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Abstract—This paper represents a developed cryptographic 

information protection algorithm based on a substitution-

permutation network. We describe the cryptographic 

transformations used in the developed algorithm. One of the 

features of the algorithm is the simplicity of its modification with 

regard to different security levels. The algorithm uses a pre-

developed S-box tested against differential and linear 

cryptanalysis. The S-box is consistent with one of the known 

standards AES and GOST R 34.12-2015. We provide the findings 

of an avalanche-effect investigation and statistical properties of 

ciphertexts. The algorithm actually meets the avalanche-effect 

criterion even after the first round. 

 
Keywords—encryption, cryptanalysis, S-box, SP-network, 

avalanche effect, statistical property 

I. INTRODUCTION 

YMMETRIC block encryption algorithms are today the 

principal cryptographic tool for ensuring confidentiality in 

data processing in up-to-date information and 

telecommunication systems [1,2]. Modern symmetric block 

ciphers are mainly built based on two approaches: Feistel 

network and substitution-permutation network (SP-network). 

As is known, ciphers are based on reversible transformations 

of plaintext. When working on ciphers, care must be exercised 

that every operation performed is both cryptographically 

robust and reversible under a known key [3]. 

Present-day ciphers are based on the Kerckhoffs' Principle 

[4] that the security of a cipher is ensured by keeping secret the 

key, but not the encryption algorithm. From the viewpoint of 

an adversary, a secure cryptosystem is a "black box", the input 

and output information sequences of which are mutually 

independent, provided that the output encrypted sequence is 

pseudorandom [5,6]. Thus, a ciphertext obtained is 

investigated for pseudorandomness by using statistical tests 
 

 
This work was supported within the framework of the project BR05236757 

“Development of software and software-hardware means for cryptographic 

protection of information during its transmission and storage in general-
purpose info-communication systems and networks”, which is being 

implemented at the Institute of Information and Computer Technologies. 

Rustem. G. Biyashev (e-mail: brg@ipic.kz), Nursulu A. Kapalova  
(e-mail: nkapalova@mail.ru), Dilmuhanbet S. Dyusenbayev (e-mail: 

dimash_dds@mail.ru), Kunbolat T. Algazy (e-mail: kunbolat@mail.ru) are with 

with Institute of Information and Computational Technologies of the Committee of 
Science of the Ministry of Education and Science of the  Republic of Kazakhstan, 

Almaty; 

Waldemar Wojcik (e-mail: waldemar.wojcik@pollub.pl), Andrzej Smolarz 
(e-mail: a.smolarz@pollub.pl) are with Lublin University of Technology, 

Lublin, Poland. 

(testing). It is analyzed the dependence of changes in the 

ciphertext when changing characters or bits in the original 

plaintext or key. Different types of such an analysis are aimed 

to detect statistical particularities or any dependence between 

characters of the plaintext and the ciphertext. 

In the cryptographic information protection facilities in use, 

the length of a message secured with a symmetric block cipher 

generally far exceeds the length of an encryption key. In this 

situation, the criterion of unconditional security of the utilized 

cipher is not fulfilled [5-9]. Against this background, the 

strength of an encryption algorithm is based on the assumption 

that an adversary has time and computer power limits. This 

implies the definition of practical strength criterion, i.e. it is 

impossible for a long time to implement an attack on a cipher 

within the conditions of present-day computing base. 

Block ciphers are also used as a base unit to build other 

cryptographic algorithms (primitives), such as pseudorandom 

sequence generators (PRNG), stream ciphers, and hash 

functions. The level of strength and the properties of the 

symmetric block encryption algorithm in use govern to a large 

extent the strength of cryptographic information protection 

facilities, the security of cryptographic protocols, and 

protection of an information and communication system as a 

whole [5-9]. 

A secure block cipher should meet certain conditions. These 

conditions were given by Claude Shannon in a number of his 

fundamental papers on the theory of encryption [10-12]. A 

secure cipher should have the properties of diffusion and 

confusion. 

