
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, VOL. 66, NO. 4, PP. 671-677

Manuscript received March 24, 2020; revised October, 2020. DOI: 10.24425/ijet.2020.134026

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—Steganography is a technique that allows hidden

transfer of data using some media such as Image, Audio, Video,

Network Protocol or a Document, without its existence getting

noticed. Over the past few years, a lot of research has been done in

the field of Image, Video and Audio Steganography but very little

work has been done in Network Steganography. A Network

Steganography technique hides data in a Network Data Unit, i.e., a

Network Protocol Packet. In this paper we present an algorithm

ARPNetSteg that implements Network Steganography using the

Address resolution protocol. Our technique is a robust technique

that can transfer 44 bits of covert data per ARP reply packet.

Keywords—Network Steganography, ARP Steganography,

Covert Channel, Address Resolution Protocol, Protocol

Steganography

I. INTRODUCTION

NFORMATION hiding has been one of the favorite areas of
researchers since the past two decades. Various techniques

have been proposed by researchers to implement information
security using information hiding. One such technique is
steganography. Steganography hides data inside a cover
medium without being perceived. The common media that are
used to implement steganography are images, audios, videos,
network protocols, documents etc. Steganography is
implemented by modulating those characteristics of the media
that do not bring perceptible changes in the original media. The
changes in characteristics are made as per the secret message.
For example, in images the Least Significant Bit (LSB) of some
or all pixels is modulated as per the secret message. If the secret
bit matches with the LSB of the current pixel then no change is
made otherwise the LSB is toggled. Many techniques have been
proposed in literature for Image, Audio and Video
Steganography, whereas very less work has been done in the
field of Network Steganography. In this paper, we propose a
Network Steganography technique which hides data in a
Network data unit that is a Network Protocol Packet. A Network
Protocol Packet is a logical entity that carries data over a
network. This Network packet has two major components: a)
Protocol Header b) Payload [1]. The protocol header carries all
the control information relevant to this packet whereas the
payload carries the actual data to be transferred over the
network. Some of the vital protocols of networks are Internet
Protocol, Address Resolution Protocol, Transmission Control
Protocol etc. In our proposed technique, we make use of an
Address Resolution Protocol (ARP) Packet to carry secret
message over the network. ARP is responsible for mapping
network layer address to the hardware address of a device. Since
ARP operates in a Local Area Network (LAN) setup, our
technique is implemented and experimented solely over a LAN.

Punam Bedi and Arti Dua are with University of Delhi, Delhi, India. (e-mail:

punambedi@ieee.org, arti.batra@gmail.com)

Rest of the paper is organized as follows. Section II describes

the background, working and format of Address Resolution

Protocol. This section also briefly describes the concept of ARP

spoofing, which is a well known vulnerability of networks.

Section III gives brief overview of related work done in the field

of Network Steganography using the Address Resolution

Protocol. Section IV elaborates the proposed system. Section V

describes the experimental study and results of experiments

conducted on ARPNetSteg and section VI concludes the paper.

II. BACKGROUND

The word Steganography was defined by Trithemius in his

book Steganographia [2]. The term Steganography was derived

from two greek words, steganos that means hidden and graphia

that means writing. Steganography is defined as undetectably

altering a work to embed a secret message [3]. Steganography

aims at hiding the very existence of a secret message. To conceal

a message, a cover media is required. This cover media can be a

document, an image, an audio, a video or a network protocol.

Steganography is achieved by hiding the secret message into a

cover message as shown in Fig. 1.

Fig. 1. Steganography Process

Network Steganography or Protocol Steganography, one of

the classifications of Steganography has recently captured lot of

the attention from researchers. The term Network steganography

was used for the very first time by K. Szczypiorski in 2003 [4].

In this type of steganography, one tries to hide secret data in parts

of the network packets carrying normal communication data over

the networks without getting noticed. Due to increased use of

internet and growth in high speed network technologies, even if

one bit of information can be hidden and transferred in a packet,

a large and popular website could lose approximately 26 GB of

data annually [5].

