
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, VOL. 66, NO. 4, PP. 637-645

Manuscript received April 1, 2020; revised October, 2020. DOI: 10.24425/ijet.2020.134022

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

 Abstract—Providing Privacy and security for aggregated data

in wireless sensor networks has drawn the attention of practicing

engineers and researchers globally. Several cryptographic

methods have been already proposed to solve security and data

integrity problems for aggregated data. Matrix cryptography is a

better option for creating secure encryption/decryption

algorithms to counter quantum attack. However, these algorithms

have higher computational cost and increased communication

overhead. Hence, a new technique of loss-less secure data

aggregation in Clustered Wireless Sensor Networks is presented.

The proposed method uses integer matrices as keys for data

security and data integrity. Matrix operations are carried out in

finite field Zp. Loss-less secure data aggregation is extended for

homomorphic summation while the cipher text expansion ratio is

kept substantially low. The proposed algorithm has inbuilt fast

and efficient signature verification facility. The execution time of

our signature verification mechanism is found to be

approximately 50 percent less compared to a couple of standard

existing signature verification schemes.

Keywords—loss-less data aggregation, integer matrices as

keys, finite field Zp, homomorphic aggregation

I. INTRODUCTION

HE main task of Data Aggregation (DA) in WSN is to

combine the collected data from the sensor nodes into a

meaningful aggregate [1-2]. The aggregate may be sum,

average, count, min, max, median or any other aggregating

function of the individual data. The aggregate type depends on

the requirement of the users. In general, during the aggregation

process, DA eliminates trivial, duplicate and redundant data

values. DA effectively reduces the data size from the

aggregator to the final End User (EU) through intermediate

Relay Nodes (NSs), Base Station (BS), and Cloud Server (CS).

The reduction in the data size in turn decreases the traffic load

and consequently the computational time and energy

consumption are also reduced. This increases the life of the

Wireless Sensor Network (WSN).

A. Secure Data Aggregation

With DA, the aggregated data is located at the aggregator and
at the intermediate relay nodes. If these locations are attacked,
the entire data will be compromised. The exposure of

G. Chethana, Research Scholar, is with the dept. of Electronics and

Communication Engg, at RV College of Engg,, VTU University, Belagavi,

Karnataka, India, (e-mail: chethanag@rvce.edu.in).
K.V. Padmaja is with the dept. of Electronics and Instrumentation Engg, RV

College of Engg B’lore VTU University, Belagavi, Karnataka, India, (e-mail:

padmajakv@rvce.edu.in).

aggregated data is more detrimental than the leakage of
individual data. Thus, the data security is very critical when
DA is implemented compared to the non-aggregated data
transmission. Secure Data Aggregation (SDA) provides both
aggregation and security for the aggregate. The main security
features are as follows. Data confidentiality (privacy): In
WSN, data confidentiality ensures the secrecy of the sensed
data. It should not be disclosed to unauthorized agents. Data
confidentiality is an important ingredient in defense related
(military) and medical applications. Data confidentiality is
provided using suitable cryptographic schemes. Data integrity:
Data integrity provides protection against data alteration due to
noise, communication channel errors or active attacks, etc.
Normally, Message Authentication Codes (MAC) and error
detection codes are employed to provide data integrity. Data
authenticity: Data authenticity ensures the data source is
genuine and not fake. Compromised source nodes with fake
identities are detected with appropriate digital signature
scheme.

B. Lossy and Loss less Secure Data Aggregation

SDA can be lossy or loss-less. In lossy SDA, some of the
information, which is insignificant for the concerned
application, is lost. But the contextually essential data is
retained. On the other hand, in loss-less SDA, the full data is
retained. The final decoder can recover the full data from the
encrypted and aggregated data.

II. RELATED WORK

Several review articles [2-15] are available on SDA in WSN.
In these papers, the authors have comprehensively described
various methods for SDA for different topological
configurations. Different types of security requirements and
various cryptographic techniques to meet the above
requirements suitable for SDA are discussed in these survey
papers. Homomorphic encryption/decryption schemes for SDA
are discussed by a few authors [16-19]. In [16], the authors
Domingo-Ferrer [19] have used privacy homo-morphism
method for SDA. Here the sensor data is split into several
components at encryption and then recovered by combining
them after decryption. This process increases the overall
computational cost. In [17], Niu et al., have described lossy
data aggregation with integrity scheme using bilinear maps.
The disadvantage of this scheme is loss of data during
aggregation and heavy computational overhead due to the use
of bilinear maps. In [18], homomorphic Paillier encryption for
protecting data privacy and homomorphic MAC to provide
data integrity are adopted. This scheme involves the
calculation of modular exponentiations and modular inverses
which result in excessive computational overhead when the
data from large number of nodes are to be aggregated. In [20-
21], the authors use the principle of CDMA to aggregate the

G. Chethana, and K.V. Padmaja

Integer Matrix Keys for Secure Data Aggregation in

Clustered Wireless Sensor Networks

T

mailto:chethanag@rvce.edu.in

638 G. CHETHANA, K.V. PADMAJA

data. Here Message Authentication Codes are used for
verifying data integrity. This increases the computational cost
when the size of the data set is large. In [22-23], lattice
(matrix) based cryptographic methods are used for secure data
aggregation. Here low valued noise and scrambling matrices
are used to randomize the encryption. Selection of these
matrices is critical in the design of encryption/decryption
process. The lengths of the public keys are relatively large. In
[22-23] signature insertion/verification is substantially
complex. In [30] and [31], matrix methods are used to provide
digital signature. But when adopted for secure data
aggregation, the length of the signature increases linearly with
the number of data elements to be aggregated. To overcome
the above disadvantages, we propose a new method of SDA
that uses integer matrices as keys with easy signature insertion
and verification facility.

III. PROPOSED WORK

Our proposed method provides Loss-Less SDA using Matrices

as Keys. The method is designated as SDA-MK. Here the

individual data from the sensors are combined and encrypted

to get the secure aggregated data which is decrypted by the

final receiver. SDA-MK uses integer matrices in the finite field

(Galois field) Zp. In Zp, all the elements are in the range 0 to

p−1 and all the algebraic/arithmetic operations are carried out

with respect to modulo p which is relatively a large prime

number.