Diffusion means that one character (bit) of an input plaintext 

affects several characters (bits) of the resulting ciphertext, 

ideally, all the characters within one block. If this condition is 

fulfilled, then the encryption of two data blocks with minor 

differences between them should produce two completely 

different blocks of ciphertext. The same requirement should be 

held between ciphertext and key, i.e. one character (bit) of the 

key should affect several characters (bits) of the ciphertext. 

Diffusion obscures relationships between the ciphertext and 

the original text. 

Confusion refers to the property of a cipher to obscure the 

connections between characters of the original text and its 

ciphertext. If a cipher produces a reasonably good "confusion" 

of the bits of the original text, then the respective ciphertext 

does not feature any statistical or functional regularity. 

Confusion obscures the relationship between the encrypted text 

and the key. 
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In view of the above, a symmetric block encryption 

algorithm based on an SP-network was developed. We called 

the new algorithm Qamal. 

II. ENCRYPTION ALGORITHM QAMAL 

The block diagram of the developed encryption algorithm is 

presented in Figure 1. The algorithm supports the sizes of 

block and key of 128, 192 and 256 bits. The number of 

encryption rounds depends on the size of the block and key. 

For keys K with the length of 128, 192, and 256 bits, the 

number of encryption rounds is 8, 10, and 12 respectively. All 

rounds are completed with modulo 2 additions to the round 

key. The encryption algorithm includes the developed 

procedures (primitives) of key applying by bitwise addition 

(XOR), substitution S-box, and mixing procedures Mixer1 and 

Mixer2. 
 

 
Figure 1. Qamal encryption algorithm block diagram 

In the first procedure, the operation of applying (addition to) a 

key modulo 2 (XOR operation) on a plaintext block is 

performed.  

The second procedure is the formation of a substitution S1-

box, where a nonlinear transformation on bytes is performed, 

i.e. a nonlinear bijective substitution is applied to each byte. 

The resulting S1-box is shown in Table I. 

The third procedure is the formation of Mixer1 box. The box 

bytes are represented by a two-dimensional array А of size 

𝑚 × 4,  where  𝑚 takes the value of 4, 6 or 8 depending on the 

initial block size. 

 A = [

a00 a01 a02 a03

a10 a11 a12 a13

. . . .
am0 am1 am2 am3

].  

The bytes of each column are added to each other modulo 256:  

 M1(bij) = ∑ aij mod 256m
i=0 , j = 0,3.  

Then the new byte obtained in the first column replaces the 

uppermost byte 𝑎00, while all the original bytes of the column 

rotate downshift of one position. This operation is repeated m 

times. As a result, we get m new bytes in the first column. 

Next, the operation is performed for the other three columns 

(Figure 2).  

 
Figure 2. Mixer1 box workflow 

TABLE I.  

SUBSTITUTION TABLE FOR S1-BOX 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 C9 34 F0 18 55 86 21 6B 87 D2 6E 99 BD 31 98 89 

1 29 73 83 8B 1A 19 E1 E4 F3 5B 72 3F A6 F9 2E A3 

2 7E 10 94 07 EC AD 2F 26 20 93 66 3D DD 64 5F C1 

3 13 E0 80 25 D3 08 75 6A B9 2D D1 CC FD CA 3B FC 

4 D5 DA E2 CE A0 7F AE C8 9C 09 3C 95 BA 35 3E 7B 

5 FA 8D 23 AB D9 E8 74 2A C3 A8 D8 52 45 B5 0A 0C 

6 A4 61 9A FB AA F6 78 84 C4 E9 EE 54 50 81 DF 90 

7 36 B4 BB 44 C5 96 4B 28 14 E6 8F FF B0 1F 53 47 

8 00 4C 40 2C 9B 9F 4A 01 7D AF 92 56 7A DB 8E 16 

9 63 24 A9 1D 33 4D E7 1C 70 69 B7 C6 32 E5 57 03 

A 97 A5 EB D4 BC 5D F8 85 06 F2 59 F4 17 22 38 DC 

B 0B FE BE CD 41 82 04 0E 48 71 30 AC EF C7 2B CB 

C B8 8C 5A 42 A7 4E D0 46 BF B3 91 E3 11 7C 6F DE 

D 88 58 1E 5C 9D 60 C0 62 05 79 ED 76 C2 02 65 D7 

E F1 8A 77 F7 37 B1 0F 67 CF 0D A1 6C 4F 3A 39 1B 

F 27 B6 5E F5 EA 6D 15 9E B2 12 A2 68 43 51 49 D6 

 

