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Abstract— Software vulnerability life cycles illustrate changes in 

detection processes of software vulnerabilities during using 

computer systems. Unfortunately, the detection can be made by 

cyber-adversaries and a discovered software vulnerability may be 

consequently exploited for their own purpose. The vulnerability 

may be exploited by cyber-criminals at any time while it is not 

patched. Cyber-attacks on organizations by exploring 

vulnerabilities are usually conducted through the processes 

divided into many stages. These cyber-attack processes in 

literature are called cyber-attack live cycles or cyber kill chains. 

The both type of cycles have their research reflection in literature 

but so far, they have been separately considered and modeled. This 

work addresses this deficiency by proposing a Markov model 

which combine a cyber-attack life cycle with an idea of software 

vulnerability life cycles. For modeling is applied homogeneous 

continuous time Markov chain theory. 
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I. INTRODUCTION 

A. Cyber Attack Life Cycle 

 CYBER-ATTACK process which is divided into phases 

can be named a cyber-attack life cycle or a cyber kill chain. 

In cyber security papers, the cyber kill chain is a very popular 

conceptual model generally describing processes of targeted 

cyber-attacks. In research literature cyber-attack life cycles and 

their phases are variously named, defined and described. For 

instance, according to [1] the cycle consists of five stages: 

reconnaissance, scanning, system access, malicious activity and 

exploitation. In [2] the cyber-attack process is named as the 

intrusion kill chain and defined as the sequence of seven stages: 

reconnaissance, weaponization, delivery, exploitation, 

installation, command and control (C2), action. This chain is 

also described by researchers in [3,4]. Other researchers [5] 

point out six stages: reconnaissance, weaponization, delivery, 

exploitation, installation, C2, objective achievement. These 

authors indicate that an attack on critical infrastructure should 

be considered as a sequence of six phases: reconnaissance, 

weaponization, delivery, cyber execution, control perturbation, 

physical objective realization.  In all available approaches to 

description of cyber-attack life cycles there are not specified an 

initiation and a termination stage. So, a generalized cyber-attack 

life cycle has recently been proposed which includes two 

additional phases [6]. The first stage is an identification of the 

attacker's needs. The last stage of the cyber-attack is a 

termination of the attack combined with removing traces of 

attackers’ activities. 
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Despite of the fact that in its nature the cyber-attack processes 

are stochastic a few models of the cyber-attack life cycles using 

the theory of stochastic processes have been proposed so far 

[6-8]. 

B. Software Vulnerability Life Cycle 

The life cycle of a software vulnerability can be generally 

divided into several phases that start or end with events: birth, 

creation, discovery, exploit, disclosure, software patch release, 

patch installation. In information security research papers, some 

definitions of software vulnerability life cycles have been 

proposed [9-13]. In [9], one of the first papers, the software 

vulnerability life cycle was defined with following stages:   

• birth - the introduction of a vulnerability at the software 
development stage,  

• discovery - somebody discovered the vulnerability,  

• disclosure - internal dissemination of information in 
circle of people who protect the systems,  

• correction - a patch released,  

• publicity - public disclosure of the vulnerability,  

• scripting - an exploit is available and can be used by 
cyber-attackers,  

• death - the vulnerability identified with the installation 
of the patch. 

Despite the fact that the life cycle of a vulnerability is similarly 

described in the literature, but there are significant differences 

can be found, e.g. in the work [10] an issue and an installation 

of patches are treated alternatively, and both these events close 

the life cycle of the vulnerability. 

In last decade, as a result of research on stochastic nature of life 

cycles of software vulnerabilities, several probabilistic models 

of vulnerability life cycles have been proposed [13-16]. 

Published models are based on Markov processes with 

continuous or discrete time and finite numbers of states. 

B. Aim of Article  

This paper aim is to provide theoretical and analytical 

stochastic model combining both life cycles of a cyber-attack 

and a vulnerability. The proposed model is based on 

homogeneous continues-times Markov chain theory. The 

vulnerability part of the joint life cycle considered in this paper 

generally bases on the idea presented in [9]. For purpose of 

simplicity, stages of the cyber-attack life cycle used here are 

understood as in [1]. It is also assumed that any current phase of 
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a cyber-attack may be abandoned by aggressors or stopped by 

cyber defense systems at any time. Then a new iteration of the 

cyber-attack may begin as long as the vulnerable software is not 

patched. 

II. PRELIMINARY ASSUMPTIONS OF THE MODEL 

In the presented model of cyberattack life cycle targeted on 

exploiting a vulnerability, in the part related to the vulnerability, 

the model is based on the idea of a vulnerability life cycle 

described in  [9]. The stages of a cyber-attack are basically 

understood as in [1].  

For purpose of this paper, we assume that behavior of both 

cyber-attack life cycle describing a cyber-attack targeted on a 

vulnerability and vulnerability life cycle fulfill Markov 

property.  So, the stochastic model of a cyber-attack life cycle 

triggered by a software vulnerability is a continues-time Markov 

chain (CTMC) with a finite number of states. The states of the 

stochastic process are relevant stages of the vulnerability and 

cyber-attack life cycle as follows: 

• (𝑆0) Birth – a vulnerability is introduced at the software 
development stage.  

• (𝑆1) Discovered – somebody discovers the vulnerability 
and then internal dissemination of information in circle. 
If the discoverer is someone who protects a system, then 
a patching design process starts. 

• (𝑆2) Disclosed – refers to public disclosure of the 
vulnerability. 

• (𝑆3) Patched – corresponds to the installation of a patch 
or patches. 

• (𝑆4) Reconnaissance – refers to acquiring information 
about targets, targeting process, eventually starting 
weaponization process.  