A. Symbols, Notations and definitions

The basic layout of the WSN is shown in Fig.1. It has a single

Cluster Head (CH) which collects the data from the sensors

and then aggregates the data and forwards the aggregated data

to the Cloud Server (CS) via intermediate Relay Nodes (RNs)

and Base Station (BS). The End User (EU) gets the aggregate

from CS. Here the CH acts as the loss-less Aggregator. EU

acts as de-aggregator. The number of sensors nodes attached to

the CH is taken as N.

Fig.1 Basic Layout of SDA

B. Sensor Data Row Vector

Let the Individual sensor data received by the CH be denoted

by d1, d2… dN in appropriate units. Then the sensor data is

represented by the Sensor Data Row Vector D as,

 D = [d1, d2,…, dN] (1)

The size of D is 1xN. Individual sensor data values d1, d2… dN

are assumed to be integers in the range 0 to p−1. Here p is the

modulus of the finite field Zp. {If the original data from a node

is a fractional number, it is converted into the corresponding

integer by scaling up by 10, 100, or say 1000.Thus 2.34 →

2.34*100 = 234. At the receiving side it is scaled down by

100}. The modulus p is a prime number greater than the

estimated maximum element of the data vector D. The

elements of D belong to Zp.

C. Secrete Key Matrix C

Matrix C is the secret key of the SDA system. The elements of

C belong to the finite field Zp. The size of C is M x (N+1) with

M > N+1.Thus C∈ 𝑍𝑝
𝑀×(𝑁+1)

. The rank of C should be N+1.

The reason for choosing a rectangular matrix for C of rank

N+1, instead of a square matrix, is explained in section III E.

D. Base Matrix B

Base Matrix B is the Modular Matrix Inverse [24] of C. The

size of B is (N+1) x M and B ∈ 𝑍𝑝
(𝑁+1)×𝑀

. Thus,

 B = mmi(C, p) (2)

Here, function mmi() stands for the modular matrix inversion

with respect to the modulus p. From the definition of mmi(),

 mmi(C, p)*C = I(N+1)x(N+1) (3)

Since C is a tall matrix (No. of rows > No. of columns) of rank

N+1, it has the left inverse [25] as,

 𝑪𝒍𝒆𝒇𝒕
−𝟏 = (𝑪𝑻 ∗ 𝑪)−1 ∗ 𝑪𝑻 (4)

Here, CT is the transpose of C. The size of the product

(𝑪𝑻 ∗ 𝑪) is {(N+1) xM} x {M x (N+1)} = (N+1) x (N+1) its

rank is N+1. Therefore the inverse (𝑪𝑻 ∗ 𝑪)−1exists. All the

algebraic operations of (4) are carried out in Zp. Then,

mmi(C, p) can be expressed as,

𝒎𝒎𝒊(𝑪, 𝑝) = 𝑪𝒍𝒆𝒇𝒕
−𝟏 = (𝑪𝑻 ∗ 𝑪)−1 ∗ 𝑪𝑻 (𝑖𝑛 𝑚𝑜𝑑 𝑝) (5)

 The condition for the existence of the modular matrix inverse

of (𝑪𝑻 ∗ 𝑪) is 𝑔𝑐𝑑(𝑑𝑒𝑡(𝑪𝑻 ∗ 𝑪), 𝑝) = 1. since, p is chosen to

be a prime, and this condition is automatically satisfied. From

(2) and (3),

 B*C = I (N+1) x (N+1) (mod p) (6)

Equation (6) can be rewritten as,

mod (B*C, p) = I (N+1) x (N+1)

When there is no ambiguity, with matrix multiplication

implemented in Zp, the above Equation can be simply written

as,

 B*C = I (N+1) x (N+1) (7)

In (7), the rectangular matrix B is called the Moore–Penrose

inverse of C. The Moore–Penrose inverse of matrix C is

unique [26] for a given C and p. In our proposed scheme,

‘generalized inverse’ of C is used instead of Moore–Penrose

inverse. The generalized inverse is not unique and this

property is utilized to randomize our encryption to prevent

Chosen Plaintext Attack as will be described in section VII.B.

E. Generalized Inverse of C

The size of CT is (N+1) xM with (N+1) < M. It is a fat matrix.

Therefore it has modular null space [27]. Let the modular null

INTEGER MATRIX KEYS FOR SECURE DATA AGGREGATION IN CLUSTERED WIRELESS SENSOR NETWORKS 639

space of matrix CT be denoted by the matrix F. Then, by the

definition of modular null space, Matrix F in Zp satisfies,

CT*F = 0(N+1) x L (8)

F is obtained by using the standard function ModNull(CT, p).

The size of F is MxL where,

 L = M − (N+1) (9)

The RHS of (8) is an all zero matrix of size (N+1)xL. Taking

the transpose of (8), we have,

 FT*C = 0L x (N+1) (10)

Now, consider the matrix R derived from the base matrix B

and FT as,

R = B+Y*FT (11)

Where, Y is an arbitrary matrix of size (N+1)xL in Zp. The size

of FT is LxM. The size of the product Y*FT as well as R is

(N+1) xM. In (11) addition and multiplication are carried out

in Zp. Now the product R*C, from (11) will be,

R*C = (B+Y*FT)*C = B*C + Y*FT*C (12)

From (6), B*C = I and from (10), FT*C = 0. Therefore, from

(12),

R*C = I (N+1) x (N+1) (13)

Equation (13) can be expressed in terms of the rows and

columns of R and C, respectively as,

[

𝑹𝟏

𝑹𝟐

.

.
𝑹𝑵

 𝑹𝑵+𝟏]

∗ [𝑪𝟏 𝑪𝟐 . . 𝑪𝑵 𝑪𝑵+𝟏] =

[

𝟏 𝟎 . . 𝟎 𝟎
𝟎 𝟏 . . 𝟎 𝟎
.
.
𝟎 𝟎 . . 𝟏 𝟎
𝟎 𝟎 . . 𝟎 𝟏]

This can be expressed as,

 𝑹𝒊 ∗ 𝑪𝒋 = {
0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

 (14)

Since, matrix R satisfies (13), it is the generalized inverse of C.