The fourth procedure is the transformation of Mixer2. As a 

consequence of the formation of Mixer1 box, we get the new 

array 𝐵 of size 𝑚 × 4, where m takes on values of 4, 6 or 8 

depending on the block size: 

 B = [

b00 b01 b02 b03

b10 b11 b12 b13

. . . .
bm0 bm1 bm2 bm3

].  

Each row of the array is represented in the form of a cubic 

polynomial with the coefficients from the finite field 𝐺𝐹(28). 

These polynomials appear as follows: 

 bi(x) = bi0x3 + bi1x2 + bi2x + bi3, i = 0, . . . ,3 .  

 Each polynomial 𝑏𝑖(𝑥) multiplies by fixed (preselected) 

polynomials 𝑚𝑖(𝑥)  modulo  𝑝(𝑥): 

 m0(x) = 168  x3 + 34x2 + 187x + 186, 

 m1(x) = 210x3 + 53x2 + 210x + 101, 

 m2(x) = 218x3 + 25x2 + 150x + 210,  

 m3(x) = 144x3 + 75x2 + 158x + 27,  

 m4(x) = 163x3 + 4x2 + 111x + 106,  

 m5(x) = 150x3 + 237x2 + 13x + 53,  

 m6(x) = 99x3 + 59x2 + 104x + 205, 

 m7(x) = 167x3 + 49x2 + 241x + 154,  

 p(x) = x4 + x + 55.  

The polynomials 𝑚𝑖(𝑥) are used in the following manner. If 

the size of the plaintext block is 128 bits, then the first four 

polynomials 𝑚0(𝑥), 𝑚1(𝑥), 𝑚2(𝑥), 𝑚3(𝑥) are selected. For 

the block size of 192 bits, the first 6 polynomials  𝑚0(𝑥), 
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𝑚1(𝑥), 𝑚2(𝑥), 𝑚3(𝑥), 𝑚4(𝑥), 𝑚5(𝑥) are taken. For the third 

possible block size, all the eight polynomials are used.  

III. DECRYPTION ALGORITHM QAMAL 

To decrypt a ciphertext, all the cryptographic transformations 

used for encryption are inverted and applied in the decryption 

algorithm in reverse order. Round keys are also used in reverse 

order. In the process of decryption, for each above-mentioned 

block size, it is performed respectively 8, 10 and 12 rounds 

with inverse operations InvS, InvMixer1, and InvMixer2 in 

each round. 

Operation InvS is the inverse of the operation of obtaining 

elements in the S-box. Bytes of the S-box array are replaced 

with new bytes obtained through the inverse substitution. As a 

result, we get the inverse S-box. 

Operation InvMixer1 is inverse of the transformation 𝑀1(𝑏𝑖𝑗).  

Operation InvMixer2 is a procedure inverse to the one for 

obtaining Mixer2 box. To obtain the inverse box of Mixer2, 

each row of the array is considered as a four-termed 

polynomial over 𝐺𝐹(28). This polynomial multiplies by fixed 

polynomials modulo polynomial 𝑝(𝑥): 

 m0
−1(x), m1

−1(x), m2
−1(x), m3

−1(x),  

 m4
−1(x), m5

−1(x), m6
−1(x), m7

−1(x).   
 