• (𝑆5) Scanning – scanning a targeted system for 
obtaining specific information about the system’s 
devices, services, users, etc. A zero-day vulnerability is 
identified in targeted software if it is available. Cyber 
weapon design is finished.  

• (𝑆6) System access – once the strategy of cyber-attack 
is finally worked out and a set of cyber weapons is 
prepared the system access step begins. Access to the 
targeted system can be done by e.g. using social 
techniques, direct re-mote access to the system, etc. 
During this stage an initial installation of malicious boot 
code can be done.     

• (𝑆7) Malicious activity – a dynamic command and 
control loop is established with the attackers and 
additional compromising malicious software can be 
downloaded and installed. A feedback about quality and 
performance of a weaponry malicious code is sent back 
to the attacker’s developers for improvements. More 
information about the attacked system is sent back to 
the hostile environment.  

• (𝑆8) Exploitation – final stage of the cyber-attack. More 
malicious activities are conducted to achieve the 
required objectives, e.g. copying and stealing 
information, deleting or changing data, damaging 
operational systems, etc. In this stage from infected 

system the cyber-attacker can launch an attack on other 
systems, remotely or locally.  

 We assume that transition rates between the states of the 

stochastic process are finite and unchanging over time, and the 

generator matrix is known. Thus, basis on the above assumption 

made, the cyber-attack chain are modeled with using 

homogenous continues-time Markov chains. 

III. HOMOGENOUS CONTINUOUS-TIME MARKOV CHAIN  

A continuous-time Markov chain is a stochastic process in 

which the process moves among states and its sojourn time 

spent in each state to visit the next state is independent and 

distributed exponentially [17]. In other words, the property of 

the stochastic process which the conditional probabilities of the 

transitions to the future states depend only on the present state 

and are independent of the history, is called a Markov property. 

The stochastic processes with Markov property at any time are 

Markov processes. 

Let’s consider a continuous-time stochastic process  
{𝑋(𝑡), 𝑡 ≥  0} with a finite state set 𝑺 =  {𝑆0, 𝑆1, … , 𝑆𝑁} and  

note that the event {𝑋(𝑡) = 𝑆𝑘 , 𝑡 ≥  0} represents that the 

process is in the state 𝑆𝑘 (𝑘 =  1, 2, … , 𝑁) at time 𝑡 ≥ 0. We 

want to know in which state the process 𝑋(𝑡) is at time 𝑡 ≥ 0 

and the process converges as 𝑡 → +∞.  

If we suppose that the probabilities 𝑃{𝑋(𝑡) = 𝑆𝑘  | 𝑋(𝑡0) = 𝑆0,
𝑋(𝑡1) = 𝑆1, … , 𝑋(𝑡𝑛) = 𝑆𝑛} = 𝑃{𝑋(𝑡) = 𝑆𝑘  | 𝑋(𝑡𝑛) = 𝑆𝑛} for 

all 𝑆0,  𝑆1, … , 𝑆𝑛 𝜖 𝑺 and 0 ≤ 𝑡0 ≤ 𝑡1 ≤ … ≤ 𝑡𝑛 ≤ 𝑡  then the 

process  {𝑋(𝑡), 𝑡 ≥  0} is said to be a continuous-time Markov 

chain.  

If the probability of 𝑋(𝑡 + 𝛥𝑡) being in the state 𝑆𝑘, given that 

𝑋(𝑡) is in the state 𝑆𝑗, is independent of 𝑡 ≥  0, i.e.  

𝑃{𝑋(𝑡 + 𝛥𝑡)  =  𝑆𝑘  | 𝑋(𝑡)  =  𝑆𝑗}  =  𝑃𝑗𝑘(𝛥𝑡), then the process 

{𝑋(𝑡), 𝑡 ≥  0} has a stationary or homogeneous transition 

probability that depends only on the time difference 𝛥𝑡. The 

process which has this property is said to be a homogeneous 

continuous-time Markov chain. 

Homogeneous continuous-time Markov chains can be analyzed 

by forming and solving Kolmogorov differential equations: 

𝑑

dt
𝑷(𝑡) = 𝑷(𝑡) ⋅ 𝑸      (1) 

with the initial condition 𝑷(0) =  [𝑃0(0
+), 𝑃1(0

+), … , 𝑃𝑁(0+)],  
where 𝑷(𝑡) = [𝑃0(𝑡), 𝑃1(𝑡), … , 𝑃𝑁(𝑡)], 𝑃𝑘(𝑡) = 𝑃{𝑋(𝑡) =
𝑆𝑘 , 𝑡 ≥  0} (𝑘 =  0, 1, … , 𝑁), 𝑸 is the generator matrix which 

has entries that are the rates at which the process 𝑋(𝑡) jumps 

from state to state. These entries are defined by λ𝑗𝑘 =

lim
𝛥𝑡→0

𝑃{𝑋(𝑡+Δ𝑡)=𝑘|𝑋(𝑡)=𝑗}

𝛥𝑡
 for all 𝑘 ≠ 𝑗, and λ𝑗𝑗 = −∑ λ𝑗𝑘

𝑁
𝑘=1
𝑘≠𝑗

. 

IV. MARKOV MODEL OF THE LIFE CYCLE 

 The Markov model of a cyber-attack life cycle triggered by a 

software vulnerability (a joint cyber-attack and software 

vulnerability life cycle), is illustrated in Fig.1 as a directed 

graph, i.e. as a Markov graph [17]. 

In the model, in order to finalize a cyber-attack successfully, the 

attack process should pass sequentially through the stages from 

S4 “reconnaissance” to S8 “exploitation” without any 
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possibilities of skipping intermediate stages (see Fig.1). 

