Design of sparse FIR filters with low group delay

Authors

Abstract

The aim of the work is to present the method for designing sparse FIR filters with very low group delay and approximately linear-phase in the passband. Significant reduction of the group delay, e.g. several times in relation to the linear phase filter, may cause the occurrence of undesirable overshoot in the magnitude frequency response. The method proposed in this work consists of two stages. In the first stage, FIR filter with low group delay is designed using minimax constrained optimization that provides overshoot elimination. In the second stage, the same process is applied iteratively to reach sparse solution. Design examples demonstrate the effectiveness of the proposed method.

References

H. Nazaripouya, C.-C. Chu, H. R. Pota and R. Gadh, “Battery energy storage system control for intermittency smoothing using an optimized two-stage filter,” IEEE Trans. on Sustainable Energy, vol. 9, no. 2, pp. 664-675, April 2018. DOI: 10.1109/TSTE.2017.2754478.

R. Shavelis and K. Ozols, “Design of FIR Decimation Filters with Low Group Delay for Audio Applications”, 14th Biennial Baltic Electronics Conference (BEC2014), Tallinn, Estonia, October 6-8, 2014.

G. Apaydin, “Realization of reduced-delay finite impulse response filters for audio applications”, Digital Signal Processing vol. 20, no.3, pp. 620–629, 2010. DOI:10.1016/j.dsp.2009.08.015.

T. Kurbiel, D. Alfsmann and H. G. Göckler, “Design of Highly Selective Quasi-Equiripple FIR Lowpass Filters with Approximately Linear Phase and Very Low Group Delay”, 16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008.

M. R. Bai, Y. Lin and J. Lai, “Reduction of electronic delay in active noise control systems—a multirate signal processing approach”, Electronic vol. 111, pp. 916–924, 2002.

X. Lai, C. Lai, and R. Zhao, “An Iterative Approach to Near-Uniform Group-Delay Error Design of FIR filters,” IEEE Signal Processing Letters, vol. 18, no. 2, pp.107-110,Feb. 2011.

D. Babic, “Design of Narrow-band FIR Filter with Low Group Delay and Piecewise Polynomial Impulse Response”, 34th International Conference on Telecommunications and Signal Processing, Budapest, Hungary, Aug. 18-20, 2011.

C. Wu, D. Gao, and K. L. Teo, “A direct optimization method for low group delay FIR filter design”, Signal Processing, vol. 93, no. 7, pp. 1764–1772, 2013. DOI: 10.1016/j.sigpro.2013.01.015.

T. Stathaki and I. Fotinopoulos, “Equiripple minimum phase FIR filter design from linear phase systems using root moments”, IEEE Transactions on Circuits and Systems II – Analog and Digital Signal Processing vol. 48, no. 6, pp. 580–587, 2001.

X. P. Lai, “Optimal design of nonlinear-phase FIR filters with prescribed phase error”, IEEE Trans. Signal Process, vol. 57, no. 9, pp. 3399–3410, 2009. DOI: 10.1109/TSP.2009.2021639

W. S. Lu, ”Minimax design of FIR filters with low group delay using enhanced sequential quadratic programming,” in Proc. IEEE Int. Symp. Circuits Systems, 2004, vol. 3, pp. 117–120.

Z.P. Lin and Y.Z. Liu, Design of complex FIR filters with reduced group delay error using semidefinite programming, IEEE Signal Processing Letters vol. 13, pp. 529–532, 2006.

B. C. Garai, P. Das and A. K. Mishra, “Group delay reduction in FIR digital filters”, Signal Processing, vol. 91, no. 8, pp. 1812–1825, 2011. DOI: 10.1109/TSP.2009.2021639

O. Herrmann and H. W. Schuessler, “Design of nonrecursive filters with minimum phase”, Electronics Letters, vol. 6, no. 11, pp. 329–330 , 1970.

C. Rusu and J. Astola, Minimum-phase parts of zero-phase sequences, Signal Processing, vol. 89, pp. 1032–1037, 2009.

S.-C. Pei, H.-S. Lin, “Minimum-phase FIR filter design using real cepstrum”, IEEE Trans. Circuits and Systems II: Express Briefs, vol. 53, no 10, 2006, pp. 1113–1117.

W.-S. Lu and T. Hinamoto, “Digital filters with sparse coefficients,” in Proc. IEEE Int. Symp. Circuits Syst., Paris, France, May 2010, pp. 169–172.

C. Rusu and B. Dumitrescu, “Iterative reweighted l1 design of sparse FIR filters,” Signal Process., vol. 92, no. 4, pp. 905–911, Apr. 2012. DOI: 10.1016/j.sigpro.2011.09.031.

Y. Yang, W.-P. Zhu, and D. Wu, “Design of sparse FIR filters based on reweighted l1-norm minimization,” in Proc. IEEE Int. Conf. Digit. Signal Process. (DSP), Jul. 2015, pp. 858–862.