TABLE II 

 INVS (S1-BOX INVERSION) 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 80 87 DD 9F B6 D8 A8 23 35 49 5E B0 5F E9 B7 E6 
1 21 CC F9 30 78 F6 8F AC 03 15 14 EF 97 93 D2 7D 

2 28 06 AD 52 91 33 27 F0 77 10 57 BE 83 39 1E 26 

3 BA 0D 9C 94 01 4D 70 E4 AE EE ED 3E 4A 2B 4E 1B 
4 82 B4 C3 FC 73 5C C7 7F B8 FE 86 76 81 95 C5 EC 

5 6C FD 5B 7E 6B 04 8B 9E D1 AA C2 19 D3 A5 F2 2E 

6 D5 61 D7 90 2D DE 2A E7 FB 99 37 07 EB F5 0A CE 
7 98 B9 1A 11 56 36 DB E2 66 D9 8C 4F CD 88 20 45 

8 32 6D B5 12 67 A7 05 08 D0 0F E1 13 C1 51 8E 7A 
9 6F CA 8A 29 22 4B 75 A0 0E 0B 62 84 48 D4 F7 85 

A 44 EA FA 1F 60 A1 1C C4 59 92 64 53 BB 25 46 89 

B 7C E5 F8 C9 71 5D F1 9A C0 38 4C 72 A4 0C B2 C8 
C D6 2F DC 58 68 74 9B BD 47 00 3D BF 3B B3 43 E8 

D C6 3A 09 34 A3 40 FF DF 5A 54 41 8D AF 2C CF 6E 

E 31 16 42 CB 17 9D 79 96 55 69 F4 A2 24 DA 6A BC 
F 02 E0 A9 18 AB F3 65 E3 A6 1D 50 63 3F 3C B1 7B 

IV. ROUND KEY GENERATION ALGORITHM  

Round keys 𝐾𝑖 are generated from the cipher key K with the 

use of the key extension procedure. Eventually, we get an 

array of round keys, which is then used to select a needed 

round key. The scheme for obtaining round keys is presented 

in Figure 3. 

The procedure of generating round keys involves all the 

transformations used in the process of encryption, save a 

different substitution table (S2-box, Table III), and a new 

transformation Module pi(x).  

Module pi(x). Let 𝑝1(𝑥), 𝑝2(𝑥), … , 𝑝𝑆(𝑥) be binary irreducible 

polynomials used as working bases (not to be confused with 

modulo 𝑝(𝑥) used in Mixer2), and 𝑃(𝑥) =
𝑝1(𝑥) 𝑝2(𝑥) … 𝑝𝑆(𝑥). The polynomial 𝑃(𝑥) degree 𝑁 = 𝑚1 +
𝑚2 + ⋯ + 𝑚𝑆 is equal to the block size (i.e. 128, 192, 256). 

The output data from the Mixer2 box we represent in the form 

of binary polynomial 𝑁(𝑥). Here 𝑘1(𝑥), 𝑘2(𝑥), … , 𝑘𝑠(𝑥) are 

remainders of dividing polynomial 𝑁(𝑥) by respective bases 

𝑝𝑖(𝑥), 𝑖 = 1, … , 𝑠, where 𝑝𝑖(𝑥), 𝑖 = 1, … , 𝑠 are secret elements 

of the key schedule procedure.   

 

 
Figure 3 – Key Ki extension scheme, where i =0,1,…,6 ( 8,10) 

V.  EXPERIMENTAL TESTS OF THE AVALANCHE EFFECT 

When developing encryption algorithms, it is imperative to 

analyze them for their strength against various types of 

cryptographic attacks. Among the most common standard 

methods at present are attacks based on linear and differential 

cryptanalysis. The essence of the latter is to track the change in 

the difference between the values of the output bits depending 

on the change in the input bits (in the original data) on 

different rounds of transformation. A necessary condition for 

ensuring the strength of an encryption algorithm against 

differential cryptanalysis is the presence of the avalanche 

effect in the basic transformation. 

The avalanche effect is an important cryptographic property 

for encryption, wherein small changes in the input bits or key 

bits result in avalanche changes in the output ciphertext bits. If 

an algorithm fails to provide the avalanche effect to a required 

level, then a cryptanalyst can make predictions about the input 

data, being given the output. To estimate the degree of the 

avalanche effect in the transformation, an avalanche parameter 

was determined and used – the numerical value of the 

deviation of the probability of a bit change in the output 

sequence in response to a bit change in the input sequence 

from the required probability value equal to 0.5 [13]. For the 

avalanche-effect criterion, the value of the avalanche 

parameter is determined by the formula ε = |2ki − 1|, where i 

is the sequence number of the altered bit in the input, 𝑘𝑖 is the 

probability that half the output bits are changed following a 

change in the i-th input bit compared to the output value for 

the initial (unchanged) input value.   