Returning to the previous ones are possible. We assume that 

cyber-attacks may be stopped or ended during any stage at any 

time because of a patch installation done. Transition from state 

𝑆2 to state 𝑆3 means that once discovering a vulnerability e.g. 

by a software producer, a patch or patches are developed and 

installed. This transition finalizes the life cycle. 
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Fig. 1. Markov graph of the proposed cyber-attack life cycle model 

The stochastic model is the homogeneous continues-time 

Markov chain {𝑋(𝑡), 0 ≤ 𝑡 < + ∞} with the state space  

𝑺 =  {𝑆0, 𝑆1, … , 𝑆8}. Let λkj be the transition rate from 𝑆𝑘 to 𝑆𝑗 

(𝑘, 𝑗 =  0, 2, … , 8). Then the infinitesimal generator of the 

CTMC for the life cycle is given by matrix 𝑸: 

𝐐 =

[
 
 
 
 
 
 
 
 
 
−𝜆01 𝜆01 0 0 0 0 0 0 0

0 −𝜆11 𝜆12 𝜆13 𝜆14 0 0 0 0
0 0 −𝜆22 𝜆23 𝜆24 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −𝜆45 𝜆45 0 0 0
0 0 0 𝜆53 0 −𝜆55 𝜆56 0 0
0 0 0 𝜆63 𝜆64 𝜆65 −𝜆66 𝜆67 0
0 0 0 𝜆73 0 0 0 −𝜆77 𝜆78

0 0 0 𝜆83 𝜆84 0 0 𝜆87 −𝜆88]
 
 
 
 
 
 
 
 
 

 (2) 

where λ11 = λ12 + λ13 + λ13, λ22 = λ23 + λ24, λ55 = λ53 +
λ56, λ66 = λ63 + λ64 + λ65 + λ67,  λ77 = λ73 + λ78,  λ88 =
λ83 + λ84 + λ87 . 

Let 𝑃𝑘(𝑡) (k = 0, 1, …, 8) be the probability of the event 

{𝑋(𝑡)  =  𝑆𝑘} i.e. the probability of that the process 𝑋(𝑡) is in 

the state 𝑆𝑘 at time 𝑡 ≥  0. Thus, the row vector  

𝑷(𝑡)  =  [𝑃0(𝑡), 𝑃1(𝑡), … , 𝑃8(𝑡)] is the probability distribution 

of the process X(t) at time 𝑡 ≥  0. For purpose of this paper we 

assume that process 𝑋(𝑡) at 𝑡 = 0+ starts from state 𝑆1 

“Discovered”. 

In order to calculate the probability distribution 𝑷(𝑡), 𝑡 ≥  0, 
the Kolmogorov differential equations of the process 𝑋(𝑡) 
should be solved. Laplace transformation particularly is a 
helpful tool to do it. The transformation is also useful to 
calculate some stochastic characteristics of stochastic processes 
[17], e.g. an expected value of total time which process 𝑋(𝑡) 
spends in a state.  

Let the Laplace transformation of the probability  
𝑃𝑘(𝑡), 𝑡 ≥  0, denote by 

𝑃𝑘
∗(𝑠) = ℒ[𝑃𝑘(𝑡); 𝑠] ≝ ∫ 𝑃𝑘(𝑡)e

−𝑠𝑡𝑑𝑡
∞

0
. 

Thus, by the Laplace transformation of the vector 𝑷(𝑡) we have  
ℒ[𝑷(𝑡); 𝑠] = 𝑷∗(𝑠) = [𝑃0

∗(𝑠), 𝑃1
∗(𝑠), … , 𝑃8

∗(𝑠)]. 

For the given generating matrix Q (see (2)), a Laplace 
transformation of the system of Kolmogorov differential 
equations (1) is: 

s ∙ 𝑷∗(𝑠) − 𝑷(0+) = 𝑷∗(𝑠) ⋅ 𝑸      (3) 

with the initial condition P(0+) = [P0(0+), P1(0+), …, P8(0+)] = 
[0,1,0,0,0,0,0,0,0].  

Solving the equations (3), we get the transform of 𝑷(𝑡): 

 𝑷∗(𝑠) = 𝑷(0) ⋅ [𝑠 ∙ 𝑰 − 𝑸]−1      (4) 

The solution of equations (4) is collected in Table I, where   

det[𝑠 ∙ 𝑰 − 𝑸] = 𝑠(𝑠 + 𝜆01)(𝑠 + 𝜆12 + 𝜆13 + 𝜆14)(𝑠 + 𝜆23 +
𝜆24)((𝜆56(−𝜆45𝜆64 − 𝑠𝜆65 − 𝜆45𝜆65) + (𝑠 + 𝜆45)(𝑠 + 𝜆53 +
𝜆56)(𝑠 + 𝜆63 + 𝜆64 + 𝜆65 + 𝜆67))(𝑠 + 𝜆73 + 𝜆78)(𝑠 + 𝜆83 +
𝜆84 + 𝜆87) + 𝜆78(−𝜆45𝜆56𝜆67𝜆84 − (𝜆56(−𝜆45𝜆64 − 𝑠𝜆65 −
𝜆45𝜆65) + (𝑠 + 𝜆45)(𝑠 + 𝜆53 + 𝜆56)(𝑠 + 𝜆63 + 𝜆64 + 𝜆65 +
𝜆67))𝜆87)) . 

