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Arithmetic Using Compression on Elliptic Curves
in Huff’s Form and Its Applications

Robert Dryło, Tomasz Kijko and Michał Wroński

Abstract—In this paper for elliptic curves provided by Huff’s
equation Ha,b : ax(y2 − 1) = by(x2 − 1) and general Huff’s
equation Ga,b : x(ay2−1) = y(bx2−1) and degree 2 compres-
sion function f(x, y) = xy on these curves, herein we provide
formulas for doubling and differential addition after compression,
which for Huff’s curves are as efficient as Montgomery’s formulas
for Montgomery’s curves By2 = x3 +Ax2 + x. For these curves
we also provided point recovery formulas after compression,
which for a point P on these curves allows to compute [n]f(P )
after compression using the Montgomery ladder algorithm, and
then recover [n]P . Using formulas of Moody and Shumow for
computing odd degree isogenies on general Huff’s curves, we
have also provide formulas for computing odd degree isogenies
after compression for these curves. Moreover, it is shown herein
how to apply obtained formulas using compression to the ECM
algorithm.

Keywords—Huff’s curves, Isogeny-based cryptography, Com-
pression functions on elliptic curves

I. INTRODUCTION

COMPRESSION on elliptic curves is a standard approach,
for example, for the reduction of key sizes and protection

against side-channel attacks. The clear presentations of results
on x-coordinate compression, one can find, for example, in [1]
and [2]. In general, if E is an elliptic curve over a field K and
f : E → K is a degree 2 rational function such that f(P ) =
f(−P ) for all P ∈ E, then f is called a degree 2 compression
function and we have induced from E the multiplication of
values f by integers provided by [k]f(P ) = f([k]P ) for k ∈
Z. As an example, on Weierstrass and Montgomery’s curves
f(x, y) = x is a compression function. In general for degree 2
compression function f : E → K there exist rational functions
for doubling D(x) ∈ K(x) and differential additions A1, A2 ∈
K(x, y) such that

f([2]P ) = D(f(P )), (1)
f(P +Q)f(Q− P ) = A1(f(P ), f(Q)), (2)

f(P +Q) + f(Q− P ) = A2(f(P ), f(Q)) (3)

for generic points P,Q ∈ E. If one determines functions D
and A1 or A2, the Montgomery ladder algorithm allows to
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compute [k]f(P ) using values of f . There also exists a rational
map B : E ×K ×K → E such that

Q = B(P, f(Q), f(P +Q)) (4)

for generic points P,Q ∈ E, which we call the point
recovery formula. This allows for P ∈ E computation
[k]f(P ) using the Montgomery ladder algorithm, which also
gives [k + 1]f(P ), and to recover point [k]P on E given
P, [k]f(P ), [k+ 1]f(P ) substituting Q = [k]P to the formula
(4).

Peter Montgomery [3] provided very efficient formulas
for doubling and differential addition using x-coordinates for
curves of the form By2 = x3 +Ax2 +x called Montgomery’s
curves. Formulas (1) and (2) or (3) were also given for other
standard models of elliptic curves: Weierstrass [4], Edwards
[5], [6], Hessian [7], Jacobi quartic [8], [9], twisted Hessian
and Huff’s [9] curves. Formulas for point recovery (4) were
given for Weierstrass [8], [10], Edwards [6], generalized and
twisted Hessian, Huff’s and Jacobi quartic [9] curves.

In this paper we consider Huff’s curves Ha,b : ax(y2−1) =
by(x2− 1) described by Joye, Tibouchi and Vergnaud in [11]
and general Huff’s curves Ga,b : x(ay2− 1) = y(bx2− 1) de-
scribed by Wu and Feng [12] over a field K of char(K) 6= 2.
Formulas similar to the Montgomery formulas for differential
addition were given in [13][Appendix B] for the extended
Huff’s model

EHa,c,d : y(1 + ax2) = cx(1 + dy2) (5)

with compression function f(x, y) = x, where differential
addition is of the form

f(P +Q)f(P −Q) =
f(P )2 − f(Q)2

1− a2f(P )2f(Q)2
. (6)

Moreover, formulas for doubling and differential addition after
compression were also given for binary Huff’s curves [14].