From (11), we see that matrix R depends on the arbitrary

matrix Y. Therefore, R is not unique and it can take a large

number of multiple values depending on the selected dissimilar

values of Y. In this paper, these multiple distinct random R’s

are designated as R{1}, R{2}… R{i} and so on. Realization of

multi-valued R{i}’s is possible due to the existence of the

modular null space matrix F whose size is MxL. Therefore, for

the existence of F, the value of L should be greater than 0.

That is, from (9), M > (L+1) which means the number of rows

of C should be greater than the number of columns of C. If C is

a square matrix, this condition is not satisfied and we cannot

have multi-valued R{i}’s.Let R{i} be the ith instance of R,

Then, from (13),

R{i}*C = I(N+1)x(N+1) (15)

For i = 1, 2… so on. In general, when there is no ambiguity,

we use the symbol R to represent any one version of R{i}’s.

The multi-valued property of R is an essential requirement to

prevent chosen plaintext attack as will be explained in section

VII.B

F. Key setup and Distribution

Key Setup and Distribution is implemented by the Key

Generation Center (KGC). A suitable, relatively large prime

number p is selected as the modulus for Zp. Here, p is the

security parameter. Higher the value of p, greater is the

security. Since, modular arithmetic is used throughout all the

operations, all operand values should be in the range 0 to p−1.

Hence the selected p should be greater than the estimated

maximum value, say dmax of the data set. Then dmax < p and all

d’s belongs to Zp. Hence, the data sequence D gets aggregated

correctly.

G. Selection of Matrix C and Digital signature Parameter S

After selecting p, the secret key matrix C of size (N+1)xM is

generated randomly by KGC, such that the elements of C are

in Zp. Parameter N is same as the number of sensors assigned

to the CH. The extra row of C is used for signature verification

as will be explained later. The value of M is chosen to be

greater than (N+1). Here, M is taken as M = N+1+L where L is

in the range 2 to 4. A higher value of L increases the size of the

keys and cipher text which in turn increases the

communication overhead. A smaller value of L decreases the

security level. While selecting matrix C, it should be ensured

that its modular inverse B exists.

The digital signature parameter, represented by S is a scalar

in Zp. In general, it is relatively a large number in Zp so that it

is difficult to predict by a hacker.

H. Calculation of B, F and R

After selecting C, its modular matrix inverse B is calculated

using the function B = mmi(C, p) as given by (2). Standard

built functions based on Gauss Jordan row reduction

method and extended Euclid’s algorithm are available [24],

[28] to find B. The modular null space F of C is also calculated

based on the row reduction method [29]. From B and F, R{i}’s

are calculated as given by (11).

I. Key Distribution

The calculated values of R{i}’s along with the signature

parameter S and the modulus value p are sent by the KGC to

the CH through a secured channel. The CH encrypts and

aggregates using these values. The KGC also sends C, S and p

to the End User for decryption/de-aggregation.

IV. PROPOSED SYSTEM MODEL

The basic model of the Secure Data Aggregator and De-

aggregator is shown in Fig.2. In the layout shown in Fig. 2, the

intermediate relay nodes (RNs), BS and the Cloud Server (CS)

do not have access to R {i}’s, signature parameter S and p.

640 G. CHETHANA, K.V. PADMAJA

Fig.2 Basic model of the Secure Data Aggregator and De-aggregator

But the End User (EU), which is the de-aggregator, has access

to these parameters.

A. Secured Loss less Data Aggregation with digital signature

at CH

On receiving all data values from the sensors (over one TDMA

cycle), the CH formulates the data vector as,

 D = [d1, d2… dN]

The size of D is 1xN. Then, CH appends the signature

parameter S to D to get the augmented data vector E as,

E = [D, S] = [d1, d2… dN, S] (16)

Now, the size of E is 1x (N+1). The secure aggregate vector,

designated by A is generated as,

A = mod (E*R{i}, p) can be rewritten as,

A = E*R{i} (17)

Size of A is (1x (N+1)) x ((1+N) xM) = 1xM. Here, matrix

R{i} is an instance of multivalued matrix R. Row vector A is

sent to CS through RNs and the BS. The EU receives

aggregate A from the CS. Here, row vector A is the encrypted

aggregate of data vector E. Therefore, from the encryption

point of view, A is the cipher text and E is the plain text.

B. Signature Verification and De-aggregation at EU

On receiving the encrypted aggregate A, the EU verifies the

signature and if successful, de-aggregates A.

1) Signature Verification

In SDA-MK, the signature parameter S is embedded in

aggregate vector A and S is recovered from A as follows.

At EU, consider the product W = A*C. From (17), substituting

for A, we get,

W=A*C=E*R {i}*C (18)

Here, size of A is 1xM and size of C is M x (N+1). Therefore

size of W is 1x (N+1). From (13), (18) and (16),

W =E*R{i}*C = E*I=E = [d1, d2… dN, S] (19)

From (18) and (19),

 A*C = [d1, d2… dN, S] (20)

Expressing C in terms of its columns, (20) can be expressed as,

A*[C1, C2… CN, C (N+1)] = [d1, d2… dN, S] (21)

From (21), A*C (N+1) = S. Therefore the calculated value of S

recovered from A by EU is,

Scal = A*C (N+1) (22)

The EU calculates Scal using (22) and verifies the signature by

comparing Scal with S which has been already received from

KGC. If Scal ≠ S, the signature verification fails. When the

signature verification fails, the authenticity/integrity of the

received aggregate A is lost. Therefore, received A is discarded

without de-aggregation.If Scal = S, the signature verification is

successful. The signature verification at EU provides source

and data authenticity. Then the EU de- aggregates the data as

follows.

