
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2021, VOL. 67, NO. 2, PP. 155-161 

Manuscript received August 17, 2020; revised April, 2021                                  DOI: 10.24425/ijet.2021.135958 

 

 

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0, 

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited. 
 

 

  

Abstract—The article considers the problem of stability of 

interval-defined linear systems based on the Hurwitz and Lienard-

Shipar interval criteria. Krylov, Leverier, and Leverier-

Danilevsky algorithms are implemented for automated 

construction and analysis of the interval characteristic 

polynomial. The interval mathematics library was used while 

developing the software. The stability of the dynamic system 

described by linear ordinary differential equations is determined 

and based on the properties of the eigenvalues of the interval 

characteristic polynomial. On the basis of numerical calculations, 

the authors compare several methods of constructing the 

characteristic polynomial. The developed software that 

implements the introduced interval arithmetic operations can be 

used in the study of dynamic properties of automatic control 

systems, energy, economic and other non-linear systems. 

 
Keywords—automatic control system, stability, matrix, minor, 

characteristic polynomial, Hurwitz criterion, Lienard-Shipard 

criterion of interval mathematics, Lyapunov function 

I. INTRODUCTION 

N general mechanics research, many new directions have 
recently emerged that related to the possibilities of analyzing 
dynamic systems through the use of computer technology. 

This made it possible to solve the following problems relevant 
from the point of view of applications: development of software 
for automated design of automatic control systems [1, 2], 
computer verification of analysis and synthesis of systems with 
the required properties [3, 4], analytical solutions to some 
applied problems based on the application of methods and 
software of computer algebra [5, 6]. 

The concept of stability plays an important role in the 
analysis of dynamic systems. Stability is usually understood as 
the property of a system or a state to persist with small changes 
in the initial States, external influences, system parameters, etc. 
The Foundations of the theory of stability were laid By L. Euler.  

The modern theory of stability is based on Lyapunov's 
definition of motion stability as the most General one, which 
determined both the scope and content of the problems covered 
by the modern theory of stability, and the development of 
qualitative methods for studying differential equations in 
relation to solving these problems. 
Mathematical analysis of real mechanical systems gives some 
error. This is due to the fact that in reality the parameters of a 
mechanical system cannot be set with greater accuracy. Any 
error, for example, in mass, in the size of links, etc. affects the 
nature of the system's movement, its stability, and other 
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important dynamic characteristics. As you know, the stability 
criterion is divided into two large groups: algebraic and 
frequency. The algebraic criteria are based on the analysis of 
the characteristic equation of the matrix itself. Such criteria are, 
for example, the well-known Raus-Hurwitz stability criteria. 
Frequency criteria allow you to determine the stability of the 
system using analytical or experimental research of the 
frequency characteristics of the elements of this system. The 
Mikhailov and Nyquist criteria are popular in technical 
applications for this group. However, all these criteria do not 
take into account the fact that these physical parameters are 
measured with some error. A strict analytical method for 
investigating the stability of nonlinear systems is, as mentioned 
above, the direct (second) Lyapunov method.  

II. METHODS 

A. M. Lyapunov proposed a number of General sufficient 
conditions for the stability and instability of undisturbed 
motion. He brought the issue of sustainability to the issue of 
stability of equilibrium and existence of functions, called 
Lyapunov function. 

An autonomous system of differential equations is considered 
in this form: 

 ( ) nixxX
dt

dx
ni

i ,...,1,,,1 ==   (1) 

The Lyapunov stability theorem States that if for this system 

there exists in some domain a sign-defined function V , whose 

time derivative is a sign-constant function of the sign opposite 

to the sign of the function, then the equilibrium position is 

stable in the Lyapunov sense. 
This method, called by N. G. Chetaev the Lyapunov [7] 

direct method, is a powerful rigorous analytical method for 
analyzing various dynamic properties of nonlinear systems of a 
very different nature and form of description. A significant 
difficulty limiting the use of this method is the lack of 
algorithms for constructing Lyapunov functions. In order to 
overcome this difficulty, expand the scope of the application 
and increase the efficiency of the method for complex systems, 
N. G. Chetaev suggested using several Lyapunov functions. 
This method is called the Lyapunov vector function method. 

