N                                           (37) 

The last element DTU (N+1) gives the sum of K number of 

signature parameter S (refer Table I) which is equal to K*S.  
 

That is, DTU (N+1) = sv(N+1) = K*S                                 (38) 

    
Fig.3 Secure data aggregation to get the temporal sum 

D. Signature verification 

Considering equation (33),    DTU =ATU*C, Where the size 

of DTU is 1x (N+1).  

Secrete key Matrix C can be expressed in terms of its sub 

matrices as  

C = [G, H]                                   (39) 

 

Where G = [C1, C2…., CN] i.e., first N columns of C,  and 

H = CN+1 i.e., last column of C. 

From (33) and (39),   

 

DTU =ATU*[G, H] = [ATU*G, ATU*H]                          (40)    

Here, the size of G is MxN and that of H is Mx1. In (40), the 

size of ATU*G is (1xM)x(MxN) = 1xN. The size of ATU*H is 

(1xM) x (Mx1) = 1x1. Therefore, the first N elements of row 

vector DTU is given by, 

 

DTU (1: N) = ATU*G                                                          (41)   

From (41) and (37),         

Temporal_sum_N = ATU*G                                                (42)   

The last element DTU is, 

DTU (N+1) = ATU*H                                                          (43)   

From (43) and (38), we see that 

ATU*H = K*S                                                                      (44) 

Here, signature verification is done by checking that  

DTU (N+1) = K*S. 

E.  Verification and Decryption algorithm at End user 

The inputs and output of the algorithms are:  

Input: ATU, Secret key Components G and H as derived from 

C. [as in Eqn. (39)].  

Output: Signature Verification and Temporal_sum_N 

 

Algorithm 1: 

   Receive ATU; 
 Get ATU*H 

 If ATU*H ≠ K*S //Signaure is incorrect   

 Diplay “Signature Verification Failed”  

 Discard ATU 

 Request for re-transmission 

 Exit 

 Else  

 Display “Signature Verification Success” 

 Get sum of temporal data for N sensors 

 as, 

 Temporal_Sum_N = ATU*G    //sum ready 

 Exit                                       

 endif 

F. Constraints on Secured sum Aggregation 

In all calculations of SSA aggregation and decryption, we use 

modular arithmetic. Therefore the result of decryption, DTU is 

in Zp. From (36),  

 

DTU(i) = sv(i) mod p   , for i = 1 to N+1               (45) 

 

If the exact sum sv(i) as given by (28) is less than p, then from 

(45) we see that  DTU(i) = 𝑠𝑣(𝑖). On the other hand if  

sv(i) ≥ p, then DTU(i) does not give the exact sum sv(i) 

because of mod operation. Hence, for the satisfactory 
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application of SSA, sv (i)’s should be less than p for i = 1 to 

N+1. That is 

sv (i) < p, for i = 1 to N+1                                    (46) 

 

By choosing a large p, equation (46) will be satisfied. The 

Aggregation and de-aggregation of temporal sums is 

demonstrated in example 2.  

 

Example 2: The data from 4 sensors, N = 4 for time slots,  

K = 3, along with Signature parameter S = 27 is shown in 

Table II.  Matrix C, value of p, matrices R {1} and R {2} are 

same as in Example 1.  Since the number of columns K of D is 

3, we need R {3} which satisfies equation (15).Data matrix D 

is shown with yellow background. 
 

TABLE II 

AUGMENTED DATA MATRIX Q 

         TS(j)s  

sensors 
 TS(1) TS(2) TS(3) Sum 

  U(1) U(2) U(3) SU 

Sensor 1 V(1) 7 70 34 111 

Sensor 2 V(2) 23 62 85 170 

Sensor 3 V(3) 74 90 4 168 

Sensor 4 V(4) 76 76 60 212 

Signature S 27 27 27 81 

 

The matrix R{3} is found to be, 

 

Matrix R{3} =























22837795413407112138

11328711325151263426

48336614915245264407

48347224469152335275

1711144144024206476
 

 

Aggregated Row Total ATU is obtained using (31) as,   

ATU = [308   342   165   291    84   166   486]       

From equation (44), ATU*H is found to be, ATU*H = 81 

which is same as K*S = 3*27. Therefore, the signature is 

correct. 

Temporal_sum_N from equation (42) is found as        ATU*G 

= [111   170   168   212] which is found equal to the temporal 

sum of 4 sensors as shown in Table II.  

 

De-aggregation with tampered data:  Let the attacker change 

ATU (1) to 309 as,  

ATU_tamp = [309   342   165   291    84   166   486]. Then,  

ATU_tamp*H is found equal to 120 which is unequal to the 

expected K*S which is 81. Here, the signature verification has 

failed. This inequality points out the loss of data integrity.      