2) De-aggregation/Decryption at EU

From (21), taking the first N elements from RHS and LHS,

we get,

[d1, d2… dN]=A*[C1, C2… CN] = D (23)

Since, matrix C is available to EU, the EU de-

aggregates/decrypts A to recover original data D using (23).

C. Authentication and data integrity with signature

The aggregator CH attaches the signature S which is known to

CH and EU only. When there is no error or alteration in A,

signature Scal should be same as the original S. On the other

hand, during aggregation and transmission, if A gets corrupted

or altered (say by a malicious attacker or noise etc.), Scal

would be different from S. Thus, our signature verification

scheme is unforgeable. The example given below demonstrates

Signature verification, De-aggregation and authentication

process in WSN.

Example1: p = 499; N = 4; M = 7; L=M−N−1=2. All

operations are in Zp. Matrix C is generated randomly. From

C, matrix R’s are obtained for different values of random

matrix Y, two such samples of R’s are given below.

Matrix C =





























3823292813

8531426590

9179264690

6855560352

9816034530

9445600671

3970682156

Matrix R{1} =























202475199215154349168

104358283137360233246

5822026338128745312

4692201124543321791

561362212864716291

Matrix R{2} =























20036040670362150109

45228113149323452259

459189295001351455221

39059004451015350399

00447237837541449645

It can be verified that R{1}*C = I and R{2}*C = I. In this

example, let R = R{1}. Data vector D is taken as,

 D = [7 23 74 76]. Signature S is taken as, S = 27.

Augmented data is E = [7 23 74 76 27] = [D, S]

Encrypted Aggregate A = E*R is found to be,

 A = [148 348 316 468 67 449 386].

INTEGER MATRIX KEYS FOR SECURE DATA AGGREGATION IN CLUSTERED WIRELESS SENSOR NETWORKS 641

Signature verification: The last column of C is CN+1 =

[39 94 98 68 91 85 38] T. Then, Scal = A*CN+1,

found to be same as, S = 27.Then, the data vector D is

recovered as D = A*[C1, C2… CN] = [7 23 74 76].

V. SECURED SUM AGGREGATION

In this section security for the sum is achieved using SDA-MK

approach. The sum aggregate provides the overall quantitative

status of the sensed data values. Secured Sum Aggregation

(SSA) generates the aggregate that represents the sum of data

values. From the sum of data values average values can be

easily determined. Let the time slots at which sensor readings

are taken be denoted by t1, t2,…,tK where t1< t2< … < tK. Let

us assume that the time slots are uniform. Total number of

time slots taken is K. For brevity, time slot corresponding to tj

be referred as time slot TS(j). Let the data value generated by

sensor i at TS(j) be denoted by d(i, j). The data values of N

sensors form data matrix D at time slots TS(j) for j = 1 to K, is

augmented with signature parameter S for each j, to get the

augmented matrix Q of size (N+1)xK and the data matrix D is

represented in yellow background as shown in Table I. U(j)’s

& V(i)’s are columns and rows of matrix Q respectively as in

Table I.

TABLE I

AUGMENTED MATRIX Q OF SIZE (N+1) XK

Here, column U(j), corresponding to time slot TS(j) is given

by,

U(j) = [d(1, j), d(2, j) ,…,d(i, j),….,d(N, j), S]T (24)

for j = 1 to K. Column vector U(j) gives the data values of all

the N sensors at time slot TS(j) appended with S. Then matrix

Q can be expressed as,

 𝐐 = [𝑼(1), 𝑼(2), … , 𝑼(𝑗), … , 𝑼(𝑘)] (25)

A. Temporal Data Summation

Consider the Sum of Columns of Q represented by SU. From

(24),

 SU = U(1) + U(2) +…+ U(j) +…+ U(K) (26)

Here, SU gives the sum of Columns of matrix Q. That is,

SU =

[

𝑑(1,1)

𝑑(2,1)
.

𝑑(𝑖, 1)
.

𝑑(𝑁, 1)
𝑆]

+

[

𝑑(1,2)

𝑑(2,2)
.

𝑑(𝑖, 2)
.

𝑑(𝑁, 2)
𝑆]

+ ⋯+

[

𝑑(1, 𝑗)

𝑑(2, 𝑗)
.

𝑑(𝑖, 𝑗)
.

𝑑(𝑁, 𝑗)

𝑆]

+ ⋯

+

[

𝑑(1, 𝐾)
𝑑(2, 𝐾)

.
𝑑(𝑖, 𝐾)

.
𝑑(𝑁, 𝐾)

𝑆]

Column vector SU can be expressed as,

𝑺𝑼 =

[

∑ 𝑑(1, 𝑗) 𝐾

𝑗=1

∑ 𝑑(2, 𝑗) 𝐾
𝑗=1

.
∑ 𝑑(𝑖, 𝑗) 𝐾

𝑗=1
.

∑ 𝑑(𝑁, 𝑗) 𝐾
𝑗=1

𝐾 ∗ 𝑆]

 (27)

The term ∑ 𝑑(𝑖, 𝑗) 𝐾
𝑗=1 represents the sum of the elements of

row V(𝑖) of matrix 𝑄. Summation ∑ 𝑑(𝑖, 𝑗) 𝐾
𝑗=1 is the temporal

sum of data of sensor i. Let us represent the temporal sum by

sv(i) as,

𝑠𝑣(𝑖) = ∑𝑑(𝑖, 𝑗)

𝐾

𝑗=1

 (28)

Then, from (27) and (28),

 𝑆𝑼 = [𝑠𝑣(1), 𝑠𝑣(2) … 𝑠𝑣(𝑖). , 𝑠𝑣(𝑁), 𝑠𝑣(𝑁 + 1)]𝑇 (29)

Here, sv (N+1) is the sum of the (N+1)th row of Q, which is

equal to K*S. From (29) and (26),

 𝑺𝑼 = [𝑠𝑣(1), 𝑠𝑣(2) … , 𝑠𝑣(𝑖) … , 𝑠𝑣(𝑁), 𝑠𝑣(𝑁 + 1)]𝑇 =

 𝑈(1) + 𝑈(2) + ⋯+ 𝑈(𝑗) + ⋯+ 𝑈(𝐾) (30)

SU is a column vector of size (N+1) x 1. The ith element of

SU, represented by sv (i) gives the temporal sum of the data

values of sensor i, for i = 1 to N. The value of sv (N+1) = K *S,

where S is signature parameter as in Table I.

