The behavioural model of graphene field-effect transistor

Authors

  • Maciej Łuszczek Gdańsk University of Technology Faculty of Electrical and Control Engineering str. Gabriela Narutowicza 11/12 80-233 Gdańsk, Poland
  • Marek Turzyński Gdańsk University of Technology Faculty of Electrical and Control Engineering str. Gabriela Narutowicza 11/12 80-233 Gdańsk, Poland
  • Dariusz Świsulski Gdańsk University of Technology Faculty of Electrical and Control Engineering str. Gabriela Narutowicza 11/12 80-233 Gdańsk, Poland

Abstract

The behavioural model of a graphene field-effect
transistor (GFET) is proposed. In this approach the GFET
element is treated as a “black box” with only external terminals
available and without considering the physical phenomena
directly. The presented circuit model was constructed to reflect
steady-states characteristics taking also into account GFET
capacitances. The authors’ model is defined by a relatively small
number of equations which are not nested and all the parameters
can be easily extracted. It was demonstrated that the proposed
model allows to simulate the steady-state characteristics with the
accuracy approximately as high as in the case of the physical
model. The presented compact GFET model can be used for
circuit or system-level simulations in the future.

References

F. Schwierz, ”Graphene transistors”, Nat. Nanotechnol. 5, 487—496

(2010).

P. Li, R. Z. Zeng, Y. B. Liao, Q. W. Zhang, and J. H. Zhou, ”A

novel graphene metal semi-insulator semiconductor transistor and its

new super-low power mechanism”, Sci. Rep. 9, 3642–3447 (2019).

K. A. Kam, B. I. C. Tengan, C. K. Hayashi, R. C. Ordonez, and D.

G. Garmire, ”Polar organic gate dielectrics for graphene field-effect

transistor-based sensor technology”, Sensors 18, 2774–2784 (2018).

L. J. A. Macedo, R. M. Iost, A. Hassan, K. Balasubramanian, and F. N.

Crespilho, ”Bioelectronics and interfaces using monolayer graphene”,

ChemElectroChem 6, 31–59 (2019).

R. A. Picca, D. Blasi, E. Macchia, K. Manoli, C. Di Franco, G.

Scamarcio, F. Torricelli, A. Zurutuza, I. Napal, A. Centeno, and L. Torsi,

”A label-free immunosensor based on a graphene water-gated field-effect

transistor”, in Proc. IEEE 8th International Workshop on Advances in

Sensors and Interfaces, Otranto, Italy, 2019, pp. 136–138.

E. Macchia, A. Tiwari, K. Manoli, B. Holzer, N. Ditaranto, R. A.

Picca, N. Cioffi, C. Di Franco, G. Scamarcio, G. Palazzo, and L. Torsi,

”Label-free and selective single-molecule bioelectronic sensing with a

millimeter-wide self-assembled monolayer of anti-immunoglobulins”,

Chem. Mater. 31, 6476–6483 (2019).

Y. Qiao, X. Li, T. Hirtz, G. Deng, Y. Wei, M. Li, S. Ji, Q. Wu, J.

Jian, F. Wu, Y. Shen, H. Tian, Y. Yang, and T.-L. Ren, ”Graphene-based

wearable sensors”, Nanoscale 11, 18923–18945 (2019).

H. Huang, S. Su, N. Wu, H. Wan, S. Wan, H. Bi, and L. Sun, ”Graphene-

Based Sensors for Human Health Monitoring”, Front. Chem. 7, 399–425

(2019).

M. Łuszczek, M. Turzy´nski, and D. ´ Swisulski, ” Modelling of Graphene

Field-Effect Transistor for electronic sensing applications”, Przegl. Elektrotechn.

, 170–172 (2015).

N. N. H. B. M. Norhakim and Z. A. B. Burhanudin, ”Correlation

of charge neutrality point and ions capture in DNA-graphene fieldeffect

transistor using drift-diffusion model” in Proc. IEEE International

Conference on Sensors and Nanotechnology, Penang, Malaysia, 2019,

pp. 1-4.

E. Pop and F. Lian, ”GFET Tool”, 2014,

https://nanohub.org/resources/gfettool (DOI: 10.4231/D36M33379).

N. Lu, L. Wang, L. Li, and M. Liu, ”A review for compact model

of graphene field-effect transistors”, Chin. Phys. B 26, 036804–036818

(2017).

D. Jimenez, ”Explicit drain current, charge and capacitance model of

Graphene Field-Effect Transistors”, IEEE Trans. Electron Devices 58,

–4383 (2011).

O. Habibpour, J. Vukusic, and J. Stake, ”A large signal graphene FET

model”, IEEE Trans. Electron Devices 59, 968–975 (2012).

K. N. Parrish, M. E. Ramon, S. K. Banerjee, and D. Akinwande, ”A

compact model for Graphene FETs for linear and non-linear circuit”, in

Proc. IEEE International Conference on Simulation of Semiconductor

Processes and Devices, Denver, USA, 2012, pp. 75–78.

S. Rodriguez, S. Vaziri, A. Smith, S. Fregonese, M. Ostling, M. C.

Lemme, and A. Rusu, ”Static nonlinearity in Graphene Field Effect

Transistors”, IEEE Trans. Electron Devices 61, 3001–3003 (2014).

M. Turzy´nski and W. J. Kulesza, ”A simplified behavioral MOSFET

model based on parameters extraction for circuit simulations”, IEEE

Trans. Power Electron. 31, 3096–3105 (2016).

S. Rodriguez, S. Vaziri, M. Ostling, A. Rusu, E. Alarcon, and M. C.

Lemme, ”RF performance projections of graphene FETs vs. silicon

MOSFETs”, ECS Solid State Lett. 1, Q39–Q41 (2012).

N. Caka, M. Zabeli, M. Limani, and Q. Kabashi, ”Impact of MOSFET

parameters on its parasitic capacitances”, in Proc. 6th WSEAS

International Conference on Electronics, Hardware, Wireless and Optical

Communications, Stevens Point, Wisconsin, USA, 2007, pp. 55–59.

Downloads

Published

2024-04-19

Issue

Section

Metrology, Measurement Science