A network packet broadly consists of a header and payload.

Header carries the control information of the packet whereas the

Payload carries the actual information that needs to be

ARPNetSteg: Network Steganography Using

Address Resolution Protocol
Punam Bedi, and Arti Dua

I

672 P. BEDI, A. DUA

transferred. Network Steganography exploits both header and

payload individually or together to hide the secret data. Network

Steganography techniques can be classified into three categories:

(1) Storage Based Techniques: These techniques hide data in

the storage part of a PDU, which is either a packet’s header, or

payload or both.

(2) Timing Based Techniques: These techniques use the

sequence numbers, delays or inter-packet timing interpretations

to send secret data.

 (3) Hybrid Techniques: These techniques use a combination

of both Storage based techniques and Timing based techniques

to send the covert data.

In this paper, we exploit the Address Resolution Protocol [6]

using a Storage based channel for sending covert data.

A. Address Resolution Protocol

The Address Resolution Protocol is a vital protocol of a

Local Area Network (LAN) that is responsible for mapping a

network protocol address to 48 bits Ethernet address for

transmission on Ethernet hardware. The complete description of

ARP was given by David C. Plummer in RFC 826 [6] in

November 1982. The format of an ARP packet header is as

shown in Fig. 2.

Hardware Type (2 Bytes) Protocol Type (2 Bytes)

Hardware

Address

Length

(1 Byte)

Protocol

Address

Length

(1 Byte)

Operation

(2 Bytes)

Sender Hardware Address

(4 Bytes)

Sender Hardware Address

(2 Bytes)

Sender IP Address

(2 Bytes)

Sender IP Address

(2 Bytes)

Target Hardware Address

(2 Bytes)

Target Hardware Address (4 Bytes)

Target IP Address (4 Bytes)

Fig. 2. ARP Header Format

The Hardware Type defines the protocol being used at data link

layer. For Ethernet, the value of this field is 1. For IEEE 802.,

the value of this field is 6. The value 0 is reserved [6]. The

Protocol Type field specifies the internetwork protocol for

which ARP request is generated. For example, for Internet

Protocol Version 4 (IPv4), the value of Protocol Type is 0x0800.

Hardware address length field specifies the number of octets in

hardware address. For example, for Ethernet address, the

hardware address length is 6. Protocol Address length specifies

the number of octets in Protocol Address. For example, for IPv4

the protocol address length is 4. Operation field specifies the

action being performed. Its value is set to 1 for ARP Request

procedures while it is set to 2 for ARP Reply procedures. The

Sender Hardware Address field holds the hardware address of

the source. This field is variable in length and equals to the value

in Hardware Address Length field. It is 6 bytes in case of

Ethernet as shown in Fig. 2. The Sender IP address holds the IP

address of the source. This field is also variable in length and

equals the value in Protocol Length Field [7, 8]. The Target

Hardware Address field holds the hardware address of the

destination. This field is again variable in length and equals the

value in the Hardware Address Length field. The Target IP

address holds the IP address of the destination. Just like Sender

IP Address field, this field is also variable in length and equals

the value in Protocol Length Field.

B. How ARP works?

The Internet protocol provides interoperability of packet

switching across a large variety of physical network types [8]. It

requires a mapping between the physical address at link layer and

logical address at the network layer. ARP provides this mapping

among various address types. When two hosts want to

communicate over a network, they should know both each

other’s hardware address and the IP address. ARP is a vital

network protocol in a local area network that helps a node to

identify the hardware address of another node whose IP address

is already known. For this, the host that needs to identify the

hardware address of other device, sends an ARP Broadcast

Request over the network as shown in Fig 3. This Broadcast

Request contains the IP address of the node whose machine

address is needed. The response to this ARP request is generated

by a machine whose IP address matches the one in the Target IP

Address field of the ARP request packet. The machine writes its

hardware address in this ARP reply packet and unicasts it to the

original source as shown in Fig 4.