The Lyapunov function method has found application to a 
number of problems in mechanics, physics, engineering, 
control theory, stability analysis, and other dynamic properties 
of automatic control systems, energy, economic, and other 
nonlinear systems. [8] 
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In practice, when applying this method to specific problems, 

the main difficulty was in constructing a Lyapunov function or 

functional that met the conditions of a particular theorem.    

From the works of V. M. Matrosov [9] and R. Bellman [10], 

where the idea of combining the methods of differential 

inequalities of Chaplygin, Vazhevsky's theorem, the concept of 

using a set of several Lyapunov functions was formulated, and 

the history of the modern method of comparison with Lyapunov 

vector functions began. 

Here, along with the original system, an auxiliary system is 

introduced, which is called a comparison system and is 

described by an ordinary finite-dimensional differential 

equation. Using an analog of the Lyapunov requirements and 

the quasi-monotonicity (Vazhevsky`s) conditions, it is proved 

that the semi-stability of comparison systems entails the 

stability of the original system. 

The principle of comparison with the Lyapunov vector 

function gave the Lyapunov method a "second wind", causing 

a wave of publications in the world. To date, hundreds of 

comparison theorems with the Lyapunov vector function have 

been obtained for various dynamic properties of nonlinear 

differential equations. The comparison method was the first 

rigorous and universal method for analyzing various properties 

of various systems, in fact, regardless of their complexity, 

nature, and form of mathematical description, especially in the 

dynamics of systems and control theory. It is fundamental in 

determining algorithms for the derivation of formulations and 

proofs of comparison theorems with the Lyapunov vector 

function, which opens a new direction in the field of artificial 

intelligence, called the algorithmization approach to the 

derivation of theorems. It is implemented programmatically 

[11] and with the help of developed programs on electronic 

computers, more than 300 theorems are obtained, which are 

new or generalizations and modifications of known ones. 

The problem of absolute stability of the equilibrium 

position of non-linear automatic control systems was first posed 

by A. I. Lurie and V. N. Postnikov. Based on the method of 

Lyapunov functions by A. I. Lurie obtained a quadratic system 

of equations, based on which you can judge the absolute 

stability of the system under study. 

Another approach was proposed by V. M. Popov [12]. 

In contrast to other methods, the Popov method sets the 

condition of absolute stability using the frequency response of 

the linear part of the system. He also developed a new method 

for studying the stability of nonlinear systems, in particular the 

first frequency criterion of absolute stability for systems with a 

lagging argument [13]. 

Rezvan V. [14] studies are devoted to the absolute 

stability of systems with a lagging argument. he obtained a 

frequency criterion of absolute stability for a special class of 

systems. 

In the works of V. I. Rumyantsev and A. S. Oziraner 

[15], V. I. Vorotnikov [16], stability criteria for dynamical 

systems with respect to a part of variables are obtained. 

In Kazakhstan, many scientists ' works are devoted to 

the problems of sustainability. It is worth noting the research of 

A. O. Zhautykov [17] (on the stability of countable systems of 

differential equations), A. K. Bedelbaev [18], B. Zh.Maigarin 

[19] (on absolute stability), S. A. Aisagaliev [20] (on 

constructive methods for studying absolute stability). 

The result of this development is a modern theory covering 

various aspects of stability similar to the above, based on the 

concept of a dynamical system that uses qualitative behavior of 

solutions of differential equations and, more generally, 

topological and functional-analytical methods for investigating 

the solution of operator equations. 

One of the specifics of using computers for solving 

problems is the distortion of the result due to rounding errors 

and amplification due to the limited bit depth of the computer. 

Ignoring this problem can lead to incorrect results being 

interpreted as objectively correct and used in further 

calculations. For example, control calculations of notoriously 

stable order systems showed that due to the accumulation of 

rounding errors in the construction of the characteristic 

polynomial, the subsequent use of root synthesis methods led 

to completely incorrect results. Stable systems with certain 

combinations of parameters were treated as unstable, and Vice 

versa unstable systems were considered as stable. Doubling the 

bit grid only eliminates this flaw to a certain extent, but it slows 

down the machine four times and overloads the memory. 

In real systems, physical parameters (attributes) are 

measured with some error. To account for these features, we 

can use a new direction of computational mathematics – 

interval analysis, the main idea of which is to replace arithmetic 

operations and real functions over real numbers with interval 

operations and functions that transform intervals containing 

these numbers. 