 
TABLE I  

SOLUTION OF KOLMOGOROV EQUATIONS (3) 

P*(s) if P(0+)=[0,1,0,0,0,0,0,0,0] 

P0
*(s) 0 

P1
*(s) (𝑠 + 𝜆12 + 𝜆13 + 𝜆14)

−1 

P2
*(s) 𝜆12[(𝑠 + 𝜆12 + 𝜆13 + 𝜆14)(𝑠 + 𝜆23 + 𝜆24)]

−1 

P3
*(s) 

1

𝑠
− ∑ 𝑃𝑘

∗(𝑠)
8

𝑘=0
𝑘≠3 

 

P4
*(s) 

(𝑑𝑒𝑡[𝑠 ∙ 𝑰 − 𝑸])−1𝑠(𝑠 + 𝜆01)(𝜆12𝜆24 + 𝜆14(𝑠 + 𝜆23

+ 𝜆24))(−𝜆56𝜆65 + (𝑠 + 𝜆53

+ 𝜆56)(𝑠 + 𝜆63 + 𝜆64 + 𝜆65

+ 𝜆67))(−𝜆78𝜆87 + (𝑠 + 𝜆73

+ 𝜆78)(𝑠 + 𝜆83 + 𝜆84 + 𝜆87)) 

P5
*(s) 

(𝑑𝑒𝑡[𝑠 ∙ 𝑰 − 𝑸])−1𝑠(𝑠 + 𝜆01)(𝜆12𝜆24 + 𝜆14(𝑠 + 𝜆23

+ 𝜆24))𝜆45(𝑠 + 𝜆63 + 𝜆64 + 𝜆65

+ 𝜆67)(𝜆78(𝑠 + 𝜆83 + 𝜆84)
+ 𝑠(𝑠 + 𝜆83 + 𝜆84 + 𝜆87)
+ 𝜆73(𝑠 + 𝜆83 + 𝜆84 + 𝜆87)) 

P6
*(s) 

(𝑑𝑒𝑡[𝑠 ∙ 𝑰 − 𝑸])−1𝑠(𝑠 + 𝜆01)(𝜆12𝜆24 + 𝜆14(𝑠 + 𝜆23

+ 𝜆24))𝜆45𝜆56(𝜆78(𝑠 + 𝜆83

+ 𝜆84) + 𝑠(𝑠 + 𝜆83 + 𝜆84 + 𝜆87)
+ 𝜆73(𝑠 + 𝜆83 + 𝜆84 + 𝜆87)) 

P7
*(s) 

(𝑑𝑒𝑡[𝑠 ∙ 𝑰 − 𝑸])−1𝑠(𝑠 + 𝜆01)(𝜆12𝜆24 + 𝜆14(𝑠 + 𝜆23

+ 𝜆24))𝜆45𝜆56𝜆67(𝑠 + 𝜆83 + 𝜆84

+ 𝜆87) 

P8
*(s) (𝑑𝑒𝑡[𝑠 ∙ 𝑰 − 𝑸])−1𝑠(𝑠 + 𝜆01)(𝜆12𝜆24 + 𝜆14(𝑠 + 𝜆23

+ 𝜆24))𝜆45𝜆56𝜆67𝜆78 

The probabilities 𝑷(𝑡), 𝑡 ≥  0 can be obtained by performing 

the inverse Laplace transform 𝑷(𝑡) =  ℒ−1[𝑷∗(𝑠); 𝑡] (e.g. see 

section VI). 
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 To assess the losses generated by cyber criminals exploiting 

the vulnerability over a long period of time, it is necessary to 

calculate the total average time spent by attackers at each stage 

of the life cycle of the cyberattack. The calculation can be done 

with using Laplace transform 𝑷∗(𝑠).  

Let 𝑇𝑘 be a mean stay time of the life cycle in the stage 𝑆𝑘 i.e. a 

mean cumulative time while the process {𝑋(𝑡), 𝑡 ≥ 0} stay in 

the state 𝑆𝑘. Let 𝑻𝑆  =  [𝑇0, 𝑇1, … , 𝑇8] be a vector of mean stay 

times in the life cycle stages. To obtain 𝑻𝑠 we need only to 

calculate the limit 

𝑇𝑘 = lim
𝑠→0

 𝑃𝑘
∗(𝑠) = lim

𝑠→0
 ∫ 𝑃𝑘(𝑡)e

−𝑠𝑡𝑑𝑡
∞

0

 

for 𝑘 =  0, 1, … , 8. 

In other words, 𝑻𝑆 = lim
𝑠→0

𝑷∗(𝑠). The solution of 𝑻𝑆 is shown in 

Table II. 

TABLE II  

MEAN CUMULATIVE TIME TS 

Ts if P(0+)=[0,1,0,0,0,0,0,0,0] 

T0 0 

T1 (𝜆12 + 𝜆13 + 𝜆14)
−1 

T2 𝜆12 ∙ [(𝜆12 + 𝜆13 + 𝜆14)(𝜆23 + 𝜆24)]
−1 

T3 +∞ 

T4 

(𝜆12𝜆24 + 𝜆14(𝜆23 + 𝜆24))(𝜆56(𝜆63 + 𝜆64 + 𝜆67) +

𝜆53(𝜆63 + 𝜆64 + 𝜆65 + 𝜆67))(𝜆78(𝜆83 + 𝜆84) +

𝜆73(𝜆83 + 𝜆84 + 𝜆87)) / 𝜆45 ∙ 𝑀𝑇  

T5 

(𝜆12𝜆24 + 𝜆14(𝜆23 + 𝜆24))(𝜆63 + 𝜆64 + 𝜆65

+ 𝜆67)(𝜆78(𝜆83 + 𝜆84)
+ 𝜆73(𝜆83 + 𝜆84 + 𝜆87)) / 𝑀𝑇   

T6 
(𝜆12𝜆24 + 𝜆14(𝜆23 + 𝜆24))𝜆56(𝜆78(𝜆83 + 𝜆84)