Fig. 3. ARP Request Process

Fig. 4. ARP Reply Process

C. ARP Spoofing

The Address Resolution Protocol provides no mechanism
for authenticating the source address of a machine sending an
ARP response. A proxy ARP is a system which replies on behalf
of some other system, normally as a part of network design [8].
On the other hand, in ARP spoofing, a spoofer responds to an
ARP request sent for another system, mostly with a malicious

ARPNETSTEG: NETWORK STEGANOGRAPHY USING ADDRESS RESOLUTION PROTOCOL 673

intent to intercept the data being sent to that authentic system.
ARP is a stateless protocol, i.e. all the nodes over a network
maintain an individual copy of ARP cache table stored in their
own devices. This table stores the paired entries of IP addresses
and their corresponding MAC addresses for the nodes in the
network. This table is created and updated as and when a new
ARP reply is received, regardless of whether any ARP request
is made by this node or not. Whenever a new ARP reply is
received for an existing entry, this entry is updated even if the
older entry has yet not expired. In our proposed method, we
partially make use of this technique, by spoofing for local IP
addresses which are not presently being used by any node over
a LAN.

III. Related Work

Since past few years, researchers have been working in the field

of Network Steganography. Many Network Steganography

techniques have been proposed and developed in protocols used

in TCP/IP Networks. Handel and Stanford [9] discussed various

covert channels possible in OSI model. Authors in [10-13]

proposed various techniques to develop covert channels using

the protocols used in TCP/IP model. K. Szczypiorski, M.

Drzymała, and M. Ł. Urbański [14] proposed a covert channel

using the DNS protocol which works at the application layer. Z.

Trabelsi and I. Jawhar [15] exploited the options field of IP

header to develop a covert channel using the record route option.

P.Bedi and A. Dua [16] used another option field called

timestamp to implement a covert channel using IPv4 protocol.

As per our knowledge, very few researchers have exploited the

Address Resolution Protocol for Steganography. L. Ji, Y. Fan

and C. Ma [17] proposed a covert channel using ARP. In their

technique, they used target IP address field to encode the covert

information. They used the last ‘t’ bits (where t lies between 4

and 8) to store the secret information. To identify the ARP

requests carrying covert information, the first ‘8-t’ bits of the

last byte that encodes the sending second, are first inverted and

then XORed with first ‘8-t’ covert bits of the first ‘t’ covert bits.

B. Jankowski, W. Mazurczyk and K. Szczypiorski [18]

proposed a method called PadSteg. This method implements

inter-protocol network steganography (a technique that uses

more than one protocol for implementing network

steganography) which uses ARP and other protocols like TCP

or ICMP to exploit Etherleak vulnerability to provide secret

communications between a group of nodes in a LAN.

Schmidbauer, Tobias, Steffen Wendzel, Aleksandra Mileva,

and Wojciech Mazurczyk [19] used the concepts of dead drops

in ARP caches maintained at a host and SNMP to store and read

the covert data respectively. A third party node in a LAN is used

as a dead drop. The Covert message sender drops covert

information in this node’s ARP Cache and a Covert Message

Receiver retrieves covert information from this ARP Cache

using SNMP protocol. In our technique, we use intra-protocol

steganography (Protocol steganography technique that uses a

single network protocol) using ARP protocol that partially uses

the concept of ARP spoofing to transfer covert data over a local

area network. Our scheme provides a bandwidth of 44 bits per

ARP reply packet.

IV. PROPOSED TECHNIQUE

In this paper, we propose a technique that uses Address

Resolution Protocol to implement Network Steganography.

This technique works on a Local Area Network that has one

covert message sender (Host A) and one covert message

receiver (Host B). A series of steps at Host A and Host B are

executed simultaneously to implement this technique.

