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Design of Wearable EEG Device for Seizures Early
Detection

Viktoriia Gaidar, and Oleksandr Sudakov

Abstract—This paper presents the design of a wearable elec-
troencephalography device and signal processing algorithm for
early detection and forecasting of the epileptiform activity. The
availability of the examination of functional brain activity for a
prolonged period, outside of the hospital facilities, can provide
new advantages in early diagnosis and intervention systems.
In this study, the low-cost five-channel device is presented.
The system consists of two main parts: the data acquisition
and transmission units and processing algorithms. In order
to create the robust epileptiform pattern recognition approach
the application of statistical sampling and signal processing
techniques are performed. The discrete wavelet and Hilbert-
Huang transforms with principal component analysis are used
in order to extract and select a low-dimension feature vector.

Keywords—circuit design, statistical sampling, Hilbert-Huang
transform, feature selection

I. INTRODUCTION

THE debilitating consequences of abrupt seizures is one of
the threads of the epilepsy disease. It is common neuro-

logical disorder that causes the abnormal electrical activity in
the brain. The uncontrolled epilepsy seizure occurrence lay the
burden on the daily life activity for people, who suffer from
the condition. According to the studies [1] the unpredictability
of seizures is the major impactful factor of epilepsy.

In many cases, people do not have any physical signs. Only
small percent of the patience could feel the so called aura
before the seizure occured.

The vast majority of patients use medical supplies, which
prevents them from seizures. Such treatment provides the con-
trol of the seizures occurence and alleviate social and mental
anxiety. But unfortunately, almost 30% of the patients are
experience the medical resistant form of epilepsy. Therefore,
the task of forecasting of the seizure occurence is a major field
of neurological research. It is based on analyzing the features
derived from electroencephalographic recordings. The warning
system, that may forecast the seizure prior to its physical
manifestation has been the goal for many researchers since
digital electroencephalography.

The electroencephalography (EEG) is a safe and multi-
functional technique to detect electrical activity of the brain.
It is a clinical tool that used to localize and identify the
epilepsy syndrome [2]. In the clinical examination the EEG

This work was supported by Bogomoletz Institute of Physiology of NAS
of Ukraine. The experimental in-vivo intracranial electroecephalography data
provided by the Bogomoletz Institute of Physiology was used in this study.

The Authors are with Taras Shevchenko National University of Kyiv,
Ukraine (e-mail: gaidar.viktoria@gmail.com, sudakov.oleksandr@gmail.com).

diagnosing procedure takes place for a couple of hours or even
days. Even so, sometimes it is hard to detect the epileptiform
patterns during the EEG diagnosis process. The epileptiform
activity presented in interictal epileptiform discharges (IED).
According to the [3], epileptiform discharges may occur up
to 24 hours after partial and generalized seizures and it was
proved that within this period increases the likelihood of
obtaining IED. Pattern recognition of epileptic and preictal
states based on feature selection and extraction derived from
the EEG signal is the major task of research.

This paper is focused on two main goals. The first is to
design the wearable EEG system for signal acquisition. The
second one is to provide a fast and suitable algorithm for
detecting the pre-ictal and ictal activity prior to the seizure
occurrence.

II. WEARABLE EEG SYSTEM

The new approaches in a field of wireless transmission of
the data caused the advantages of the computer-brain interfaces
and monitoring systems. For decades the only option to pro-
vide medical examination was ambulatory EEG monitoring.
It is high precision systems that conduct from 32 to 128
electrodes and can operate for days during one examination
session. EEG systems divided into non-invasive and intracra-
nial electrodes placement. For epilepsy studies, the first on
scalp technique is commonly used for the medical diagnosis
of epilepsy disorder. For the patients with rare conditions, in
most of the cases with drug resistance epilepsy, the intracranial
systems are used. It provides the opportunity to collect the
data during the weeks and month to design individual medical
treatment.

The rapid evolve in wireless technology conduct the evo-
lution in miniaturized EEG units for prolonged monitoring
studies [4]. The wearable EEG monitoring systems faced some
common issues. The main tradeoffs of such approaches are
system power consumption and the optimal method for data
compression. Also, to make wearable EEG devices feasible it
is necessary to provide sustainable amplification system and
perform optimal number of electrodes.

To reduce power consuption we construct the method to
create the low-dimensional feature vector. Thus to reduce
the numbers of data, that needed to be preprocessed and
conducted.

The EEG system design is divided into three main cat-
egories: signal acquisition, signal transmission, and signal
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Fig. 1. Basic block diagram of the wearable EEG system

processing. For signal acquisition, the international 10-20%
electrodes placed on the scalp system was used [5].

For signal transmission the golden plated medical electrodes
were used. From the isolated wires from the band the data
then transmitted to the intermediate microcontroller and than
via Bluetooth module sent to the computer.