 The first publication devoted to interval analysis was made 

by R. E. Moore in 1966 [21]. Shokin Yu. I. [22] in 1981, the 

basics and methods of interval analysis were systematically 

described. Then, in 1982, a textbook was published by 

Nazarenko T. I., Marchenko L. V. [23] on interval methods, and 

in 1986-a monograph of the overview plan by Kalmykov S. A., 

Shokin Yu. I., Yuldashev Z. Kh. [24]. These papers 

systematically set out the basics and methods of interval 

analysis. Interval arithmetic was given in full, and along with 

the "classical" one considers a number of its modifications and 

generalizations. Interval methods for solving linear algebra 

problems, run-through methods for solving differential 

equations, and methods for solving systems of nonlinear 

equations are considered. In [25], an overview of the state of 

interval mathematics is given. 

Interval analysis is a relatively new area of computational 

mathematics that is widely used to study the properties of 

mechanical systems. One of the main requirements for the 

quality of such systems is the requirement of stability. The use 

of interval analysis in solving the problem of stability of the 

dynamics of mechanical systems allows us to obtain a criterion 

of guaranteed stability. But when using interval mathematics, 

researchers have difficulty solving cumbersome interval 

equations, and these solutions are "super-sufficient", which in 

practice is a strict limitation. 

Often, when solving various problems, it is necessary to 

calculate the coefficients of the characteristic polynomials of 

the system matrix, but accurate calculation requires very high 

costs, especially for high-order interval matrices. Therefore, 

intervals containing coefficients of interval characteristic 

polynomials of the interval matrix are calculated. In [26], 

several calculation methods are proposed and the width of the 

resulting intervals is analyzed. 
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In [27], we propose an analytical method for constructing 

Hurwitz matrices of interval polynomials that accompany a 

given Hurwitz characteristic polynomial based on a vector-

matrix record of Viet's formulas. we solve the problem of 

constructing the boundaries of possible variations of the 

Hurwitz characteristic polynomial coefficients that do not lead 

to the loss of the Hurwitz property by this polynomial. 

One of the problems is how to investigate the positive 

definiteness of interval matrices. In [28], one of the algorithms 

for analyzing the positive definiteness of an interval family of 

symmetric (NxN) matrices is described. The algorithm is 

reduced to checking the positive definiteness of 2N-1 matrices 

constructed at the ends of the change intervals of elements of 

the studied interval family. 

Solving practical problems brings new methods to the 

theory of interval analysis. for example, [29-31] proposes a 

method for improving the accuracy of the interval estimation of 

the calculated values of one of the main indicators of the quality 

of electric energy-the voltage deviation from the nominal value. 

The method is based on the representation of the voltage value 

at the terminals of the electric receiver and its nominal value by 

means of fuzzy triangular numbers. It is shown that the form of 

the symmetric membership function of a fuzzy number does not 

affect the value of the correction of the calculated values of 

permissible voltage deviations.  In [32-34], the direct and 

inverse problem of chemical kinetics for first-order reactions is 

considered as interval problems for processing experimental 

data. The authors proposed and tested elementary interval 

algorithms for their solution using examples. 

Interval analysis is widely used in the study of systems with 

parametrically indeterminate objects. In this case, the 

parametric uncertainty is defined as the interval to which the 

exact values of the object's parameters belong. In [35], a simple 

sufficient criterion for robust stability of systems with lag is 

formulated and proved. The characteristic equations of these 

systems are the sum of conversions of a fixed polynomial, an 

interval polynomial, and a lag element. 

In [36], linear non-stationary control systems with periodic 

interval constraints on the elements of the system matrix are 

considered. Sufficient conditions for robust stability of such 

systems are established based on the comparison method with 

the Lyapunov vector function of a special type. It is shown that 

for some additional restrictions, the obtained conditions are not 

only sufficient, but also necessary. The results are generalized 

to the case of linear controlled systems with polyhedral periodic 

constraints.  

III. STATEMENT OF PROBLEM 

The article deals with the problem of stability of a linearized 

model of the form [7]: 

 ,xx A=  (2) 

where parameters characterizing mechanical parameters 

(such as weight, metric characteristics, inertia, etc.) are set 

using the coefficients of the matrix A. It is assumed that the 

matrix A is interval, i.e. its elements are interval numbers.  