A. Sender Side Algorithm

To begin with, we input a covert message string and

compute its length. Next, we encode the covert message by

converting the message string to hexadecimal code. After that

we scan the local area network for free or unallocated local IP

addresses (local IP addresses that are not being used over this

LAN). This list is created by sending a broadcast request for all

possible local IP addresses and then waiting for their respective

ARP replies. The local IP addresses for which we receive ARP

replies are assumed to be allocated ones and the rest for which

no ARP replies are received, are added to the unallocated list.

This step may be repeated to make sure that the list does not

mistakenly add an allocated IP address whose reply is not

received because of getting lost over the network. In the next

step, we enter a seed value for random local IP address

generation. The purpose of a seed is to generate the same set of

random numbers for a given continuous set of numbers. In our

case, we use same pre-known seed value at the sender and

receiver side to generate same set of random local IP addresses

from the unallocated list at both ends. A random number ‘x’,

between 1 and 255 is generated with the common seed value

described in the previous step. Further, we check if the address

192.168.1.x is present in the unallocated list or not. In case this

local IP address is not present in the unallocated list, the next

random number is generated with the same seed value. This is

repeated till the time we get an unallocated local IP address.

Once an unallocated local IP address is found, the covert

message sender waits for an ARP broadcast request from the

covert message receiver (Host B) for this local IP address.

After the awaited ARP request is received from the covert

message receiver (Host B), the covert message sender begins to

create an ARP reply for the same. It puts the first eleven or lesser

(if message is smaller) hexadecimal digits of the covert message

in the Sender Hardware Address field of ARP reply message. If

covert message length is less that eleven hex-digits, these hex-

digits are padded to make it eleven hex-digits long. The last

hexadecimal digit (quad) of the Ethernet address is used to store

the control information (control quad). This control quad mainly

carries the information if the message being carried is over or

more message data needs to be sent in later packets. That is, this

control quad decides whether more ARP requests are to be

generated by the covert message receiver or not. If more

message data is left to send at sender’s site, it sets the value of

control quad as 0x0. Otherwise, if no more message data is left,

the number of hex-digits filled in ARP reply field excluding

padding is calculated. If its value is exactly 11, control quad is

set to 0xf else control quad is set as the number of hex digits

used for padding in first eleven digits of Sender Hardware

Address field. This sequence of steps from generation of

random numbers to successful sending of ARP reply is repeated

674 P. BEDI, A. DUA

till complete covert message is sent from the sender side. The

sender side algorithm is shown in Fig 5.

Input: A Covert message string S, a seed value SV.

1. Input a covert message string S from user

2. Convert the message string to hexadecimal code Sx

3. For each possible local IP address on this LAN

4. Create an ARP Request

5. Broadcast it over the local area network

6. End

7. For each ARP reply received

8. Add the Source IP address of this reply to allocated

 list AL.

9. End

10. For all possible local IP address for this LAN absent in AL

11. Add the local IP addresses to unallocated list UL

12. End

13. Use seed SV to generate next random number x,

where x ∈ (1,255)

14. Create a Local IP address A as 192.168.1.x

15. If address A does not belong to UL,

16. Goto step 13.

17. Wait for an ARP Request

18. If Req. Received==ARP Req. && ARP{Target IP}==

192.168.1.x && ARP{Source IP}==IP of Covert

Receiver, then

19. Create an ARP reply with Source IP =

 192.168.1.x, Target IP = Source IP value received

 in ARP request and Target Hardware Address =

 Sender Hardware address value received in ARP

 request

20. Pick first eleven or lesser (if less digits are left) Hex-

 digits from Sx, call it S11

21. Update Sx as Sx – S11 .

22. Add S11 in the first eleven Hex digits of Sender

 Hardware Address field of ARP reply

23. If Sx is not empty

24. Set the twelfth hex digit of Sender Hardware-

 Address field (control quad) in ARP reply as 0x0

25. Else

26. If length(S11) < 11

27. Compute 11 – length(S11), call it pad_num

28. Pad the last pad_num number of hex digits

 in Sender Hardware Address field with

 value 0x0 for each hex digit.