B. Secured Sum Aggregation to get temporal sum

Consider the summation represented by ATU i.e, Aggregate of

Total of U’s as,

ATU=U(1)T*R{1}+U(2)T*R{2}+...+U(j)T*R{j}+....+U(K)T

*R{K} (31)

Here, the size of U (j) T is 1x (N+1) and that of R {j} is

(N+1)xM. The size of ATU is 1xM. In (31), matrix R {j} is the

jth generalized inverse of C. Therefore, for j = 1 to K,

R{j}*C= I (N+1) x (N+1) (32)

 TS(j)s

Sensors

TS(1) TS(2) … TS(j) … TS(k)

 U(1) U(2) … U(j) … U(K)

Sensor 1 V(1) d(1,1) d(1,2) … d(1 j) … d(1, K)

Sensor 2 V(2) d(2,1) d(2,2) … d(2,j) … d(2, K)

…. … … … … … …

Sensor i V(i) d(i, 1) d(i, 2) … d(i, j) … d(i, K)

… … … … … … … …

Sensor N V(N) d(N,1) d(N,2) … d(N j) … d(N, K)

Signature V(N+1) S S … S … S

642 G. CHETHANA, K.V. PADMAJA

Temporal sum block diagram is shown in Fig. 3.The CH

executes the summation given by (31) to encrypt as well as to

aggregate U (i)’s. At the CH, the sensor data vectors U (1)

arrives at TS (1), U(2) arrives at TS(2),…, U(K) arrives at

TS(K). Therefore, the time interval between adjacent time slots

is the delay between the arrivals of the consecutive U (j)’s.

Hence the CH can do summation cumulatively one term at a

time as,
ATU = 0;

for i = 1 to K

ATU = ATU+U(i)T *R{i}; //all operations

 are in Zp

End of for

C. Decryption at End User

Decryption of ATU is carried out at EU to get the decrypted

output DTU (De-aggregate of Total of U’s) as,

DTU =ATU*C (33)

Correctness of decryption: From (31) and (33),

 DTU=(U(1)T*R{1}+U(2)T*R{2}+..+U (j) T*R {j} +...+

U (K) T *R {K})*C

= U(1)T *R{1}*C+ U(2)T *R{2}*C+…+ U(j)T *R{j}*C+…+

U(K)T *R{K}*C

From (32), R{j}*C = I for all j’s, we have,

DTU = U(1) T + U(2) T +…+ U(j) T +…+ U(K) T =

[U(1) +U(2) +…+ U(j) +…+ U(K)]T (34)

The size of row vector DTU is 1x (N+1). From (34) and (30),

(DTU)T= U(1) + U(2) +…+ U(j) +…+ U(K) = SU

=[𝑠𝑣(1), 𝑠𝑣(2)… , 𝑠𝑣(𝑖) … , 𝑠𝑣(𝑁), 𝑠𝑣(𝑁 + 1)]𝑇 (35)

From (35),

DTU = [𝑠𝑣(1), 𝑠𝑣(2) … , 𝑠𝑣(𝑖) … , 𝑠𝑣(𝑁), 𝑠𝑣(𝑁 + 1)] (36)

The ith element, DTU (i) gives sv(i) for i = 1 to N. That is the

row vector DTU(1: N) gives the temporal sum of N sensors. In

other words,

DTU(1: N) = Temporal_sum_N (37)

The last element DTU (N+1) gives the sum of K number of

signature parameter S (refer Table I) which is equal to K*S.

That is, DTU (N+1) = sv(N+1) = K*S (38)

Fig.3 Secure data aggregation to get the temporal sum

D. Signature verification

Considering equation (33), DTU =ATU*C, Where the size

of DTU is 1x (N+1).

Secrete key Matrix C can be expressed in terms of its sub

matrices as

C = [G, H] (39)

Where G = [C1, C2…., CN] i.e., first N columns of C, and

H = CN+1 i.e., last column of C.

From (33) and (39),

DTU =ATU*[G, H] = [ATU*G, ATU*H] (40)

Here, the size of G is MxN and that of H is Mx1. In (40), the

size of ATU*G is (1xM)x(MxN) = 1xN. The size of ATU*H is

(1xM) x (Mx1) = 1x1. Therefore, the first N elements of row

vector DTU is given by,

DTU (1: N) = ATU*G (41)

From (41) and (37),

Temporal_sum_N = ATU*G (42)

The last element DTU is,

DTU (N+1) = ATU*H (43)

From (43) and (38), we see that

ATU*H = K*S (44)

Here, signature verification is done by checking that

DTU (N+1) = K*S.

E. Verification and Decryption algorithm at End user

The inputs and output of the algorithms are:

Input: ATU, Secret key Components G and H as derived from

C. [as in Eqn. (39)].

Output: Signature Verification and Temporal_sum_N

Algorithm 1:

 Receive ATU;
 Get ATU*H

 If ATU*H ≠ K*S //Signaure is incorrect

 Diplay “Signature Verification Failed”

 Discard ATU

 Request for re-transmission

 Exit

 Else

 Display “Signature Verification Success”

 Get sum of temporal data for N sensors

 as,

 Temporal_Sum_N = ATU*G //sum ready

 Exit

 endif

F. Constraints on Secured sum Aggregation

In all calculations of SSA aggregation and decryption, we use

modular arithmetic. Therefore the result of decryption, DTU is

in Zp. From (36),

DTU(i) = sv(i) mod p , for i = 1 to N+1 (45)

If the exact sum sv(i) as given by (28) is less than p, then from

(45) we see that DTU(i) = 𝑠𝑣(𝑖). On the other hand if

sv(i) ≥ p, then DTU(i) does not give the exact sum sv(i)

because of mod operation. Hence, for the satisfactory

INTEGER MATRIX KEYS FOR SECURE DATA AGGREGATION IN CLUSTERED WIRELESS SENSOR NETWORKS 643

application of SSA, sv (i)’s should be less than p for i = 1 to

N+1. That is

sv (i) < p, for i = 1 to N+1 (46)

By choosing a large p, equation (46) will be satisfied. The

Aggregation and de-aggregation of temporal sums is

demonstrated in example 2.