In order to provide the substantial signal processing algo-
rithm, the new approach for extraction and selection of low-
dimentional feature vector was conducted. It has been tested
on the in-vivo datasets of the rats to reduce the influence of
the additional artifacts.

A. Amplification and Filtering

There are two common montages used for data acquisition:
bipolar and monopolar. In the monopolar montage, one elec-
trode is active and the other one is reference electrodes. For
bipolar montage two electrodes are active and the potential
difference between them is measured. In this work, we use
monopolar montages. The reference electrode must be as elec-
trically neutral as possible. Basically, we record the difference
between the potential of the active site and the reference site.

Fig. 1. is shown the basic block diagram where a signal
is taken from electrodes and then goes through amplifiers
and filters then it is digitized and transmitted via Bluetooth
module to PC. The amplitude of the EEG signal measured in
microvolts and varies between 1-150 µV. The signal is quite
sensitive to biological artifacts and environmental noises that
is why sufficient filters and amplifiers are important.

The signal is first acquired with gold plated electrodes (us-
ing electrolytic gel) and fed into the instrumentation amplifier
block (in which canceled out the common modes noises). After
the pre-amplifier stage, it passes through a high pass filter to
remove DC offsets to the operational amplifier for 2nd stage
amplification.

The signal again is high passed and then amplified in the
3rd stage. The 3rd stage amplifier also acts as a notch filter
to remove aliasing noise, which occurs when the signal is
digitized. And then finally its low passed to remove higher
frequencies above 45 Hz. The process is shown in Fig. 2 [6].

For forecasting and early detection purposes it is needed to
track the dynamics of the brain activity between the normal
state and ictal periods. During the last few decades it was
proven [7] that the seizure occurence may be detecting prior

Fig. 2. Block diagram of Acquisition phase

it physical appereance. Clinical evidence for existence of pre-
ictal periods is proving the feasibility of creating the robust
alarming system of seizure upcoming events.

B. Data Transmission

The common practice during the EEG examination is when
a signal recorded for a long period (from hours to a few days).
In this case, the wires while examination restricts patience
movements. The rapid development of wireless technology
includes Bluetooth and WiFi provides new approaches for
EEG medical examination.

We used the HC-06 Bluetooth module from Gunzhou HC
Information Technology Co. to connect our wearable EEG
device with the computer via a USB port using the UART data
transmission protocol. It works at the low voltage 3.1 - 4.2 V
and 30 - 40 mA current during the pairing. For analyzing and
displaying data collected from electrodes we created a simple
graphical user interface in Matlab.

We used Multisim simulation software for the EEG circuit
simulations. The schematic contains three main parts: pre-
amplification circuit with an instrumental amplifier, amplifi-
cation, and the active twin T-notch filter to reduce power-line
noise.

The EEG signal is typically from 1 to 100µV in amplitude
and frequency band from 1 - 45 Hz (delta – 1-3 Hz, theta –
4-7 Hz, alpha – 8-12 Hz, beta – 13-30 Hz). Human skin has
high impedance on the order of tens of kΩ to 1MΩ, so the
instrumental amplifier in the pre-amplification circuit requires
much higher input impedance to avoid attenuation of the EEG
signal.

The first stage of the amplification circuit consists of an
instrumentation amplifier AD620AN. The AD620 is a low
cost, high accuracy instrumentation amplifier that is low
powered (only 1.3 mA max supply current) with only one
external resistor to set gains of 1 to 10 000.

We performed the simulation for the two sine waves with
amplitude 10 - 200µV and with frequency 3 - 45 Hz which
is closed to real EEG signal. The results of modulation are
shown below (Fig. 3.). The final amplification is from tens
of µV to hundreds of mV . Along with the amplification the
preprocessing and filtering circuits are an important parts of
the system.

The biological artifacts such as electrooculogram and elec-
tromiogram increase the data that needed to be transmitted and
pre-processed. Let alone those artifacts, the external noises
influenced on the aquisition processes. That is why some
additional filters have been embedded in the output circuit.



DESIGN OF WEARABLE EEG DEVICE FOR SEIZURES EARLY DETECTION 189

Fig. 3. The Multisim modulation of amplification circuits results: blue –
input, green – after 1st stage, yellow – after 2nd stage, and red – the final
output

It helps to save some power supplies, which plays resonable
role in mobile devices.

III. SIGNAL PROCESSING

The designed EEG system consists only four active ele-
ments, so it could be used while the daily life activity. On
another hand, this fact imposes certain requirements on the
signal processing system. To provide a robust algorithm with
fewer electrodes, we need to find the optimum solution of the
feature vector extraction and selection processes.