The formula shows that the extremity ε can take values from 0 

to 1 inclusive. The closer ε is to zero, the better is the 

algorithm. And vice versa, the closer the value of ε is to 1, the 

weaker is the algorithm. 
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TABLE III 

S2-BOX USED IN GENERATING ROUND KEYS 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 55 A8 78 9C C3 ED B1 DE CD 2C 09 51 27 2D 43 C2 

1 CA 45 3A CE 7B 79 84 7D BF E6 69 1F 5E CB 9E E2 

2 49 38 8E 7C 31 DF 98 42 91 57 90 A6 BD F1 41 AC 

3 20 96 8C C7 4B BE 70 E9 D0 4D 1A A1 B0 DA 5D D3 

4 88 B5 30 47 6B 35 12 B2 B4 17 10 A2 60 9B 0D FD 

5 E4 C6 54 EB B7 B9 7F AF 21 5C D4 99 5F 3E A9 F3 

6 3C C0 67 13 6A 2F 1C 29 89 58 73 EC 14 39 D8 4E 

7 44 02 59 23 F2 0C FC AB 74 87 92 36 82 04 16 0E 

8 BB 01 F6 15 E7 DC 8F 07 4A FF 65 1B 25 8B 75 D7 

9 A5 7A A7 FA 24 E5 AE 61 CF 9D 32 66 AA 05 D2 62 

A 8D C4 4F 26 06 0A D9 7E F7 E3 F0 34 40 0F FB 1E 

B 6F A3 D1 BA 95 3D 33 71 83 18 E0 CC 2B A0 D5 28 

C E1 64 9F 97 4C A4 76 B3 19 08 68 C1 22 1D B8 8A 

D E8 50 00 C9 46 56 5A 72 F5 3B 63 94 93 9A 0B AD 

E DD C8 FE 5B 53 85 6E EE 86 80 F9 52 81 11 2A 48 

F C5 EA EF DB B6 3F 37 77 6D 03 2E D6 F4 BC F8 6C 

 

The structure of the Qamal encryption algorithm consists of 

the procedures of key addition using bitwise addition (XOR), 

substitution S-box, and mixing Mixer1 and Mixer2. Consider 

an example of how the transformations used in the algorithm 

affect the avalanche effect.  

As an input, we take two plaintexts that differ from each other 

by only one bit. To encrypt them, we use the same key. We 

find out how this change is diffused to half the block in one 

round: 

Plaintext 1(Т1) – {00 00 00 00 00 00 00 00} 

Plaintext 2(Т2) – { 01 00 00 00 00 00 00 00} 

Key – {CD BF 03 36 9E AD 5E F3} 

Т1⊕К  – {CD BF 03 36 9E AD 5E F3} 

Т2⊕К – {CC BF 03 36 9E AD 5E F3} 

S(Т1⊕К) – {7C CB 18 75 57 22 0A F5} 

S(Т2⊕К) – {11 CB 18 75 57 22 0A F5} 

M1 S(Т1⊕К) – {EB 12 90 D9 21 1A 4D E7} 

M1 S(Т2⊕К) – {93 12 90 D9 75 1A 4D E7} 

M2 M1 S(Т1⊕К) – {B8 55 8B 3E 22 C3 50 38} 

M2 M1 S(Т2⊕К) – {40 F9 93 A8 16 3D 55 C0}.  

 

The first selected plaintext in binary representation consists of 

only zeros. The second plaintext also consists of zeros, with 

the exception of the eighth bit. Bitwise addition operation 

(XOR) does not affect the propagation of changes. A change of 

one bit in the substitution S-box impacts only on one byte, and 

in the operation Mixer1 – on every fourth byte. After the above 

operations, the Mixer2 operation is performed resulting in the 

change of the entire ciphertext. Specific numerical 

characteristics are given below. 