29. Set the twelfth digit (control quad) of Source

 Hardware Address field of ARP reply as

 pad_num in hexadecimal.

30. Else

31. If length(S11) == 11

32. Set the twelfth digit (control quad)

33. of Sender Hardware Address field

 of ARP reply as 0xf.

34. If Sx is empty

35. Exit

36. Else

37. Go to Step 13
Fig. 5. Sender Side Algorithm

B. Receiver Side Algorithm

Firstly, scan the LAN for unallocated local IP addresses. The list

of unallocated local IP addresses is created exactly the same way

as done in the sender side algorithm. Next, value of seed for

random local IP address generation is inputted. Both receiver

and sender enter the same seed value known to them in prior.

After that a random number ‘x’ between 1 and 255 is generated

with the same seed value described in the previous step. Further,

we check if the IP address 192.168.1.x is present in the

unallocated list or not. In case, this local IP address is not present

in the unallocated list, the next random number is generated with

the same seed value. This is repeated till we get an unallocated

local IP address. Once an unallocated local IP address is found,

the covert message receiver creates an ARP Broadcast Request

with this randomly generated local IP address as value for

Target IP Address field.

Input: A seed value SV

1. Initialize Covert_MSG string to NULL

2. For each possible local IP address on this LAN

3. Create an ARP Request

4. Broadcast it over the local area network

5. End

6. For each ARP reply received

7. Add the source IP address to allocated list AL.

8. End

9. For all possible local IP addresses for this LAN, not

present in AL

10. Add the local IP addresses to unallocated list UL

11. End

12. Use seed SV to generate next random number x,

where x ∈ (1,255)

13. Create a Local IP address A as 192.168.1.x

14. If address A does not belong to UL,

15. Go to step 12

16. Create an ARP Request with Target IP address as

192.168.1.x

17. Wait for an ARP reply

18. If Req. Received==ARP Reply and ARP{Source IP}==

 192.168.1.x, then

19. Fetch the Sender Hardware Address field as SHF

20. Set Control Quad, CQ = twelfth hex digit of SHF

21. If CQ == 0x0

22. Pick first eleven Hex-digits from SHF and

 append it to Covert_MSG string

23. Goto step 12

24. Else

25. If CQ == 0xf

26. Pick first eleven Hex-digits from SHF and

 append it to Covert_MSG string.

27. Else

28. Convert CQ to decimal and call it CQ10

29. Set temp = 11 – CQ10

30. Pick first temp digits from SHF and append

 it to Covert_msg string

31. Convert Covert_MSG (in hex) to string and read it as

complete covert string

32. Exit
Fig. 6. Receiver Side Algorithm

ARPNETSTEG: NETWORK STEGANOGRAPHY USING ADDRESS RESOLUTION PROTOCOL 675

After this ARP request is broadcasted, Host B enters a wait state

waiting for a spoofed ARP reply for this request from covert

message sender (Host A) only, as no node exists on this network

with the same local IP Address as per the unallocated list created

in previous step. In this way covert message sender partially

abuses ARP spoofing and creates and sends an ARP reply. Once

an ARP Reply is received at this host for the ARP Request just

sent, the receiver checks for the Sender Hardware Address field

in the received ARP response. The first eleven hex digits carry

the covert data with/without padding.

The twelfth hexadecimal digit or the last quad in this Ethernet

address is the control quad which tells two things. Firstly, if the

sender wishes to send more data or this is the last message and

secondly, if there is any padding in the first eleven hex digits or

not. If the value of this control bit is 0x0, it means that the sender

has more data to send and no padding is used in eleven hex digits.

Following that, steps beginning from generation of random IP till

processing of the received ARP reply, are repeated till the value

of control quad received in the ARP reply is non zero. If the value

of control quad is 0xf in hexadecimal, it is interpreted as the last

data message with zero padding (meaning all eleven quads hold

relevant covert message data). And if the value of control bit is

anything other than 0 and 0xf, it is interpreted as last data

message with the value of control quad signifying the number

of quads that contain padded data. For example, if the value of

control quad is 0xa, it means out of the eleven data quads, last

ten quads hold padded value and only the first quad has relevant

covert data value. The receiver side algorithm for this technique

is given in Fig 6.