Example 2: The data from 4 sensors, N = 4 for time slots,

K = 3, along with Signature parameter S = 27 is shown in

Table II. Matrix C, value of p, matrices R {1} and R {2} are

same as in Example 1. Since the number of columns K of D is

3, we need R {3} which satisfies equation (15).Data matrix D

is shown with yellow background.

TABLE II

AUGMENTED DATA MATRIX Q

 TS(j)s

sensors
 TS(1) TS(2) TS(3) Sum

 U(1) U(2) U(3) SU

Sensor 1 V(1) 7 70 34 111

Sensor 2 V(2) 23 62 85 170

Sensor 3 V(3) 74 90 4 168

Sensor 4 V(4) 76 76 60 212

Signature S 27 27 27 81

The matrix R{3} is found to be,

Matrix R{3} =























22837795413407112138

11328711325151263426

48336614915245264407

48347224469152335275

1711144144024206476

Aggregated Row Total ATU is obtained using (31) as,

ATU = [308 342 165 291 84 166 486]

From equation (44), ATU*H is found to be, ATU*H = 81

which is same as K*S = 3*27. Therefore, the signature is

correct.

Temporal_sum_N from equation (42) is found as ATU*G

= [111 170 168 212] which is found equal to the temporal

sum of 4 sensors as shown in Table II.

De-aggregation with tampered data: Let the attacker change

ATU (1) to 309 as,

ATU_tamp = [309 342 165 291 84 166 486]. Then,

ATU_tamp*H is found equal to 120 which is unequal to the

expected K*S which is 81. Here, the signature verification has

failed. This inequality points out the loss of data integrity.

G. Spatial Data Summation

Consider the data matrix D, shaded yellow in Table I. Each

column of D gives the data values of all the N sensors at that

time slot. Therefore the sum of the elements each column

(column sum) of D gives the spatial sum at the corresponding

time slot. Since the column sums of matrix D are same as the

row sums of DT, the methods of section V.A can be used to

find the spatial sums at successive time slots using matrix DT

instead of D.

VI. AGGREGATION OF SUM BY HOMOMORPHIC ENCRYPTION

The aggregate summation described in section V can be

interpreted in terms of homomorphic addition as follows.

Consider the encryption operation described by (31)

ATU=U(1)T*R{1}+U(2)T*R{2}+...+U(j)T*R{j}+....+U(K)T *R{K}

Let us introduce the symbol ATU (j) to represent the product

term U(j) T *R{j} for j = 1 to K as,

 ATU(j) = U(j) T *R{j} (47)

The size of U(j)T is 1x (N+1) and that of R{i} is (N+1)xM.

The size of ATU(j) is 1xM. Here, ATU(j) is the encryption of

the augmented data vector U(j) T in time slot TS(i) {refer Table

I}.

A. Homomorphic addition at cloud Server

In the Homomorphic addition scheme, the CH encrypts U(j) T

according to (47) and transmits ATU(j) for j = 1 to K the

Cloud Server (CS). The basic layout is shown in Fig. 4. The

CH encrypts each U(j)T to get ATU(j) as given by (47) and

forwards it to the CS.

Fig.4. Homomorphic Addition in CS

B. Signature Verification at CS

The CS on receiving vector ATU (j)’s, checks for signature

verification by calculating Scal as,

Scal = ATU (j)*H (48)

where H is the last column of C i.e H = C N+1. In (48), the size

of vector ATU (j) is 1xM and that of H is Mx1. Equation. (48)

is similar to (44). Verification is similar to as described in

section V.D. Therefore, the decoding vector H and the

signature parameter S are made available to CS at the start of

the session. On successful verification, the CS adds the

individual ATU (j)’s to get the sum ATU as,

 𝐴𝑇𝑈 = ∑ 𝐴𝑇𝑈(𝑗)𝐾
𝑗=1 (49)

The EU on accessing ATU decrypts it to get DTU as described

in signature verification and decryption algorithm under

section V. Here, the CS acts as the homomorphic adder.

644 G. CHETHANA, K.V. PADMAJA

VII. SECURITY ANALYSIS OF SDA-MK

A. Cipher text Expansion Ratio

Cipher text Expansion Ratio (CER) expresses how many times

bigger the size of the cipher text is compared to that of its

plaintext. CER is the ratio of the cipher text size to its plaintext

size. A higher value of CER means the computational cost and

communication overheads are higher. Smaller the CER better

is the encryption efficiency. CER is defined as,

𝐶𝐸𝑅 =
𝑆𝑖𝑧𝑒 𝑜𝑓 𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡
 (50)

In our SDA-MK approach, from (17), the size of the cipher

text is 1xM and from (1), the size of the plaintext is 1xN.

Therefore,

𝐶𝐸𝑅 =
1𝑥𝑀

1𝑥𝑁
=

𝑀

𝑁
 (51)

In SDA-MK, in the light of (9), the cipher text length

M = N+L+1. Therefore, the cipher text length varies linearly

with N.

B. Protection against chosen Plaintext Attack

In Chosen Plaintext Attack (CPA), the attacker can chose his

plaintexts arbitrarily and get the corresponding cipher texts and

based on these observations, the attacker tries to access the

secret key(s) of the encrypter. In SDA-MK, the encryption is

randomized as it uses different random secret keys, R{i}’s for

successive encryptions. Therefore, SDA-MK is immune to

CPA.

C. Protection against chosen Cipher text Attack

Chosen Cipher text Attack (CCA) tries to break the security of

the decrypter (in this case, the de-aggregator). The attacker can

chose different arbitrary cipher texts and can access the

corresponding decrypted plaintexts. Using these values, the

attacker tries to crack the decryption key(s). In SDA-MK, the

digital signature scheme provides protection against CCA.