In common, features represent a distinguishing functional
component or a specific measurement. One of the first com-
prehensive studies [8] shows how to determine features from
EEG recordings for epileptic seizures detection. In this study
was constructed 30 features including bi-variate and multi-
variate features as well as linear and non-linear ones.

In our study, for each of the seizure and non-seizure epoch,
the following features have been extracted: Hjorth’s parameters
(such as activity, mobility, and complexity), standard devia-
tion, skewness, kurtosis, entropy. Also, the Hilbert-Huang and
Discrete Wavelet parameters have been included in the feature
vector.

IV. FEATURE EXTRACTION AND SELECTION

This task might be divided into two: feature extraction and
feature selection techniques. Feature selection maps features
into a new low-dimensional space. The new vector is usually
the combinations of original features and may be obtained after
principal component analysis (PCA) or similar technique. On
contrary, the feature extraction approaches aim to select the
small subset of features without losses in relevance to specific
target. In our case, it is the class labels of epileptic and non-
epileptic states.

Both feature selection and extraction lower computational
complexity, decrease storage memory and computational time
and build simply model with the same learning performance
for classification.

In common, features represent a distinguishing functional
component or a specific measurement. In order to use algo-
rithm for wearable device we need to lower computational

complexity, decrease storage memory and computational time.
To build the simple model with accurate detecting we extract
basic statistical measures of signal and of coefficients in
wavelet and hilbert-huang transform.

The basic statistical features that are used for signal analysis
are minimum and maximum values, mean, variance, skewness,
curtosis. For the EEG signal x(t) = x1, x2, ...xn and mean
value xm = 1

n

∑n
i=1 xi. The mean value is average value on

specific time-period(epoch). The dispersion is calculated as(1):

var(x) =
1

n− 1

n∑
i=1

(xi − xm)2 (1)

Also, the square root on dispertion σ has been calculated.
The measure of the deviation of the sample distribution from
the normal distribution is skewness(2):

skewness(x) =
1

n
·
n∑
i=1

[
xi − xm

σ

]3
(2)

The Equation (3) is the kurtosis, which measures the height
and sharpness of the central peak to the data:

kurtosis(x) =
1

n
·
n∑
i=1

[
xi − xm

σ

]4
− 3 (3)

In this paper, we consider the task of simple binary clas-
sification on seizure and non-seizure periods. After feature
extraction, the features combined in one vector. To decrease
the dimension of this vector the feature selection method has
been conducted.

The principal component analysis has been implied to clas-
sify the EEG epochs in two classes - seizure and non-seizure.
The PCA [15] is a linear transformation that minimizes the
reconstruction error and retained variance maximized. The
PCA transform provides information about features that is
more informative in case of classification. Feature selection
about the original features that contain most of the essen-
tial information. So after PCA, the projection to the lower-
dimensional space with selected features has used.

A. Hjorth’s parameters

Hjorth’s parameters [9] are the measures of signal complex-
ity and they are useful for the quantitative description of EEG.
For the time-series signals x(t) activity parameter indicates the
signal power.

Activity(x) = var(x(t)) (4)

The mean frequency of the signal is represented by the
mobility parameter.

Mobility(x) =

√
var(dx(t)dt )

var(x(t))
(5)

Complexity parameters indicate how the shape of a signal
is similar to a pure sine wave and indicates the changes in the
frequency domain.
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Complexity(x) =

√
Mobility(dx(t)dt )

Mobility(x(t))
(6)

B. Hilbert-Huang transform

The changes in neuronal electrochemical activity before
and during the epilepsy seizure can be detected by tracking
the weighted mean frequency. The Hilbert-Huang transform
(HHT) [10] provides information about instantaneous frequen-
cies and amplitudes of the EEG signal.

HHT analyses the non-linear and non-stationary signals by
decomposing it into data-depended basis functions. To apply
to transform on a single-channel intracranial EEG signal [11]
six Instristic Mode Functions (IMFs) have been extracted.
The Empirical Mode Decomposition (EMD) of the x(t) of
the signal can be expressed as summation of the i − th IMF
component ci and its residue r(t):

x(t) =

n∑
i=1

ci(t) + r(t) (7)

The Hilbert-Huang transform y(t) of each IMF function x(t)
is given by [13]:

y(t) =
1

π
lim
τ0→∞

(∫ t−τ0

t−1/τ0

x(τ)

t− τ
dτ +

∫ t+1/τ0

t+τ0

x(τ)

t− τ
dτ

)
(8)

C. Discrete Wavelet analysis

The EEG recording is a time series signal that most of the
power is contained from zero to forty Hz. The changes from
different functional states of the brains occurred in different
frequency bands. The Discrete Wavelet Transform (DWT)
reflects both frequency and temporal location properties of the
signal. To compute the wavelet transform the original signal
x(t) os convoluted with a scaled and translated version of the
mother wavelet function ψ(t) [14].