Figure 7 shows the time and flow diagram of our proposed

technique.

Fig. 7. Flow Diagram of ARPNetSteg.

V. EXPERIMENTAL STUDY

A. Implementation

To implement and test ARPNetSteg, we created a Local Area

Network which consisted of a covert message sender (Host A)

and a covert message receiver (Host B) who wish to

communicate over a LAN. The local IP address of Host A was

192.168.1.4. The local IP address of Host B was 192.168.1.14.

There were many other devices connected to Router. The local

IP address of the Router was 192.168.1.1 in this LAN.

In the first step, both Host A and Host B created a list of

unused or unallocated local IP addresses in this LAN. After the

successful creation of this list, a common seed value (known in

prior to both the sender and the receiver) was entered. The

purpose of this seed was to pick same order of random local IP

addresses from the unallocated list (created in the previous step)

for communication between the sender and the receiver. After

choosing a random local IP address, the covert message receiver

(Host B) created and sent an ARP broadcast request having

Target IP Address set to this randomly selected local IP address

value from the previous step. Scapy [20] library with Python

was used to create and send ARP packets. On the other side, the

covert message sender (Host A) after generating its list of

unallocated local IP addresses, waited for a Broadcast Request

for the same target IP address (generated in previous step with

the same seed value). As the Broadcast Request for this IP

address was received by the covert message sender, it created a

spoofed ARP reply for this request. Since there was no node

over the LAN which had this same local IP address, hence only

covert message sender responded to this ARP Broadcast

Request. In this ARP reply message, the covert message sender

entered the covert data in the Source Hardware Address field. In

case of Ethernet, the hardware address is 6 Bytes or 48 bits long.

The covert message sender stored the message in the first 44 bits

of Ethernet address, encoded in hexadecimal notation. The last

quad (4 bits) as intended was used as control quad. The length

of covert message is used to decide the number of ARP requests

required to transfer the complete message. If the covert message

could be accommodated in less than first 44 bits, then the value

of control quad was set to the number of padding hexadecimal

digits added to the message to make it 44 bits long. Otherwise,

if covert message used all the 44 bits then the value of control

quad was set to 0xf in hexadecimal. If more than 44 bits was

required to send the complete message, the control quad was set

to 0x0. After the successful creation of this ARP reply packet a

unicast ARP reply was sent to Host B, who is the covert message

receiver. This receiver on receiving this message extracted data

from Sender Hardware Address field of the ARP reply header

and further checked the control quad. If the value of control

quad was 0x0, the first eleven hex-digits were stored as covert

data and also it was interpreted that the covert message sender

wants to send more data, consequently it sent another Broadcast

ARP Request using Target IP address field value as the second

unallocated random IP value generated with the same seed.

However, if the value of control quad was non-zero, there were

two interpretations. If its value was 0xf, it interpreted it as the

last message data with zero padding. And if the value of control

quad was anything other than 0 and 0xf, it was interpreted as

last message with the value of control quad signifying the

number of quads that contain padded data. Depending on the

value of control quad the covert message was fetched

accordingly. Further, to capture the sent and received packets at

both sender and receiver, Wireshark [21] packet analyzer was

used. Wireshark is a freely available tool that is used for analysis

of packets flowing over any network.

B. Results

The technique demonstrated in Section IV was implemented

and experimented over a Local Area Network. We entered a

secret message at Host A and it was successfully transferred to

Host B using ARP Request and ARP Reply messages. Figure 8

and 10 show the console snapshots of successful sending and

receiving of desired ARP messages at sending and receiving

devices respectively.