The developed algorithm was tested for the avalanche effect. 

For testing purposes, a random 128-bit plaintext was selected. 

After the inversion of one bit in each position, 128 new 

plaintexts were obtained, and all the texts were then encrypted. 

The probabilities 𝑘𝑖 between the obtained ciphertexts and the 

original one were calculated after each round. The results of 

the analysis after the first and eighth rounds are given below 

(Tables IV and V). The average value of 𝜀 was 0.07 and 0.062 

respectively. The smaller the value of the avalanche parameter, 

the stronger the avalanche effect is in the transformation.  

The generated keys were also tested for the avalanche effect by 

changing the key bits in the same way as in the plaintext. The 

results obtained were also positive. The analysis results are 

represented in Figure 4. As could be seen from Figure 4, the 

value of 𝑘𝑖 is within the interval of (0.4; 0.6).  

If the cipher operates with the information presented in binary 

form, then inverting even one bit in the block of original data 

will result in independent changing the values of all bits in the 

corresponding block of encrypted data with the probability of 

1/2. It is impossible to break such a cipher in a way less 

expensive in terms of the number of necessary operations than 

exhaustive search over the set of possible key values. This 

condition is mandatory for the cipher of the type in question, 

which claims to be considered good [13]. 

 
 

 
Figure 4. Analysis of the avalanche effect for a key in the full-round algorithm 

Diagrams of ki values for index i: a) from 1 to 64, b) from 65 to 128 
 

 

TABLE IV 

ANALYSIS OF THE AVALANCHE EFFECT FOR THE QAMAL ALGORITHM 

AFTER THE FIRST ROUND 

i ki i ki i ki i ki 

1 0,48 33 0,40 65 0,47 97 0,51 

2 0,46 34 0,45 66 0,44 98 0,49 

3 0,50 35 0,47 67 0,46 99 0,44 

4 0,53 36 0,48 68 0,45 100 0,55 

5 0,62 37 0,49 69 0,45 101 0,55 

6 0,48 38 0,53 70 0,48 102 0,41 

7 0,48 39 0,44 71 0,50 103 0,47 

8 0,47 40 0,46 72 0,56 104 0,48 

9 0,46 41 0,57 73 0,46 105 0,49 

10 0,48 42 0,50 74 0,57 106 0,52 

11 0,55 43 0,46 75 0,44 107 0,57 

12 0,44 44 0,55 76 0,49 108 0,48 

13 0,48 45 0,49 77 0,49 109 0,57 

14 0,44 46 0,52 78 0,48 110 0,44 

15 0,55 47 0,48 79 0,48 111 0,51 

16 0,52 48 0,56 80 0,47 112 0,45 

17 0,40 49 0,55 81 0,53 113 0,44 

18 0,51 50 0,46 82 0,48 114 0,52 

19 0,51 51 0,49 83 0,51 115 0,55 

20 0,43 52 0,51 84 0,50 116 0,55 

21 0,42 53 0,48 85 0,45 117 0,52 

22 0,45 54 0,48 86 0,53 118 0,47 

23 0,45 55 0,44 87 0,41 119 0,52 

24 0,58 56 0,47 88 0,54 120 0,42 

25 0,47 57 0,52 89 0,50 121 0,49 

26 0,52 58 0,50 90 0,47 122 0,50 

27 0,45 59 0,53 91 0,54 123 0,45 

28 0,52 60 0,51 92 0,51 124 0,49 

29 0,54 61 0,63 93 0,52 125 0,49 

30 0,52 62 0,51 94 0,51 126 0,53 

31 0,52 63 0,54 95 0,53 127 0,59 

32 0,51 64 0,48 96 0,48 128 0,54 
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TABLE V 