In this paper for Huff’s curves and general Huff’s curves
over a field K of char(K) 6= 2 using compression function
f(x, y) = xy, we introduce new formulas for doubling and
differential addition, which for Huff’s curves are as efficient
as Montgomery’s formulas for the curves By2 = x3+Ax2+x
(note that in [9] we used compression function y/x on Huff’s
curves). These formulas and formulas for point recovery are
provided in Theorems 1 and 2. We provide a proof of Theorem
1, and Theorem 2 follows by carrying formulas for Huff’s
curves applying an isomorphism from a general Huff’s curve
to a suitable Huff’s curve.
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In Section III, we apply formulas of Moody and Shumow
[15] and provide in Corollaries 1 and 2 formulas for compres-
sion of odd degree isogenies for general Huff’s and Huff’s
curves.

In Section IV, we summarize the costs of computations of
presented formulas using compression.

Moreover, we present application of computed formulas for
obtaining efficient formulas for computation of general odd-
degree isogeny and applications to the ECM method.

Additional Magma codes, where the correctness of provided
formulas is checked, may be found on https://github.com/
Michal-Wronski/Huff-compression.git.

II. POINT COMPRESSION ON HUFF’S AND GENERAL
HUFF’S CURVES

In this section using compression function f(x, y) = xy, we
provide formulas for doubling, differential addition and point
recovery for Huff’s and general Huff’s curves. We assume that
K is a field with char(K) 6= 2.

A. Huff’s curves

Joye, Tibouchi and Vergnaud in [11] described the group
law and pairing computation on Huff’s elliptic curves. Huff’s
curve over K is provided by the equation

Ha,b : ax(y2 − 1) = by(x2 − 1), (7)

where a2 6= b2 and a, b 6= 0. The point O = (0, 0) is the
neutral element, and the opposite point is given by −(x, y) =
(−x,−y). For two points P = (xP , yP ) , Q = (xQ, yQ) on
Ha,b their sum P +Q = (xR, yR) is provided by{

xR =
(xP+xQ)(1+yP yQ)
(1+xP xQ)(1−yP yQ) ,

yR =
(yP+yQ)(1+xP xQ)
(1−xP xQ)(1+yP yQ) .

(8)

Before we provide a results on compression, note that if
f : E → K is a degree 2 compression function on an elliptic
curve E, then the field extension K(f) ⊂ K(E) is of degree
2 and K(f) consists exactly of functions in K(E) which are
constant with respect to [−1] (i.e., functions g ∈ K(E), such
that g ◦ [−1] = g).

We provide the following formulas for Huff’s curves for
doubling, differential addition and point recovery after com-
pression.

Theorem 1. On Huff’s curves Ha,b (7) the function f(x, y) =
xy is a degree 2 compression function. We have the following
formulas for doubling and differential addition:

f([2]P ) =
4f(P )(f(P )2 +

(
b
a + a

b

)
f(P ) + 1)

(f(P )2 − 1)2
, (9)

f(P +Q)f(P −Q) =

(
f(P )− f(Q)

f(P )f(Q)− 1

)2

. (10)

We also have the following formulas for point recovery. For
generic points P = (xP , yP ), Q = (xQ, yQ) on Ha,b if we are
given P, f(Q), f(P +Q), then coordinates of Q are provided
by

{
xQ = f(Q)

(yP f(P+Q)+xP )(bf(Q)+a)+(af(Q)+b)(xP f(P+Q)+yP )

(bf(Q)+a)(f(P+Q)−f(Q)+xP yP (f(Q)f(P+Q)−1))
,

yQ =
f(Q)
xQ

.

(11)

Proof. Clearly f(P ) = f(−P ) for P ∈ Ha,b and f : E → K
is of degree 2, because for generic α ∈ K (the algebraic
closure of K) the system{

xy = α,

ax(y2 − 1) = by(x2 − 1)
(12)

has two solutions, since substituting in the second equation
xy = α and y = α/x we have aα α

x−ax = b α x−bαx , hence
x satisfies the quadratic equation (b α+a)x2 = aα2 +b α.