+ 𝜆73(𝜆83 + 𝜆84 + 𝜆87)) / 𝑀𝑇  

T7 
(𝜆12𝜆24 + 𝜆14(𝜆23 + 𝜆24))𝜆56𝜆67(𝜆83 + 𝜆84

+ 𝜆87) / 𝑀𝑇  

T8
 𝜆56𝜆67𝜆78(𝜆12𝜆24 + 𝜆14(𝜆23 + 𝜆24)) / 𝑀𝑇  

𝑀𝑇 = (𝜆12 + 𝜆13 + 𝜆14)(𝜆23 + 𝜆24) ((𝜆56(𝜆63 + 𝜆67) +

𝜆53(𝜆63 + 𝜆64 + 𝜆65 + 𝜆67))(𝜆73 + 𝜆78)(𝜆83 + 𝜆84 + 𝜆87) +

𝜆78 (−𝜆53(𝜆63 + 𝜆64 + 𝜆65 + 𝜆67)𝜆87 − 𝜆56(𝜆63𝜆87 +

𝜆67(𝜆84 + 𝜆87))))  

 

V. EXAMPLE ON APPLICATION OF THE MODEL: 

PROBABILISTIC RISK ASSESSMENT 

 

Traditional risk assessment quantifies risk as the product of 

the probability of an undesirable event leading to specific 

consequences and a measure of the negative impact on the 

organization due to this undesirable event (probabilistic risk 

assessment) [18] or as a triplet of threat, vulnerability, and 

consequences [19].    

In this section we use probabilistic risk assessment to 

quantify cyber risks. To do this, we should first calculate the 

probability of each phase of the cyber-attack life cycle, which 

can be determined using the proposed model (for examples see 

section VII).  

We can calculate “risk” traditionally as a product of 

likelihood of threats and their impacts on the assets of an 

organization. To illustrate our approach simply assume that 

 𝑨 = [𝐴0, …𝐴3, 𝐴4 … , 𝐴8], where 𝐴0 = ⋯ = 𝐴3 = 0 and 

𝐴4 … , 𝐴8 ≥ 0 , is a vector of monetary losses of an 

organization’s key assets calculated at each stage of the cyber-

attack life cycle. Then, “total risk score” at time 𝑡 ≥ 0 

represented as a real value function 𝑅(𝑡) can be calculated using 

the following equation: 

𝑅(𝑡) = 𝑷(𝑡) ⋅ 𝑨𝑇 

where 𝑷(𝑡) = [𝑃0(𝑡), … , 𝑃8(𝑡)], 𝑃𝑛(𝑡) = 𝑃{𝑋(𝑡) = 𝑛}  
(𝑛 =  0, … , 8). 

To calculate the sum of the total risk score 𝑅(𝑡) in a period [0, 𝜏] 

we should calculate the integral ∫ 𝑅(𝑡)𝑑𝑡
𝜏

0
. If 𝜏 → +∞ we can 

obtain the limit total risk score  

𝑅𝑡𝑜𝑡 = lim
𝜏→+∞

∫ 𝑅(𝑡)𝑑𝑡
𝜏

0
= ∫ 𝑅(𝑡)𝑑𝑡

+∞

0
. 

It is easy to show that for calculation of the total risk score 𝑅𝑡𝑜𝑡 

there can be applied the Laplace transformation  

𝑅∗(𝑠) = ℒ[𝑅(𝑡); 𝑠]. If we calculate the limit,  lim
𝑠→0

𝑅∗(𝑠) then we 

yield: 

𝑅tot = 𝑻𝒔 ⋅ 𝑨𝑇 

where the vector  𝑻𝒔  =  [𝑇0, 𝑇1, … , 𝑇8] is given in Table II. 

Of course the proposed model allows us to determine the 

magnitude of the risk of losses at each stage of an cyber-attack 

triggered by an vulnerability during its life cycle.  The risk of 

the cyber-attack stage 𝑘 (𝑘 = 4,… ,8) at time 𝑡 ≥ 0  can be 

expressed as follows:  

𝑅𝑘(𝑡) = 𝐴𝑘 ∙ 𝑃𝑘(𝑡) 

The sum of the risk score 𝑅𝑘(𝑡) in a period [0, 𝜏] can be 

calculated as the integral ∫ 𝑅𝑘(𝑡)𝑑𝑡
𝜏

0
. For 𝜏 → +∞ we can 

obtain the limit overall risk score at the stage 𝑘 of the cyber-

attack cycle 𝑅𝑘,𝑡𝑜𝑡  (𝑘 = 4,… ,8) as follows: 

𝑅𝑘,𝑡𝑜𝑡 = lim
𝜏→+∞

∫𝑅𝑘(𝑡)𝑑𝑡

𝜏

0

= ∫ 𝑅𝑘(𝑡)𝑑𝑡

+∞

0

= 𝐴𝑘 ∙ 𝑇𝑘 

In order to calculate risks at each stage of the cyber-attack 

cycle the stochastic model has to be parameterized. To estimate 

the stationary probabilities, it is necessary and enough to know 

the expected values 1/𝜆𝑘𝑗. The most popular and straight-

forward solution is: 

• to ask experts in cyber security domain to assess the 
values 1/𝜆𝑘𝑗 and to base on their opinion, or  

• to analyze existed empirical data, or  

• a combination of both.  