G.  Spatial Data Summation 

Consider the data matrix D, shaded yellow in Table I. Each 

column of D gives the data values of all the N sensors at that 

time slot. Therefore the sum of the elements each column  

 

(column sum) of D gives the spatial sum at the corresponding 

time slot. Since the column sums of matrix D are same as the 

row sums of DT, the methods of section V.A can be used to 

find the spatial sums at successive time slots using matrix DT 

instead of D. 

VI. AGGREGATION OF SUM BY HOMOMORPHIC ENCRYPTION 

The aggregate summation described in section V can be 

interpreted in terms of homomorphic addition as follows. 

Consider the encryption operation described by (31)  

ATU=U(1)T*R{1}+U(2)T*R{2}+...+U(j)T*R{j}+....+U(K)T *R{K}     

Let us introduce the symbol ATU (j) to represent the product 

term U(j) T *R{j} for j = 1 to K as, 

 ATU(j) = U(j) T *R{j}                                                          (47) 

 

The size of U(j)T is 1x (N+1) and that of R{i} is (N+1)xM. 

The size of ATU(j) is 1xM. Here, ATU(j) is the encryption of 

the augmented data vector U(j) T in time slot TS(i) {refer Table 

I}.  

A. Homomorphic addition at cloud Server 

In the Homomorphic addition scheme, the CH encrypts   U(j) T 

according to (47) and transmits ATU(j) for j = 1 to K the 

Cloud Server (CS). The basic layout is shown in Fig. 4. The 

CH encrypts each U(j)T to get ATU(j) as given by (47) and 

forwards it to the CS. 

 

 
Fig.4. Homomorphic Addition in CS 

B. Signature Verification at CS 

The CS on receiving vector ATU (j)’s, checks for signature 

verification by calculating Scal as, 

Scal = ATU (j)*H                                     (48)  

where H is the last column of C i.e H = C N+1. In (48), the size 

of vector ATU (j) is 1xM and that of H is Mx1. Equation. (48) 

is similar to (44). Verification is similar to as described in 

section V.D. Therefore, the decoding vector H and the 

signature parameter S are made available to CS at the start of 

the session. On successful verification, the CS adds the 

individual   ATU (j)’s to get the sum ATU as, 

  𝐴𝑇𝑈 = ∑ 𝐴𝑇𝑈(𝑗)𝐾
𝑗=1                                                           (49)  

The EU on accessing ATU decrypts it to get DTU as described 

in signature verification and decryption algorithm under 

section V. Here, the CS acts as the homomorphic adder.          



644 G. CHETHANA, K.V. PADMAJA 

 

 

VII. SECURITY ANALYSIS OF SDA-MK 

A. Cipher text Expansion Ratio 

Cipher text Expansion Ratio (CER) expresses how many times 

bigger the size of the cipher text is compared to that of its 

plaintext. CER is the ratio of the cipher text size to its plaintext 

size. A higher value of CER means the computational cost and 

communication overheads are higher. Smaller the CER better 

is the encryption efficiency. CER is defined as, 

𝐶𝐸𝑅 =
𝑆𝑖𝑧𝑒 𝑜𝑓 𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡
                                                        (50) 

In our SDA-MK approach, from (17), the size of the cipher 

text is 1xM and from (1), the size of the plaintext is 1xN. 

Therefore, 

 

𝐶𝐸𝑅 =
1𝑥𝑀 

1𝑥𝑁
=

𝑀

𝑁
                                                                    (51) 

In SDA-MK, in the light of (9), the cipher text length             

M = N+L+1. Therefore, the cipher text length varies linearly 

with N.  

B. Protection against chosen Plaintext Attack 

In Chosen Plaintext Attack (CPA), the attacker can chose his 

plaintexts arbitrarily and get the corresponding cipher texts and 

based on these observations, the attacker tries to access the 

secret key(s) of the encrypter. In SDA-MK, the encryption is 

randomized as it uses different random secret keys, R{i}’s for 

successive encryptions. Therefore, SDA-MK is immune to 

CPA. 

C. Protection against chosen Cipher text Attack 

Chosen Cipher text Attack (CCA) tries to break the security of 

the decrypter (in this case, the de-aggregator). The attacker can 

chose different arbitrary cipher texts and can access the 

corresponding decrypted plaintexts. Using these values, the 

attacker tries to crack the decryption key(s). In SDA-MK, the 

digital signature scheme provides protection against CCA. 

Here, each cipher text input to the decrypter is evaluated (50) 

for valid signature S. If the signature check fails, there is no 

plaintext output. Hence the CCA attacker is unable crack the 

decrypter as most of the plaintext responses are empty.  