For the system (2) in the case when the elements of the 

matrix A are "point" numbers, stability criteria are developed, 

expressed in terms of the elements of the matrix A – the Raus-

Hurwitz criterion, etc. [37]. However, this does not take into 

account the fact that these physical parameters are measured 

with some error. Researchers often forget that the coefficients 

and roots of the characteristic polynomial can be very sensitive 

to small errors of matrix elements when making a conclusion 

about the stability of the system (2) [38]. 

Interval analysis makes it possible to automatically take into 

account errors in the input data set and errors caused by 

machine rounding. 

The use of interval analysis in solving the problem of stability 

of the dynamics of mechanical systems allows us to obtain a 

criterion of guaranteed stability. 

We introduce the notation:  
ija~

~
=A - a point matrix whose 

elements belong to the corresponding intervals ija  of the 

interval matrix A, or ijij aa ~
. 

Axiom. An interval matrix A has the property if all point 

matrices have this property A
~

. 

It is known that to determine the stability of the interval 

matrix A , it is sufficient to determine the stability of 
2

2n
 point 

matrices A
~

 made up of various combinations of upper and 

lower bounds of elements of the original interval matrix. 

However, this approach is not constructive, since 

already at n=3 it is necessary to determine the stability of 512 

points matrices and at n=4, respectively, 65536 points matrices. 

Definition. A system (1) with an interval matrix A whose 

elements have a normal distribution is called interval 

asymptotically stable by Lyapunov, if for any interval solution: 

 ( ) ( ) ( ) ( ) ( )  ( ) ( ) 
 )

=+−=
,0

,,
txxx ttxttxttxtx   (3) 

true statement: 

 for any ε>0 and t0∈[0,∞) there exists such δ=δ(ε,t0) that for 

all solutions x=x(t) satisfying the condition ||x(t0)||<δ, the 

inequality ||x(t)||< ε is true, if  t∈[t0,∞); 

for any t0∈[0,∞), there exists such λ=λ(t0), that all solutions 

satisfying x=x(t), the condition ||x(t0)||<λ have the property: 

 ( ) 0lim =
→

tx
t

. (4) 

As is known, to determine the stability of a point matrix, the 

properties of its eigenvalues are analyzed [39]. Similarly, to 

determine the stability of the interval matrix, a characteristic 

polynomial with interval coefficients is constructed: 

 ( ) 0

1

1det pppE n

n

n

nA +++=−= −

−  A , (5) 

where pi,i = 0,...,n - interval numbers. 

 

Definition. An interval characteristic polynomial (5) is 

called stable if the interval composed of the real parts of the 

interval eigenvalues does not contain 0 and is completely in the 

negative region. 

Necessary stability condition: all coefficients of the 

characteristic polynomial (5) must be in the positive domain 

and not contain 0: for 

linearized model of the form [7]: 

   nippp p

ii

p

iii ,...,0,, =−−=   (6) 

must be performed: 

 nipp p

iii ,...,0,0,0 =−   (7) 

Let's make a Hurwitz matrix: 
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

















=

−−−− nnnnn ppppp

pppp

pp

M









42322212

0123

01

0

000

 (8) 

where it is accepted pj=0 if j <0 and j>n. Denote by Δ1, Δ2,..., 

Δn main diagonal minors of the matrix M: 

 

1

23

01

2

11

...

,

,

−==

=

=

nnn pM

pp

pp

p

 (9) 

which in turn are interval numbers. 

The interval stability criterion Hurwitz: in order that 

that Re{λj (A)}<0, j=1,...,n it is necessary and sufficient that 

the main diagonal minors Δ1, Δ2, ..., Δn of the matrix M are in 

the right half-plane, so Δj∈(0,∞),j=(1,n). 

Lienard-Shipard interval stability criterion: If all the 

interval coefficients of p0, p1 ,..., pn the characteristic 

polynomial (5) are in the positive domain, so 0∉pi, pi–εi
p>0, 

i=0,...,n, then Re{λj (A)}<0, j=1,...,n  it is necessary and 

sufficient for the main diagonal minors Δ1,Δ2, ..., Δn of the 

matrix M to meet the conditions: 

 ( ) ,03
, ( ) ,05

, ( ) ,07
,... (10) 

or: 

 ( ) ,02
, ( ) ,04

, ( ) ,06
,... (11) 

For the characteristic equation: : 