The process of assessing the expected values is crucial, but it is 

not the primary focus of this article. 
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VI. NUMERICAL EXAMPLES: PROBABILITIES AND RISK 

SCORE 

A. Example 1 

 In order to illustrate the solution in Table I, simply suppose 

that the transition rates are 𝜆𝑘𝑗 = 𝜆  for  𝑗, 𝑘 = 0, 1, … , 8 and 𝑗 ≠

𝑘. Bases on this assumption, Table III contains the solution of 

(4) and Table IV contains probability distribution  

𝑷(𝑡) = [𝑃0(𝑡), 𝑃1(𝑡), … , 𝑃8(𝑡)] obtained by performing the 

inverse Laplace transformation 𝑷(𝑡) =  ℒ−1[𝑷∗(𝑠); 𝑡] of the 

functions from Table III.  

TABLE III 

SOLUTION OF KOLMOGOROV EQUATIONS (2) WHEN 𝜆𝑘𝑗 = 𝜆 

P*(s) if P(0+)=[0,1,0,0,0,0,0,0,0] 

P0
*(s) 0 

P1
*(s) 

1

𝑠 + 3𝜆
 

P2
*(s) 

𝜆

𝑠2 + 5𝑠𝜆 + 6𝜆2
  

P3
*(s) 

𝜆(𝑠5 + 12𝑠4𝜆 + 54𝑠3𝜆2 + 116𝑠2𝜆3 + 126𝑠𝜆4 + 58𝜆5)

𝑠(𝑠6 + 14𝑠5𝜆 + 77𝑠4𝜆2 + 212𝑠3𝜆3 + 307𝑠2𝜆4 + 219𝑠𝜆5 + 58𝜆6)
 

P4
*(s) 

𝜆(𝑠4 + 11𝑠3𝜆 + 42𝑠2𝜆2 + 65𝑠𝜆3 + 35𝜆4)

𝑠6 + 14𝑠5𝜆 + 77𝑠4𝜆2 + 212𝑠3𝜆3 + 307𝑠2𝜆4 + 219𝑠𝜆5 + 58𝜆6
 

P5
*(s) 

𝜆2(𝑠3 + 9𝑠2𝜆 + 25𝑠𝜆2 + 20𝜆3)

𝑠6 + 14𝑠5𝜆 + 77𝑠4𝜆2 + 212𝑠3𝜆3 + 307𝑠2𝜆4 + 219𝑠𝜆5 + 58𝜆6
 

P6
*(s) 

𝜆3(𝑠2 + 5𝑠𝜆 + 5𝜆2)

𝑠6 + 14𝑠5𝜆 + 77𝑠4𝜆2 + 212𝑠3𝜆3 + 307𝑠2𝜆4 + 219𝑠𝜆5 + 58𝜆6
 

P7
*(s) 

𝜆4(𝑠 + 3𝜆)

𝑠6 + 14𝑠5𝜆 + 77𝑠4𝜆2 + 212𝑠3𝜆3 + 307𝑠2𝜆4 + 219𝑠𝜆5 + 58𝜆6
 

P8
*(s) 

𝜆5

𝑠6 + 14𝑠5𝜆 + 77𝑠4𝜆2 + 212𝑠3𝜆3 + 307𝑠2𝜆4 + 219𝑠𝜆5 + 58𝜆6
 

 

Bases on results from Table II or Table III the vector 

 𝑻𝒔  =  [𝑇0, 𝑇1, … , 𝑇8] is as follows: 

𝑻𝒔 = [0,
1

3𝜆
,
1

6𝜆
,∞,

35

58𝜆
,
10

29𝜆
,

5

58𝜆
,

3

58𝜆
,

1

58𝜆
] 

The vector of the risks scores 𝑅𝑘,𝑡𝑜𝑡 , 𝑘 = 4,… ,8 is as follows: 

[𝑅4,𝑡𝑜𝑡 , … . , 𝑅8,𝑡𝑜𝑡] = [
35 ⋅ A4

58𝜆
,
10 ⋅ A5

29𝜆
,
5 ⋅ A6

58𝜆
,
3 ⋅ A7

58𝜆
,
A8

58𝜆
] 

 
TABLE IV 

PROBABILITY DISTRIBUTION 𝑃(𝑡) FOR  𝜆𝑘𝑗 = 𝜆 

P(t) if P(0+)=[0,1,0,0,0,0,0,0,0] 

P0(t) 0 

P1(t) 𝑒−3𝜆𝑡 

P2(t) 𝑒−2𝜆𝑡 − 𝑒−3𝜆𝑡  

P3(t) 
𝜆𝑡 − 𝜆2𝑡2 +

5𝜆3𝑡3

6
−

𝜆4𝑡4

2
+

13𝜆5𝑡5

60
−

47𝜆6𝑡6

720
+

𝜆7𝑡7

112
+ 𝑂(𝑡8) 

P4(t) 
𝜆𝑡 −

3𝜆2𝑡2

2
+

7𝜆3𝑡3

6
−

7𝜆4𝑡4

12
+

7𝜆5𝑡5

40
+

𝜆6𝑡6

360

−
227𝜆7𝑡7

5040
+ 𝑂(𝑡8) 

P5(t) 

𝜆2𝑡2

2
−

5𝜆3𝑡3

6
+

3𝜆4𝑡4

4
−

59𝜆5𝑡5

120
+

193𝜆6𝑡6

720
−

659𝜆7𝑡7

5040
+ 𝑂(𝑡8) 

P6(t) 

𝜆3𝑡3

6
−

3𝜆4𝑡4

8
+

9𝜆5𝑡5

20
−

55𝜆6𝑡6

144
+

431𝜆7𝑡7

1680
−

833𝜆8𝑡8

5760
+ 𝑂(𝑡9) 

P7(t) 

𝜆4𝑡4

24
−

11𝜆5𝑡5

120
+

77𝜆6𝑡6

720
−

443𝜆7𝑡7

5040
+

383𝜆8𝑡8

6720
+ 𝑂(𝑡9) 