ANALYSIS OF THE AVALANCHE EFFECT FOR THE QAMAL ALGORITHM 

AFTER THE EIGHTH ROUND 

i ki i ki i ki i ki 

1 0,48 33 0,50 65 0,46 97 0,52 

2 0,52 34 0,54 66 0,50 98 0,54 

3 0,43 35 0,48 67 0,51 99 0,46 

4 0,48 36 0,52 68 0,51 100 0,41 

5 0,44 37 0,44 69 0,42 101 0,54 

6 0,48 38 0,49 70 0,46 102 0,46 

7 0,48 39 0,50 71 0,50 103 0,51 

8 0,50 40 0,56 72 0,41 104 0,52 

9 0,49 41 0,48 73 0,52 105 0,56 

10 0,48 42 0,48 74 0,50 106 0,55 

11 0,52 43 0,48 75 0,45 107 0,51 

12 0,45 44 0,55 76 0,41 108 0,45 

13 0,52 45 0,49 77 0,41 109 0,48 

14 0,52 46 0,45 78 0,54 110 0,50 

15 0,50 47 0,48 79 0,55 111 0,52 

16 0,50 48 0,54 80 0,52 112 0,53 

17 0,47 49 0,52 81 0,45 113 0,54 

18 0,49 50 0,52 82 0,52 114 0,57 

19 0,49 51 0,48 83 0,55 115 0,58 

20 0,53 52 0,49 84 0,53 116 0,50 

21 0,56 53 0,50 85 0,52 117 0,50 

22 0,48 54 0,54 86 0,45 118 0,45 

23 0,51 55 0,48 87 0,56 119 0,55 

24 0,50 56 0,47 88 0,53 120 0,58 

25 0,55 57 0,47 89 0,52 121 0,45 

26 0,51 58 0,48 90 0,46 122 0,46 

27 0,50 59 0,47 91 0,54 123 0,43 

28 0,49 60 0,55 92 0,52 124 0,48 

29 0,50 61 0,49 93 0,48 125 0,49 

30 0,43 62 0,49 94 0,48 126 0,45 

31 0,45 63 0,48 95 0,56 127 0,60 

32 0,54 64 0,47 96 0,47 128 0,49 

VI. CIPHERTEXT TESTING FOR STATISTICAL SECURITY 

In the process of developing ciphers, the task of analyzing their 

cryptographic properties arises, one of the stages of which is 

statistical testing. To automate this stage, it is necessary to 

have a standardized methodology so that the results of 

statistical testing of various ciphers can be compared [14]. 

Of particular importance in cryptography is the task of 

statistical testing of a numerical sequence. To date, there is no 

single standard set of criteria for evaluating the properties of 

bit sequences. Various statistical tests evaluate to what extent a 

bit sequence under consideration is “similar” or “not similar” 

to a truly random sequence. In each such test, the so-called null 

hypothesis of the randomness of the sequence is checked (the 

alternative hypothesis assumes that the sequence is not 

random). In this case, the significance level α is set, i.e. the 

probability of a false-negative result and 0.01 or 0.001 is often 

used as the value for this level. To evaluate the sequence in 

each statistical test, the so-called P-value is calculated – the 

probability that an ideal random sequence generator will 

generate a sequence “less random” than the sequence being 

studied. The sequence randomness hypothesis is accepted if P-

value ≥ α, otherwise it is rejected. 

The methods for assessing the quality of random and pseudo-

random sequence generators can be divided into two groups: 

1) Graphical tests. The properties of sequences are represented 

in the form of graphical dependencies, by the form of which 

conclusions are drawn about the proximity of the sequence 

under consideration to a random one. 

The following tests can be attributed to this category: a 

histogram of the distribution of sequence elements, plane 

distribution, monotonicity testing, etc. 

2) Assessment tests. The statistical properties of sequences are 

determined by numerical characteristics. Based on the 

assessment criteria, conclusions are made about the degree of 

proximity of the properties of the analyzed and truly random 

sequences. Unlike graphical tests, where the results are 

interpreted by users with possible differences in their 

interpretation, assessment tests provide a numerical 

characteristic that unambiguously determines whether the test 

is passed or not. 

To test sequences for randomness, there are a large number of 

algorithms, and for convenience, software products containing 

some test suites have already been implemented. Among them, 

the most common tests are NIST STS, DIEHARD, CRYPT-X, 

tests by D.  Knuth, and others. 