The DWT leads to wavelet coefficients:

Wψ
x (b, a) = Aψ

∫
ψ∗
(
t− b

a

)
x(t)dt (9)

The ψ is a mother wavelet function. In the context of
epilepsy pattern recognition, the Daubechies 4 or Symlet 5
mother wavelet functions are used. The Aψ denotes a normal-
ization parameter, a is scaling parameter and b is translation
parameters.

The wavelet coefficients quantify the similarity between
the original and the wavelet function at a specific scale.
In the context of epilepsy detection and forecasting features
extraction the wavelet coefficients play the main role because
they give information of signal in time.

Fig. 4. Wearable EEG device prototype

Fig. 5. The amplification EEG circuit design for one channel

V. RESULTS

In this study we created the prototype of the EEG device
with only four active and one referent electrodes placed
according to 10-20% system and it is shown in Fig. 4.

As the microcontroller, we used the Arduino platform with
AVR Atmega328 manufactured by Atmel. It has 32K bytes of
Flash memory, six 10bit ADC channels, and programmable
serial USART. The circuit schematic of the amplification
system, designed for each of the electrodes, is represented on
Fig. 5

The data from the electrode via isolated wires, connected to
the amplification system and then via Bluetooth, transmitted
to personal computer and displays on Matlab GUI in real-
time. The Matlab gives advantages in providing computational
power for preprocessing EEG data in real-time.

To create the solid algorithm for epilepsy state early detec-
tion, that could be used for wearable device, we firstly applied
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it to one-channel intracranial recordings. The datasets has been
collected from the Bogomoletz Institute of Physiology.

In-vivo datasets from fifteen rats with chemically induced
epilepsy have been obtained at a sampling rate of 416 Hz.
The time duration of one recording varies from one to two
and a half hours for one examination. After the preprocessing
datasets were segmented into pre-ictal and ictal states.

The features extended from the signal have been combined
in one vector. The wavelet transform has been performed DWT
coefficients for eight levels were extracted. The spectrogram
is shown below on Fig. 6

a)

b)

Fig. 6. DWT spectrogram on a) seizured and b) non-seizured epochs.

The seizure behaviour on the EEG signals is presented in
abnormal synchronous discharges. Those activity causes the
changes in local amplitude and the frequency of the signal.
So, the Hilbert-Huang transform provides information about
instant frequency and amplitude.

After the wavelet and hilbert-huang transforms the obtained
coefficients were stored in one vector. The statistical features
from the initial signal and the according coefficients were
written in the high-dimentional feature vector.

This vector included Hjorth’s parameters(activity, mobility,
and complexity), kurtosis, absolute values, skewness, variation
coefficients, Shanon entropy, the DWT coefficients for eight
levels (the mean, energy, and entropy of wavelets coefficients
also were extracted) and values of instant frequency and
amplitude after Hilbert-Huang transform (also first and second
derivatives of the values were calculated). The PCA analyses
have been performed to reduce the dimension of the proposed
feature vector (Fig. 7).

After the conducting analyses, only seven features were
selected. For assessment of performed algorithm the SVM

Fig. 7. PCA 2D and 3D analysis, 0 - non-seizere, 1 - seizure epochs.

binary classification has been performed with reduced feature
vector as an input. We observed that the proposed algorithm
provides a classification accuracy of 87,6% and a sensitivity
of 95,7%.

Our results indicate that seizure events in a rat model can be
detected with high accuracy with fewer features. The feature
vector in the lower dimensional space provides the opportunity
to reduce the computational processing of the data, which is
crucial in implementing those methods on the mobile diagnosis
systems an on-line monitoring systems.

VI. CONCLUSIONS

The proposed work showed that it is possible to create a
wearable cheap EEG device that can be used for epilepsy
diagnosis and forecasting. The use of such mobile EEG
devices provides several advantages:
• in contrast to conventional EEG examinations, the use of

wearable devices provides the opportunity to examine the
health care institutions and for a prolonged time;

• the fabrication process is less expensive, compared with
clinical EEG devices;

• it provides the ability to collect amass data for each per-
son, so we could create the forecasting epilepsy seizures
alarm system or improve medical treatments based on
obtained recordings.

Still, it is a variaty of improvements that could be done in
the recent researches. The next steps in this direction could be
next:
• to create incorporated amplification system (so we avoid

additional noise caused by wired electrodes);



192 V. GAIDAR, O. SUDAKOV

• to miniaturize the system itself by using own fabricated
circuit with embedded microcontroller, amplification sys-
tem, ADC and Bluetooth module;

• to minimize power supply of our system and to build
battery-free EEG which uses the RFID technology for
power supply.
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