P8(t) 
𝜆5𝑡5

120
−

7𝜆6𝑡6

360
+

17𝜆7𝑡7

720
−

5𝜆8𝑡8

252
+ 𝑂(𝑡9) 

 

Thus the total risk score 𝑅𝑡𝑜𝑡 is as follows: 

𝑅𝑡𝑜𝑡 =
35 ⋅ A4

58𝜆
+

10 ⋅ A5

29𝜆
+

5 ⋅ A6

58𝜆
+

3 ⋅ A7

58𝜆
+

A8

58𝜆
  

In order to calculate the risk scores 𝑅(𝑡) and 𝑅𝑘(𝑡) at time  

𝑡 ≥ 0 the vector of probabilities 𝑷(𝑡), 𝑡 ≥  0, should be 

calculated. The probabilities 𝑷(𝑡) are obtained by performing 

an inverse Laplace transformation 𝑷(𝑡) =  ℒ−1[𝑷∗(𝑠); 𝑡]. All 

probabilities 𝑃𝑘(𝑡), 𝑘 = 0,1, … ,8 are presented in Table IV. 

B. Example 2 

 In  this example let us consider the cyber-attack with no 

internal iterations (see Fig. 2).   In order to illustrate the solution 

(Table I) simply suppose that the transition rates are:   𝜆01 = 𝜆,  

𝜆12 = 2𝜆, 𝜆13 = 𝜆, 𝜆23 = 2𝜆,  𝜆14 = 𝜆, 𝜆24 = 6𝜆,  𝜆53 =
𝜆63 = 𝜆73 = 𝜆83 = 𝜆,  𝜆45 = 2𝜆, 𝜆56 = 4𝜆, 𝜆67 = 8𝜆, 𝜆78 =
10𝜆 and 𝜆64 = 𝜆65 = 𝜆84 = 𝜆87 = 0. 

Fig. 2. illustrates the model when the returning transitions 

between stages 𝑆8 → 𝑆7, 𝑆4 and  𝑆6 → 𝑆5, 𝑆4 are equal to zero, 

i.e. 𝜆64 = 𝜆65 = 𝜆84 = 𝜆87 = 0. 

Reconnaissance

S4

Scanning

S5

System access

S6

Malicious activity

(Installation) 

S7

Exploitation 

S8

 λ45=2λ   λ56=4λ  λ67=8λ λ78=10λ

Discovered

S1

Disclosed

S2

Patched

S3

 λ12=2λ   λ23=2λ

 λ53=λ

λ13=λ

 λ14=λ  λ63=λ λ24=6λ

 λ73=λ

 λ83=λ

Exploited 

Cyber Attack Life Cycle

Birth

S0

 λ01=λ

 

Fig. 2. Markov graph for the life cycle for example 2 

Table V contains the solution of (4) that is the vector of  

𝑷∗(𝑠) =  ℒ [𝑷(𝑡); 𝑠]  the Laplace transformation of the 

probability distribution 𝑷(𝑡) = [𝑃0(𝑡), 𝑃1(𝑡), … , 𝑃8(𝑡)] (see 

Table VI) 

Bases on results from Table V (or Table II)  the vector 𝑻𝒔  =
[𝑇0, 𝑇1, … , 𝑇8]  is as follows: 

𝑻𝒔 = [0,
1

4𝜆
,

1

16𝜆
,∞,

5

16𝜆
,
1

8𝜆
,

1

18𝜆
,

4

99𝜆
,
40

99𝜆
] 

The vector of the risks scores 𝑅𝑘,𝑡𝑜𝑡 , 𝑘 = 4,… ,8 is as follows: 

[𝑅4,𝑡𝑜𝑡, … . , 𝑅8,𝑡𝑜𝑡] = [
5 ⋅ A4

16𝜆
,
A5

8𝜆
,
A6

18𝜆
,
4 ⋅ A7

99𝜆
,
40 ⋅ A8

99𝜆
] 

The total risk score 𝑅𝑡𝑜𝑡 is as follows: 
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𝑅𝑡𝑜𝑡 =
5 ⋅ A4

16𝜆
+

A5

8𝜆
+

A6

18𝜆
+

4 ⋅ A7

99𝜆
+

40 ⋅ A8

99𝜆
 

In order to calculate the risk scores 𝑅(𝑡) and 𝑅𝑘(𝑡) at time  

𝑡 ≥ 0 the vector of probabilities 𝑷(𝑡), 𝑡 ≥  0 should be 

calculated. The probabilities 𝑷(𝑡) are obtained by performing 

an inverse Laplace transformation 𝑷(𝑡) =  ℒ−1[𝑷∗(𝑠); 𝑡]. 
Probabilities 𝑃𝑘(𝑡), 𝑘 = 0,1, … ,8 are presented in Table VI. 