Here, each cipher text input to the decrypter is evaluated (50)

for valid signature S. If the signature check fails, there is no

plaintext output. Hence the CCA attacker is unable crack the

decrypter as most of the plaintext responses are empty.

VIII. COMPARISON OF SDA-MK WITH OTHER METHODS

A. Signature Verification Efficiency of SDA-MK

In SDA-MK, a single signature (scalar S) provides verification

for N data values collected from the sensors (16).Therefore

SDA-MK is highly efficient compared to those schemes where

data vector of length N requires a signature vector of length

substantially greater than 1. Theoretical efficiency of

SDA_MK is compared with Lyubashevsky Micciancio

Signature (LMS) method [30] and Gupta and Biswas

(GUPTA) [31]. In LMS method, the size of the generator

matrix is SGx(SG+1). The maximum data value can be (p−1).

Therefore the number of bits required to represent a data value

is ceil (Log2 (p−1)) which is approximately ceil (Log2 (p)).

Theparameters taken for comparison are the computational

costs of signature verification as well as the lengths of

messages and signatures. The comparison values are shown in

Table III. Here, N is the number of sensors, M = N+L+1 (9).

(For large values of N, the value of M is approximately equal

to N). The cost of one scalar multiplication in Zp is [Log2 (p)] 2

bit operations.
TABLE III

EFFICIENCY COMPARISON OF SDA-MK ALGORITHM

Method

Message

length(bit
s)

Signature

Length
in bits(sn)

Signature Verification

Computational Cost

Total no.of
bit operations

(tnb)

Normalized
signature

length=tnb/sn

SDA-MK
N*

Log2(p)
Log2(p) M*[Log2(p)]2 M*Log2(p)

LMS
N*

Log2(p)
SG*Log2(p)

2*SG*N*

[Log2(p)]2
2*N* Log2(p)

GUPTA
N*

Log2(p)
2*N*Log2(p)

N*N*[

Log2(p)]2 +

N* Log2(p)

½ [N*

Log2(p) + 1]

 SG = Number of rows of the generator matrix in LMS.

From Table III, it can be seen that SDA-MK is theoretically

more efficient in signature verification compared to LMS

method but almost equal to GUPTA method.

B. Experimental Results

Simulation is carried out in Matlab to determine the execution

times for signature verification in SDA-MK, LMS,GUPTA

methods.For LMS method the generator matrix size parameter

SG is selected as 10. Finite Field modulus is set at p = 499.

The number of data elements is varied from N =100 to 500 in

steps of 50. The Execution times of the three methods are

shown in Table IV. Here, T1, T2 and T3 are execution times in

micro-seconds.
 TABLE IV

EXECUTION TIME COMPARISON OF SDA-MK ALGORITHM

Algorithm

Sensors

SDA-

MK
LMS GUPTA

% time

Saving
w.r.t LMS

% time
Saving

w.r.t

GUPTA

N T1 T2 T3 S2 S3

100 17.1 35.2 66.6 51.4 74.3

150 19.5 36.5 60.7 46.6 67.9

200 21.6 40.9 62.4 47.2 65.4

250 25.1 44.4 61.7 43.5 59.3

300 28.1 46.9 64.8 40.1 56.6

350 30.2 51.2 70.2 41.0 57.0

400 35.1 55.7 73.4 37.0 52.2

450 37.6 58.7 82.6 35.9 54.5

500 39.3 61.6 78.1 36.2 49.7

Percentage savings in execution times w.r.t LMS and GUPTA

method are respectively given by.

S2 = 100*(T2‒T1)/T2 , S3 = 100*(T3‒T1)/T3

S2 and S3 values are shown in the last two columns of Table

IV. The timing values of Table IV are plotted in Fig. 5.

From the Fig.5, it can be seen that SDA-MK takes lower

execution time for signature verification. (The execution times

are machine dependent and the result shown in Fig. 5 is useful

for the purpose of comparison only). The zig-zag natures of the

plots is due to the modular algebraic operations of the

corresponding algorithms.

INTEGER MATRIX KEYS FOR SECURE DATA AGGREGATION IN CLUSTERED WIRELESS SENSOR NETWORKS 645

Fig.5.Execution Time versus Number of Sensor Nodes

IX. CONCLUSION

A new method of Loss-less Secure Data Aggregation using

Matrix Keys is described. A speciality of this method is, the

generation of multiple distinct random orthogonal matrices to

prevent chosen plain text attack. The novelty of this method is

to achieve data privacy and data integrity simultaneously by

embedding the digital signature in the aggregated data. The

implementation of a new technique on sum aggregation is

another major contribution of this research work. The

encryption/decryption process has low

computational/communication overhead. The digital signature

also provides source authentication with unforgeability. The

encryption process is inherently homomorphic for addition and

SDA-MK is extended to aggregate the sum of sensor data

values both temporally and spatially.

REFERENCES

[1] B. Krishnamachari, D. Estrin, and S. Wicker.”The impact of data
aggregation in wireless sensor networks”. In Proc. Intl. Workshop of

Distributed Event Based Systems, Proceedings of IEEE INFOCOM,

New York, NY. July 2002.
[2] Randhawa, S.; Jain, S.” Data Aggregation in Wireless Sensor Networks:

Previous Research, Current Status and Future Directions”. Wirel. Pers.

Commun,97(3), 2017,pp.3355–3425
[3] H. Alzaid, E. Foo, J.G. Nieto, “Secure data aggregation in wireless

sensor network: a survey”, in: Proc. of the Australasian Information
Security Conference, 2008, pp. 93–106.

[4] Guo, J., Fang, J. a. and Chen, X., "Survey on secure data aggregation for

wireless sensor networks" ,in Service Operations, Logistics,and
Informatics(SOLI),IEEE InternationalConference on, 2011,pp.138-143.