One of the first sets of statistical tests was proposed by D. 

Knuth in 1969 in his classic work “The Art of Computer 

Programming”. The tests are based on the χ2 statistical 

criterion. The calculated value of the χ2 statistics is compared 

with tabular results and a conclusion is drawn about the quality 

of the sequence. The advantages of these tests are their small 

number and the existence of fast algorithms for their 

execution. 

A ciphertext, subject to its statistical properties, should not 

differ from a random sequence. The process of investigation of 

the statistical properties of ciphertexts comprises the following 

sequential procedures [5,15,16]: 

- Plaintext encryption; 

- Execution of the set of statistical tests for the ciphertexts 

obtained; 

- Analysis of the statistical testing results for the ciphertexts; 

- Decision on the properties of the ciphertexts obtained. 

The computer-based testing was conducted by means of the 

"Computer-aided system for selecting statistical tests and 

graphical tests" software package. To investigate statistical 

properties, graphical and assessment tests were applied. 

For the computer-based testing of the algorithm we used:  

- 20 files differing by their sizes and extensions; 

- 10 different keys. 

By using the selected keys and plaintexts we obtained 200 

ciphertexts, and then tested them for statistical security. For 

this purpose, a developed software package was used, which 

embodied a quality evaluation system for encrypted texts 

based on graphical and assessment tests. 

The results of graphical tests are interpreted by users, so a 

disparate treatment thereof is possible. Contrastingly, the 

assessment tests output a specific numerical rating, which 

makes it possible to uniquely determine if a test has been 

passed or not. 

The histogram of the assessment tests is shown in Figure 5. 

The results of assessment tests are as follows: the criteria of 

equidistribution test (frequency test), serial test, serial by 

character test, gap test, poker test (partition test), coupon 

collector's test, permutation test, run test, and serial correlation 

test were met by 95%, 98%, 96%, 95%, 98%, 96%, 98%, 95%, 

100% of ciphertexts respectively. 
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Figure 5. Assessment testing results 

VII. CONCLUSION 

Modern block encryption algorithms are subject to the 

requirements related to their applicability, feasibility, and other 

factors. The benefits of the developed algorithm are as follows: 

the algorithm could be effectively implemented in special-

purpose hardware, intended for the execution of encryption 

and decryption operations; it could be easily modified for 

different levels of security; the transformations used in the 

algorithm allow for parallel computing (encryption). The 

results of conducted analyses showed that a minor change in 

an original message gives rise to a strong change in the 

encrypted message even with the use of the same key. This 

cipher property obscures the relationships between the 

characters of the original text and ciphertext.  

From the viewpoint of an adversary, a secure cryptosystem is a 

black box, input and output information sequences of which 

are mutually independent, provided that the output ciphered 

sequence is pseudorandom. Thus, a ciphertext obtained is 

investigated for pseudo randomness by using statistical tests 

(testing) and cryptanalytic techniques. The statistical tests 

showed that the ciphertexts exhibit good statistical properties. 

When developing encryption algorithms, it is imperative to 

analyze them in terms of the strength against different 

cryptographic attacks. Among the most commonly used at 

present standard methods are attacks based on the linear and 

differential cryptanalysis [17-20]. The developed algorithm 

was investigated against these attacks. As is known, the 

strength of most algorithms against differential and linear 

analysis is secured by their S-boxes. This triggered a large 

number of studies concerning the properties of S-boxes. The 

algorithm uses pre-developed and investigated S-boxes. The 

findings are described in [21-23]. The study of the 

cryptostrength of the algorithm begins with the cryptanalysis 

of each transformation separately. Then, depending on the 

results obtained, an analysis of the entire algorithm, i.e. for the 

whole round transformation, is conducted. The study of the 

algorithm strength for separate procedures showed good 

results, which suggest the cryptographic strength of the 

developed algorithm and the possibility to study the algorithm 

comprehensively, i.e. considering all transformation 

procedures and rounds. We continue the work on the security 

of the algorithm, and the results obtained will be available in 

the coming papers. 
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