 01

10 =+++ −

n

nn aaa  , (12) 

let's make  the table of Routh (matrix of dimension (n+1)m, 

where m=[n/2]+2): 

 























==

==

=











4241

3231

3122121

212011

cc

cc

acac

acac

M
 (13) 

the first line contains the coefficients of the original 

characteristic equation with even indexes, and the second line 

contains odd indexes. Elements of the remaining rows are 

calculated recursively using the formula: 

 

( ) ( )

( )

( ) ( )

( )

1,11,2

1,11,2

12

2

12

1

/

120

12

120

12

−−

+−+−

−

−

=

−=





−

−
=





−

−
=

iii

kiikiik

k

k

k

k

ccd

cdcc

nkif

nkifa
c

nkif

nkifa
c

 (14) 

where i=3, ..., n+1 and k=1, ..., m. 

Raus interval stability criterion: for the stability of the system, 

it is necessary and sufficient that the coefficients of the first 

column of the matrix C are in the right half-plane, so: 

 ( ) ,01 jc , 1,...,1 += nj . (15) 

IV. MAIN RESULTS 

For automated construction of an interval characteristic 

polynomial, Krylov [40], Leverier [41], and Leverier-

Danilevsky [40, 41] algorithms are implemented, based on both 

classical and introduced interval mathematics. 

The above criteria for interval stability are also 

implemented in the developed package of interval calculations. 

The following example demonstrates how to use the 

software package: 

Let's consider the matrix: 

 



















−

−

−

−

=

1000

0200

003

004

2

1

c

c

A
 (13) 

For C1=6 and C2=2, the matrix (13) is unstable. Reducing 

slightly C1 or C2 will get stability.  

Assume that the matrix A is an interval matrix in which the 

parameters C1 and C2 are intervals. 

For C1=(5.87,5.871) and C2=(1.999, 2.001), the coefficients 

of the characteristic polynomial are calculated: 

 
)(0.02,1.01+84)(14.71,14.

+ 20)(23.25,23.+ )(10.0,10.0+ (1.0,1.0) 234





+
 (14) 

and the values of the determinants of the major minors of 

the Raus - Hurwitz matrix constructed on the basis of the 

polynomial (14)  

 

0. > 3494.34) (82.43,

,0 > 3453.66) (3420.30,

,0 > 232.65) (232.52,

0, > 10.0) (10.0,

4

3

2

1

=

=

=

=

 (15) 

For C1 = (5.88,5.881) and C2 = (1.999, 2.001), the 

coefficients of the characteristic polynomial are calculated: 

 
7)(-0.01,0.9+78)(14.65,14.

+ 20)(23.25,23.+ )(10.0,10.0+ (1.0,1.0) 234





+
 (16) 

and the values of the determinants of the major minors of the 

Raus - Hurwitz matrix constructed on the basis of the 

polynomial (16):  

 

0.  3342.68) (-57.54,

,0 > 3436.76) (3403.40,

,0 > 232.65) (232.52,

0, > 10.0) (10.0,

4

3

2

1

=

=

=

=

 (17) 

An interval matrix of the third order is considered [26]: 

 
     

     
      
















−

−−

−−

=

1,04,32,1

2,21,12,4

4,91,02,1

A
 (18) 

for which the values of the coefficients of the interval 

characteristic polynomial (ICP) obtained using various methods 

are given: 

by the Leverrier method: 

p1=[-4,-2], p2=[-18,23], p3=[-262.3,99.7]; 

Leverrier method using "exact" calculation of the product of 

matrices 
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p1=[-4,-2], p2=[-16,23], p3=[-235.7,91.7]; 

by the Fadeev method 

p1=[-4,-2], p2=[-16.5,22.5], p3=[-242.3,58.3]. 

Fadeev method using "exact" calculation of the product of 

matrices 

p1=[-4,-2], p2=[-14,22.5], p3=[-182.3,52.3]; 

by the method of principal minors 

p1=[-4,-2], p2=[-16,21], p3=[-165,-2]; 

the principal minor method using the "exact" calculation of all 

minors and the matrix determinant 

p1=[-4,-2], p2=[-14,21], p3=[-129,-6]; 

true values of the ICP coefficients 

p1=[-4,-2], p2=[-14,21], p3=[-129,-6]. 