[5] Yubo Wang, Liang Li, Chen Ao, Puning Zhang, Zheng Wang, and

Xinyang Zhao,“Secure Data Aggregation Mechanism based on
Constrained Supervision for Wireless Sensor Network”, Intl Journal of

Electronics and Telecommunications(IJET), Vol. 65, No. 2,2019,

pp. 259–266.
[6] Priyanka B. Gaikwad, Manisha R. Dhage, “ Survey on Secure Data

Aggregation in Wireless Sensor Networks, Computing Communication

Control and Automation (ICCUBEA)”, International Conference ,2015,
pp. 242-246

[7] Mohammad Youssef, Raghav Yadav, “Survey on Several Secure Data

Aggregation Schemes in WSN”, International Journal of Current
Engineering and Technology, Vol.6, No.4, 2016. pp. 1154-1159

[8] Atif Alamri, et al., A survey on sensor-cloud: architecture, 2230

applications, and approaches,2013, Int. J. Distrib. Sens. Netw.

20132231.

[9] Sang, Y.P.; Shen, H.; Inoguchi, Y.; Tan, Y.; Xiong, N. “Secure data

aggregation in wireless sensor networks: A survey”. In Proceedings of
the 7th International Conference on Parallel and Distributed Computing,

Applications and Technologies (PDCAT’06), Taipei, China, 4–7

December 2006; pp. 315–320.

[10] Ozdemir, S.; Yang, X. “Integrity protecting hierarchical concealed data

aggregation for wireless sensor networks”. Comput. Netw. 2011, 55,

pp.1735–1746.

[11] Granjal, J., Monteiro, E., & Silva, J. S. “Security in the integration of
low-power Wireless Sensor Networks with the Internet: A survey”. Ad

Hoc Networks, 24, 2015, pp. 264–287.

[12] H. Hayouni and M. Hamdi, "Secure data aggregation with homomorphic
primitives in wireless sensor networks: A critical survey and open

research issues," 2016 IEEE 13th International Conference on

Networking, Sensing, and Control (ICNSC), Mexico City, 2016, pp. 1-6.
[13] Sathya, Duraisamy & Pugalendhi, Ganeshkumar.”Secured data

aggregation in wireless sensor networks”. Sensor Review. March 2018,
pp. 1-7.

[14] Vinodha, D., & Mary Anita, E. A. “Secure Data Aggregation

Techniques for Wireless Sensor Networks: A Review.” Archives of
Computational Methods in Engineering. Springer, September 2019,

Volume 26, Issue 4, pp. 1007–1027

[15] X. Liu, J. Yu, F. Li, W. Lv, Y.Wang and X. Cheng,"Data Aggregation in

Wireless Sensor Networks:From the Perspective of Security,"in IEEE

Internet of Things Journal ,2109, pp.1-2, doi:10.1109/JIOT.2019.2957396,

[16] Westhoff, D.; Girao, J.; Acharya, M. “Concealed data aggregation for
reverse multicast traffic in sensor networks: Encryption keydistribution

and routing adaptation”. IEEE Trans. Mobile Comput 2006,5, pp.1417–

1431.
[17] Niu, S.F.; Wang, C.F.; Yu, Z.X.; Cao, S. “Lossy data aggregation

integrity scheme in wireless sensor networks”. Comput. Electr. Eng.

2013, 39, pp.1726–1735
[18] Zhou, Q.; Yang, G.; He, L.W. “An efficient secure data aggregation

based on homomorphic primitives in wireless sensor networks”. Int. J.

Distrib. Sens. Netw. 2014, 962925.
[19] J. Domingo-Ferrer, “A Provably Secure Additive and Multiplicative

Privacy Homomorphism,” Proc. Information Security Conf.,2002, pp.

471-483.
[20]] Y. Yun, Y. Qian and H. Sharif, "A Secure Data Aggregation and

Dispatch Scheme for Home Area Networks in Smart Grid," IEEE Global

Telecommunications Conference - GLOBECOM 2011, Houston, TX,
USA, 2011, pp. 1-6.

[21] N. Alamatsaz, A. Boustani, M. Jadliwala and V. Namboodiri, "AgSec:

Secure and efficient CDMA-based aggregation for smart metering
systems,"IEEE 11th Consumer Communications and Networking

Conference (CCNC), Las Vegas, NV, 2014, pp. 489-494.

[22] Abdallah, A., & Shen, X. S. “ A lightweight lattice-based homomorphic
privacy-preserving data aggregation scheme for smart grid.” IEEE

Transactions on Smart Grid, 9(1),2018,pp. 396-405

[23] R. B. Romdhane, H. Hammami, M. Hamdi and T. Kim, "At the cross
roads of lattice-based and homomorphic encryption to secure data

aggregation in smart grid," 15th International Wireless Communications

& Mobile Computing Conference (IWCMC), Tangier, Morocco, 2019,
pp. 1067-1072.

[24] Ali Broumandnia, “Modular Matrix Inverse in Zn,”

https://www.mathworks.com › matlabcentral › 64813-modular-matrix-
inverse in Zn.

[25] Lecture 33: Left and right inverses; pseudoinverse – MIT.

https://ocw.mit.edu › courses › positive-definite-matrices-and-
applications

[26] James, M. (June 1978), “The generalised inverse,”. Mathematical

Gazette. 62 (420): pp. 109–114.
[27] “Null Space and Nullity of a Matrix” – GeeksforGeeks.

https://www.geeksforgeeks.org › null-space-and-nullity-of-a- matrix.

[28] ASA314 – “Matrix Inversion with Modulo Arithmetic” – People
https://people.sc.fsu.edu › ~jburkardt › cpp_src › asa314.

[29] ES.1803 Topic 14 Notes 14 Row reduction and subspaces – MIT,
web.mit.edu › jorloff › www › 18.03-esg › notes ›topic14

[30] Lyubashevsky, V and Micciancio, D. “Asymptotically Efficient Lattice-

Based Digital Signatures”.2018, Journal of Cryptology 31, pp. 774–797.
[31] Gupta, D. S., & Biswas, G. P, “Design of lattice-based ElGamal

encryption and signature schemes using SIS problem,” Transactions on

Emerging Telecommunications Technologies, 2017,29(6), pp.1-20.