TABLE V  

SOLUTION OF KOLMOGOROV EQUATIONS (2) WHEN  𝜆01 = 𝜆, 𝜆64 = 𝜆65 =
𝜆84 = 𝜆87 = 0 AND OTHERS 𝜆𝑘𝑗 ≥ 𝜆  

P*(s) if P(0+)=[0,1,0,0,0,0,0,0,0] 

P0
*(s) 0 

P1
*(s) 

1

𝑠 + 4𝜆
 

P2
*(s) 

2𝜆

𝑠2 + 12𝑠𝜆 + 32𝜆2
  

P3
*(s) 

𝜆(𝑠3 + 15𝑠2𝜆 + 40𝑠𝜆2 + 64𝜆3)

𝑠(𝑠4 + 15𝑠3𝜆 + 70𝑠2𝜆2 + 120𝑠𝜆3 + 64𝜆4)
 

P4
*(s) 

𝜆(𝑠 + 20𝜆)

𝑠3 + 14𝑠2𝜆 + 56𝑠𝜆2 + 64𝜆3 

P5
*(s) 

2𝜆2(𝑠 + 20𝜆)

𝑠4 + 19𝑠3𝜆 + 126𝑠2𝜆2 + 344𝑠𝜆3 + 320𝜆4 

P6
*(s) 

8𝜆3(𝑠 + 20𝜆)

𝑠5 + 28𝑠4𝜆 + 297𝑠3𝜆2 + 1478𝑠2𝜆3 + 3416𝑠𝜆4 + 2880𝜆5 

P7
*(s) 

64𝜆4(𝑠 + 20𝜆)

𝑠6 + 39𝑠5𝜆 + 605𝑠4𝜆2 + 4745𝑠3𝜆3 + 19674𝑠2𝜆4

+40456𝑠𝜆5 + 31680𝜆6

 

P8
*(s) 

(((640𝜆5 (𝑠 + 20𝜆))) ⁄ ((𝑠7 + 40𝑠6 𝜆 + 644𝑠5𝜆2

+ 5350𝑠4𝜆3 + 24419𝑠3𝜆4

+ 60130𝑠2𝜆5 + 72136𝑠𝜆6

+ 31680𝜆7))) 

 
TABLE VI  

PROBABILITY DISTRIBUTION 𝑃(𝑡) FOR 𝜆01 = 𝜆, 𝜆64 = 𝜆65 = 𝜆84 = 𝜆87 = 0 

AND OTHERS 𝜆𝑘𝑗 ≥ 𝜆 

P(t) if P(0+)=[0,1,0,0,0,0,0,0,0] 

P0(t) 0 

P1(t) 𝑒−4𝜆𝑡 

P2(t) 
1

2
𝑒−8𝜆𝑡(𝑒4𝜆𝑡 − 1)  

P3(t) 
1

7
𝑒−8𝜆𝑡 −

5

6
𝑒−4𝜆𝑡 +

3

2
𝑒−2𝜆𝑡 −

38𝑒𝜆(−𝑡)

21
+ 1 

P4(t) 
1

2
𝑒−8𝜆𝑡(−4𝑒4𝜆𝑡 + 3𝑒6𝜆𝑡 + 1) 

P5(t) −
1

3
𝑒−8𝜆𝑡 +

10

3
𝑒−5𝜆𝑡 − 4𝑒−4𝜆𝑡 + 𝑒−2𝜆𝑡 

P6(t) 
22

35
𝑒−9𝜆𝑡 −

4

3
𝑒−8𝜆𝑡 +

10

3
𝑒−5𝜆𝑡 −

16

5
𝑒−4𝜆𝑡 +

4

7
𝑒−2𝜆𝑡 

P7(t) 

8

315
𝑒−11𝜆𝑡(𝑒𝜆𝑡 − 1)4(−40𝑒𝜆𝑡 − 𝑒2𝜆𝑡 + 56𝑒3𝜆𝑡

+ 80𝑒4𝜆𝑡 + 20𝑒5𝜆𝑡 − 10) 

P8(t) 

2

63
𝑒−11𝜆𝑡(𝑒𝜆𝑡 − 1)5(−40𝑒𝜆𝑡 − 21𝑒2𝜆𝑡 + 55𝑒3𝜆𝑡

+ 125𝑒4𝜆𝑡 + 57𝑒5𝜆𝑡 − 8) 

 

The probabilities from Table VI are drawn in Fig. 3 – 5 for 

sample 𝜆 = 1/100.  

 

 

Fig. 3. Example 2. The probabilities 𝑃𝑘(𝑡), 𝑘 =  4, … , 8;  𝜆 = 1 100⁄  

 

 

Fig. 4. Example 2. The probabilities 𝑃𝑘(𝑡), 𝑘 =  1,2,3,8; 𝜆 = 1 100⁄  

 

 

Fig. 5. Example 2. The probabilities 𝑃𝑘(𝑡), 𝑘 =  3,7,8; 𝜆 = 1 100⁄  

CONCLUSION 

 In current literature there can be observed research results of 

software vulnerability life cycles in which a cyber-attack is 

reduced to one stage, i.e. a vulnerability was exploited. In fact, 

exploitation of an vulnerability is a symptomatic result of a 

running or pending cyber-attack that is not an time short event 

but is a process. This work addresses this deficiency by 

proposing the stochastic model of the “specific joint” life cycle 

of cyber-attack and software vulnerability. The model is 

distinguished from these published in the literature in principle 

by combining two approaches which have been researched 

separately so far. The presented research result in this paper 

should be treated as an illustration of the proposed approach of 

considering in one model two correlated phenomena referring 

to vulnerable software. 
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It is well known that nowadays cybercrime is a serious 

problem faced by many organizations both commercial and 

public (e.g. [20,22]). Since cyber burgles operate by day and 

night [23] cyber-defenders are obligated to provide firms’ 

management with cyber risk assessment reports.  It should be  

realized that today the cyber risk assessment should be a 

fundamental element of the risk management system in 

organizations since during the cyber risk assessment process we 

obtain the information indispensable to make right decisions 

concerning the strategy of handling the risk, efficient choice of 

the risk reduction measures, assessment of the transfer validity, 

acceptance or avoidance of the risk. In the author’s opinion, the 

cyber risk assessment as a continuous-time process should be 

built into real-time cyber defense systems in any organization. 

Stochastic models like this proposed in this paper may be an 

important part of cyber defense systems. Such models can be 

also used for building situational awareness of cyber security in  

organizations.   
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