676 P. BEDI, A. DUA

The covert message entered at the sender site was “Hi! This

is a Covert message..”, which was 30 characters long as shown

in Fig. 8. Hence it required six ARP requests and reply pairs to

communicate covertly with our technique. Wireshark tool was

used to capture packets coming in and going out of Host A and

Host B. A screenshot of ARP packets carrying covert data from

Host A in six ARP replies corresponding to ARP requests

received from Host B is shown in Fig 9 using Wireshark.

Figure 11 shows another Wireshark screenshot that captured

ARP request packets sent from receiver side (Host B) and the

corresponding ARP replies received with covert data at the

receiver side (Host A). More Experiments were conducted to

send different covert messages and all reached the destination

accurately.

Fig. 8. Console at Host A (Covert Message Sender).

Fig. 9. Wireshark snapshot at Sender Site

Fig. 10. Console at Host B (Covert Message Receiver)

Fig. 11. Wireshark snapshot at Receiver site.

Further, in our algorithm one vital step is creation of the list of

unallocated local IP addresses. If any ARP request or reply

packet of an existing node gets lost over the network, it will

result in an inaccurate list. Thus, to make sure we get accurate

lists at the sender’s and the receiver’s site, the ARP requests for

which no reply has been received in the first iteration, may be

resent over the network. We called it as retries. Figure 12 and

13 shows the effect of increasing retries on time taken to create

the unallocated list of local IP addresses and accuracy

respectively. These values were calculated after taking an

average of recorded values of error and time taken to create

unallocated list for ten executions for each retrial value from 0

to 4. It was observed that the accuracy increased largely with

one retry, but the increase in accuracy with further increase in

the number of retries was minimal. Also, as we increased the

number of retries the number of ARP packets over the network

and execution time of our algorithm increased almost linearly.

Thus, we freezed our algorithm with retry value of 1.

ARPNETSTEG: NETWORK STEGANOGRAPHY USING ADDRESS RESOLUTION PROTOCOL 677

Fig. 12. Time Taken to Create Unallocated List Vs. Number of Retries

Fig. 13. Accuracy of unallocated list vs Number of Retries

VI. CONCLUSION

A Network Steganography technique ARPNetSteg, using
Address Resolution protocol for Network Steganography is
proposed and presented in this paper. In ARPNetSteg, the
devices that wish to communicate covertly exploit the
vulnerability of ARP spoofing partially without harming data
flows to any other node on the network. Both the sender and
receiver device start with creating a list of unallocated local IP
addresses simultaneously. The sender and receiver use a
common (mutually agreed) seed value to generate the same
sequence of unused local IP addresses to communicate covertly.
After receiving a desired ARP request as per the seed value, the
sending device communicates by creating and sending a spoof
ARP reply and further filling covert data and control
information in the Sender Hardware Address field of this ARP
reply. More ARP requests using the same seed are generated by
the covert receiver after reading the control information present
in the covert data last received. This control information carries
the necessary information whether sender wants to send more
covert data or not.

Our technique is capable of sending message of any length by

breaking a large message into small messages of length 44 bits

or lesser in each. Currently, the reliability of our technique

depends upon matching of the lists of unallocated local IP

addresses generated both at the sender’s and the receiver’s side.

To make sure, that these lists match, we reconsidered all the

unallocated local IP addresses present in the unallocated lists

and generated Broadcast ARP request for all of them again. The

local IP addresses for which a reply is received is further moved

from unallocated to allocated list. With this, we successfully

implemented a system that was able to send 44 bits of covert

data per ARP reply message.

REFERENCES

[1] W. Richard Stevens. TCP/IP illustrated (vol. 1): the protocols. Addison-
Wesley Longman Publishing Co., Inc., USA. 1993.

[2] Trithemius, Johannes, and Wolfgang Ernst Heidel. Steganographia. 1721.
[3] I. Cox, Miller, M., Bloom, J. Fridrich and T. Kalker. “Digital

Watermarking and Steganography”, 2nd ed. Elsevier, Morgan Kaufmann

Publishers, 2008.
[4] K. Szczypiorski, “Steganography in TCP/IP networks”, in State of the

Art and a Proposal of a New System–HICCUPS, Institute of

Telecommunications' seminar, Warsaw University of Technology,
Poland, 2003.