A. Jiang, H. K. Kwan, Y. Zhu, X. Liu, N. Xu, and X. Yao, “Peak-error constrained sparse FIR filter design using iterative l1 optimization,” in Proc. 24th Eur. Signal Process. Conf. (EUSIPCO), Aug. 2016, pp. 180–184.

L. Zheng, A. Jiang, and H. K. Kwan, “Sparse FIR filter design via partial l1 optimization,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2017, pp. 1–4.

A. Jiang, H. K. Kwan, Y. Tang, and Y. Zhu, “Sparse FIR filter design via partial 1-norm optimization,” IEEE Transactions on Circuits and Systems II: Express Briefs, 2019. DOI: 10.1109/TCSII.2019.2937343

W. Chen , M. Huang , W. Ye, and X. Lou, “Cascaded Form Sparse FIR Filter Design”, IEEE Transactions on Circuits and Systems–I: Regular Papers, vol. 67, no. 5, pp. 1692-1703, May 2020. DOI: 10.1109/TCSI.2020.2964568.

D. Wei and A. V. Oppenheim, “A branch-and-bound algorithm for quadratically-constrained sparse filter design,” IEEE Trans. Signal Process., vol. 61, no. 4, pp. 1006–1018, Feb. 2013. DOI: 10.1109/TSP.2012.2226450.

W. Chen, M. Huang, and X. Lou, “A branch-and-bound algorithm with reduced search space for sparse filter design,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Oct. 2018, pp. 329–332.

W. Nakamoto, T. Itani and K. Konishi “Optimal Least-Squares Design of Sparse FIR Filters for Big-Data Signal Processing,” IEEE 23rd Inter. Conf. od Digital Signal Processing, Shanghai, China, 19-21 Nov. 2018.

H. K. Kwan, J. Liang, and A. Jiang, “Sparse Linear Phase FIR Filter Design using Iterative CSA,” IEEE 23rd Inter. Conf. od Digital Signal Processing, Shanghai, China, 19-21 Nov. 2018.

R. Raju, H. K. Kwan, and A. Jiang, “Sparse FIR Filter Design Using Artificial Bee Colony Algorithm”, 61st IEEE International Midwest Symposium on Circuits and Systems, Windsor, July 2018. DOI: 10.1109/MWSCAS.2018.8624036.

T. Baran, D. Wei, A. V. Oppenheim, and L. Fellow, “Linear programming algorithms for sparse filter design”, IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1605–1617 , 2010. DOI: 10.1109/TSP.2009.2036471.

W. Ye and Y.J. Yu, “Greedy algorithm for the design of linear-phase FIR filters with sparse coefficients”, Circuits, Syst. Signal Process., vol. 35, no. 4, pp. 1427–1436, 2016. DOI 10.1007/s00034-015-0122-5.

A. Jiang, H. K. Kwan, Y. Zhu, X. Liu, N. Xu, and Y. Tang, “Design of sparse FIR filters with joint optimization of sparsity and filter order”, IEEE Trans. Circuits Syst. I Regul. Pap., vol. 62, no. 1, pp. 195–204 , 2015. DOI: 10.1109/TCSI.2014.2354771.

W. Chen, M. Huang, and X. Lou, “Design of sparse FIR filters with reduced effective length,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 4, pp. 1496–1506, Apr. 2019. DOI: 10.1109/TCSI.2018.2883965.

R. Matsuoka, S. Kyochi, S. Ono, and M. Okuda, “Joint sparsity and order optimization based on ADMM with non-uniform group hard thresholding,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 5, pp. 1602–1613, May 2018. DOI: 10.1109/TCSI.2017.2763969.

A. Jiang, H. K. Kwan, X. Liu, and Y. Zhu, “Sparse Minimum-Phase FIR Filter Design by SDP”, IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor 2017.

Y. C. Lim and Y. Lian, “The optimum design of one- and two-dimensional FIR filters using the frequency response masking technique”, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 40, pp. 88–95, Feb. 1993.

Y. Neuvo, D. Cheng-Yu, and S. Mitra, “Interpolated finite impulse response filters,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32, no. 3, pp. 563–570, Jun. 1984.

W. Chen, M. Huang, and X. Lou , Sparse FIR Filter Design Based on Interpolation Technique, IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19-21 Nov. 2018.

J. Konopacki and K. Mościńska, “Design of sparse narrowband FIR filters with very low group delay”, Przegląd Elektrotechniczny, no 9, pp. 103-106, 2019. DOI:10.15199/48.2019.09.20.

W. Chen, M. Huang, and X. Lou, “Sparse FIR filter design based on cascaded compensation structure,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019, pp. 1–5.

M. Grant and S. Boyd. “CVX: MATLAB software for disciplined convex programming,” version 2.1 Mar. 2014 [Online]. Available: http://cvxr.com/cvx.

Downloads

Published

2024-04-19

Issue

Section

Digital Signal Processing