VIII. COMPARISON  OF  SDA-MK WITH OTHER METHODS 

A. Signature Verification Efficiency of SDA-MK 

In SDA-MK, a single signature (scalar S) provides verification 

for N data values collected from the sensors (16).Therefore 

SDA-MK is highly efficient compared to those schemes where 

data vector of length N requires a signature vector of length 

substantially greater than 1. Theoretical efficiency of 

SDA_MK is compared with Lyubashevsky Micciancio 

Signature (LMS) method [30] and Gupta and Biswas 

(GUPTA) [31]. In LMS method, the size of the generator 

matrix is SGx(SG+1). The maximum data value can be (p−1). 

Therefore the number of bits required to represent a data value 

is ceil (Log2 (p−1)) which is approximately ceil (Log2 (p)). 

Theparameters taken for comparison are the computational 

costs of signature verification as well as the lengths of 

messages and signatures. The comparison values are shown in 

Table III. Here, N is the number of sensors, M = N+L+1 (9). 

(For large values of N, the value of M is approximately equal 

to N). The cost of one scalar multiplication in Zp is [Log2 (p)] 2 

bit operations. 
TABLE III 

EFFICIENCY COMPARISON OF SDA-MK ALGORITHM 

Method 

Message 

length(bit
s) 

Signature 

Length 
in bits(sn) 

Signature Verification 

Computational Cost 

Total no.of 
bit operations 

(tnb) 

Normalized 
signature 

length=tnb/sn 

SDA-MK 
N* 

Log2(p) 
Log2(p) M*[Log2(p)]2 M*Log2(p) 

LMS 
N* 

Log2(p) 
SG*Log2(p) 

2*SG*N* 

[ Log2(p)]2 
2*N* Log2(p) 

GUPTA 
N* 

Log2(p) 
2*N*Log2(p) 

N*N*[ 

Log2(p)]2 + 

N* Log2(p) 

½ [N* 

Log2(p) + 1] 

     SG = Number of rows of the generator matrix in LMS.  
 

From Table III, it can be seen that SDA-MK is theoretically 

more efficient in signature verification compared to LMS 

method but almost equal to GUPTA method.  

B. Experimental Results 

Simulation is carried out in Matlab to determine the execution 

times for signature verification in SDA-MK, LMS,GUPTA 

methods.For LMS method the generator matrix size parameter 

SG is selected as 10. Finite Field modulus is set at p = 499. 

The number of data elements is varied from N =100 to 500 in 

steps of 50. The Execution times of the three methods are 

shown in Table IV. Here, T1, T2 and T3 are execution times in 

micro-seconds.  
  TABLE IV 

EXECUTION TIME COMPARISON OF SDA-MK ALGORITHM 

Algorithm 
 

 

Sensors 

SDA-

MK 
LMS GUPTA 

% time 

Saving 
w.r.t LMS 

% time 
Saving 

w.r.t  

GUPTA 

N T1 T2 T3 S2 S3 

100 17.1 35.2 66.6 51.4 74.3 

150 19.5 36.5 60.7 46.6 67.9 

200 21.6 40.9 62.4 47.2 65.4 

250 25.1 44.4 61.7 43.5 59.3 

300 28.1 46.9 64.8 40.1 56.6 

350 30.2 51.2 70.2 41.0 57.0 

400 35.1 55.7 73.4 37.0 52.2 

450 37.6 58.7 82.6 35.9 54.5 

500 39.3 61.6 78.1 36.2 49.7 

 

Percentage savings in execution times w.r.t LMS and GUPTA 

method are respectively given by. 

S2 = 100*(T2‒T1)/T2  , S3 = 100*(T3‒T1)/T3 

S2 and S3 values are shown in the last two columns of Table 

IV. The timing values of Table IV are plotted in Fig. 5. 

From the Fig.5, it can be seen that SDA-MK takes lower 

execution time for signature verification. (The execution times 

are machine dependent and the result shown in Fig. 5 is useful 

for the purpose of comparison only). The zig-zag natures of the 

plots is due to the modular algebraic operations of the 

corresponding algorithms. 
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Fig.5.Execution Time versus Number of Sensor Nodes 

IX. CONCLUSION 

A new method of Loss-less Secure Data Aggregation using 

Matrix Keys is described. A speciality of this method is, the 

generation of multiple distinct random orthogonal matrices to 

prevent chosen plain text attack. The novelty of this method is 

to achieve data privacy and data integrity simultaneously by 

embedding the digital signature in the aggregated data. The 

implementation of a new technique on sum aggregation is 

another major contribution of this research work. The 

encryption/decryption process has low 

computational/communication overhead. The digital signature 

also provides source authentication with unforgeability. The 

encryption process is inherently homomorphic for addition and 

SDA-MK is extended to aggregate the sum of sensor data 

values both temporally and spatially. 
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