[5] G. Fisk, M. Fisk, C. Papadopoulos and J. Neil, “Eliminating

Steganography in Internet Traffic with Active Wardens,” in Proc. 5th
International Workshop on Information Hiding, Oct. 2002.

[6] D. Plummer, "An Ethernet Address Resolution Protocol: Or Converting

Network Protocol Addresses to 48.bit Ethernet Address for Transmission
on Ethernet Hardware", STD 37, RFC 826, Nov. 1982, DOI

10.17487/RFC0826.

[7] ARP, Address Resolution Protocol, “Network Socery Website,” 2015
http://www.networksorcery.com/enp/protocol/arp.htm.

[8] TCP/IP Guide Website, 2020

http://www.tcpipguide.com/free/t_ARPMessageFormat.htm.
[9] T. G. Handel and M. T. Sandford, “Hiding data in the OSI network

model.” in Proc. International Workshop on Information Hiding, Berlin,

Heidelberg, 1996, pp. 23-38.
[10] A. Mileva, and P. Boris, "Covert channels in TCP/IP protocol stack-

extended version." Open Computer Science vol. 4, pp 45-66, 2014.

[11] C. Rowland, "Covert channels in the TCP/IP protocol suite, first
Monday." Peer Reviewed Journal on the Internet vol. 2, no. 5, 1997.

[12] K. Ahsan, and D Kundur, “Practical data hiding in TCP/IP” in Proc.

Workshop on Multimedia Security at ACM Multimedia, 2002.
[13] Bellovin, M. Steven, "Security problems in the TCP/IP protocol

suite." ACM SIGCOMM Computer Communication Review, vol. 19, no. 2,

pp 32-48, 1989.
[14] K. Szczypiorski, M. Drzymała, and M. Ł. Urbański. "Network

Steganography in the DNS Protocol." International Journal of

Electronics and Telecommunications, vol. 62, no. 4, pp. 343-346, 2016.
[15] Z. Trabelsi and I. Jawhar, "Covert file transfer protocol based on the IP

record route option." Journal of Information Assurance and Security vol.

5 no. 1, pp. 64-73, 2010.

[16] P. Bedi, A. Dua, “Network Steganography using the Overflow Field of

Timestamp Option in an IPv4 Packet”. Presented at Third International

Conference on Computing and Network Communications (CoCoNet’19),
Trivendrum, Dec. 18-21, 2019.

[17] L.Ji, Y.Fan, C.Ma, “Covert channel for local area network,” in Proc. IEEE

International Conference on Wireless Communications, Networking and
Information Security, WCNIS 2010, Beijing, China, 2010, pp. 316–319.

[18] B. Jankowski, W. Mazurczyk, K. Szczypiorski, “PadSteg: Introducing

Inter-Protocol Steganography,” Telecommunication Systems, Vol. 52,
2013, pp. 1101–1111.

[19] S. Tobias, S. Wendzel, A. Mileva, and W. Mazurczyk, "Introducing dead

drops to network steganography using ARP-caches and SNMP-walks," in
Proc. 14th International Conference on Availability, Reliability and

Security, 2019, pp. 1-10.
[20] Scapy Website, 2020. https://scapy.readthedocs.io/en/

latest/introduction.html

[21] Wireshark website, 2020, https://www.wireshark.org

0

10

20

30

40

0 2 4 6

Time Taken
to Create

Unallocated
List

Number of Retries

Time Vs. Number of Retries

0

20

40

60

80

100

0 2 4 6

Accuracy
Percentage

Number of Retries

Accuracy (in percentage)

http://www.networksorcery.com/enp/protocol/arp.htm
http://www.tcpipguide.com/free/t_ARPMessageFormat.htm