For the "point" of the matrix]: 

 

















−

−

=

5.05.35.0

0.20.10.3

5.65.05.1

A
 (19) 

the elements of which represent the midpoints of the 

corresponding intervals of the interval matrix (18), 

implemented in the Fortran programming language, the same 

results were obtained by Leverrier, Fadeev, Danilevsky, and 

Krylov methods: 

 .63;5.0p -3.0;p 1;p 3210 −==== p  (20) 

 When using the developed software that implements the 

entered interval arithmetic operations, the following results are 

obtained for the interval matrix (18): 

by the Fadeev method: 

 





















=





















=





















=

3.349)(-63.000,2

55)(0.500,7.1

707)(-3.000,0.

00)(1.000,0.0

655][-6.655,7.

655][-6.655,7.

.293][-3.707,-2

00][1.000,1.0

3

2

1

0

p

p

p

p

p
, 

by the Leverrier method 





















=








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by the Danilevsky method 
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by the Krylov method 
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An interval matrix of the fifth order is considered [26]: 

 

 





















−−

−

−−

−−

=

2,10511

20320

12110

02021

74321

A
 (21) 

 for which the values of the ICP coefficients obtained using 

various methods are given: 

by the Leverrier method 

p1=[0,1], p2=[-1,1], p3=[37.3,51.7], p4=[-162.5,-40.6],  

p5=[-331.8,285.3]; 

by the Fadeev method 

p1=[0,1], p2=[-2.5,2], p3=[25.2,64.8], p4=[-244.3,34.2],  

p5=[-995.9,975.6]; 

by the method of principal minors 

p1=[0,1],  p2=[-2,2],  p3=[36,53], p4=[-131,-84], p5=[-32,34] 

the principal minor method using the “exact” calculation of all 

minors and the matrix determinant 

p1=[0,1], p2=[-2,2], p3=[38,51], p4=[-123,-92]; p5=[-32,34]; 

 

true values of ICP coefficients 

p1=[0,1], p2=[-1,1], p3=[40,49], p4=[-113,-102], p5=[-8,10]. 

 

For the "point" of the matrix: 

 























−−

−

−−

−−

=

5.10511

20320

12110

02021

74321

A
 (22) 

 the elements of which represent the midpoints of the 

corresponding intervals of the interval matrix (21) using 

Leverrier and Fadeev methods, the same results are obtained: 

 

p0=1; p1=0.5; p2=0.0; p3=44,5; p4=-107.5; p5=1.0 

 

 When using the developed software that implements the 

entered interval arithmetic operations, the following results are 

obtained for the interval matrix (21): 

by the Fadeev method 
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, 
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by the Leverrier method 
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Automatic frequency adjustment system for a 

heterodyne receiver. 

In heterodyne receivers [42-43], to ensure high- 

quality sound, a system of automatic frequency tuning (APF) 

is introduced (figure 1). 

Automatic frequency adjustment system for a heterodyne 

receiver. 
 

 
Fig. 1. A system of automatic frequency tuning (APF). 

 

The operation of each of the devices 1-5 is described by the 

following ratios recorded for frequency deviations: 

 

1) mixer: δωs – δωg = δω'n; 

2) intermediate frequency amplifier (UPF):   

T1 · d/dt(δωn) + δωn = δω'n; 

3) the discriminator: Uσ = Kσ· δωn 

 

4) amplifier: T2 · d/dt(Uy) + Uy = Uσ 

5) control element of the heterodyne:   

  T2 · d/dt(Uy) + Uy = Uσ 

For exact values, T2 =0.3; T2 = 0.2; T3 = 0.1 using the Raus 

criterion, we get stability at the gain  . However, if the 

parameter values change by 1 percent, the system becomes 

unstable. The interval criterion provides stability at an 

interval gain Kσ=[10.6, 10.96] = (10.78, 0.107). 

V.    CONCLUSION 

Software for constructing a characteristic polynomial using 

several methods has been developed. Several examples are 

considered for numerical analysis. 

From numerical examples, we can conclude that the smallest 

range of coefficients of the characteristic polynomial is 

provided by the Fadeev and Leverrier algorithms. In this case, 

the midpoint of the coefficient intervals of the characteristic 

polynomial coincides with the coefficients of the characteristic 

polynomial of the "point" matrix, whose elements represent the 

midpoints of the corresponding intervals of the original interval 

matrix. This property is not provided both when using classical 

interval arithmetic and when completely iterating over all point 

matrices. 
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