Let r = xy. In the proof, we will use the formulas
which express x2 and y2 as rational functions of r, which
exist because x2 and y2 are constant with respect to [−1].
Substituting y = r

x to the equation of Ha,b we have

ax
(
r2

x2 − 1
)

= b rx
(
x2 − 1

)
. (13)

Hence,
x2 (br + a) = ar2 + br, (14)

and
x2 =

r(ar + b)

br + a
. (15)

We have

y2 =
r2

x2
=
r(br + a)

ar + b
. (16)

We first show the formula for doubling after compression.
From (8) for P = (x, y) ∈ Ha,b the point [2]P has the
following coordinates{

x[2]P = 2x(y2+1)
(x2+1)(1−y2) ,

y[2]P = 2y(x2+1)
(1−x2)(y2+1) .

(17)

Hence,

f([2]P ) = 2x(y2+1)
(x2+1)(1−y2)

2y(x2+1)
(1−x2)(y2+1) = 4xy

(1−x2)(1−y2) .
(18)

From (15) and (16) we have

f([2]P ) = 4r

(1− r(ar+b)
br+a )(1− r(br+a)

ar+b )
=

4r(r2+( a
b +

b
a )r+1)

(r2−1)2 ,

(19)
which yields formula (9).

From (8) we have

f(P +Q) =
(xP+xQ)(1+yP yQ)
(1+xP xQ)(1−yP yQ)

(yP+yQ)(1+xP xQ)
(1−xP xQ)(1+yP yQ)

=
(xP+xQ)(yP+yQ)

(1−xP xQ)(1−yP yQ) ,

f(P −Q) =
(xP−xQ)(1−yP yQ)
(1−xP xQ)(1+yP yQ)

(yP−yQ)(1−xP xQ)
(1+xP xQ)(1−yP yQ)

=
(xP−xQ)(yP−yQ)

(1+xP xQ)(1+yP yQ) .
(20)

Hence

f(P +Q)f(P −Q) =
(x2P − x2Q)(y2P − y2Q)

(1− x2Px2Q)(1− y2P y2Q)
. (21)

Let rP = f(P ), rQ = f(Q). From (15) and (16) we have
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f(P +Q)f(P −Q) =

=

(
rP (arP +b)

brP +a −
rQ(arQ+b)

brQ+a

)(
rP (brP +a)

arP +b −
rQ(brQ+a)

arQ+b

)
(
1− rP (arP +b)

brP +a

rQ(arQ+b)

brQ+a

)(
1− rP (brP +a)

arP +b

rQ(brQ+a)

arQ+b)

) .
(22)

Simplifying and factoring the last expression (for example

using Magma), we obtain
(
rP−rQ
rP rQ−1

)2
, which is (10).

To obtain point recovery formula (11) assume that we
are given P = (xP , yP ), f(Q) and f(P + Q). Let rQ =
f(Q), rR = f(P +Q). Substituting yQ = rQ/xQ to the right
hand side of (20) we have

rR =
(xP + xQ)(yP +

rQ
xQ

)

(1− xPxQ)(1− yP rQ
xQ

)
. (23)

Multiplying by the denominator and xQ we have

rR(xQ − yP rQ − xPx2Q + xPxQyP rQ)

= xPxQyP + xP rQ + x2QyP + rQxQ.
(24)

We can now compute from this equation xQ and substitute
(15) for x2Q, and we have

xQ =
yP rQrR+xP rQ+x2

Q(xP rR+yP )

rR+xP yP rQrR−xP yP−rQ

=
yP rQrR+xP rQ+

rQ(arQ+b)

brQ+a (xP rR+yP )

rR−rQ+xP yP (rQrR−1) .
(25)

Multiplying the numerator and denominator by brQ + a we
obtain (11).

In projective coordinates formulas (9) and (10) can be
computed as efficiently as formulas [3] for Montgomery curves

By2 = x3 +Ax2 + x. (26)

Let f(P ) = (Xf(P ) : Zf(P )) for P ∈ Ha,b. Then{
Xf([2]P ) = 4Xf(P )Zf(P )((Xf(P ) − Zf(P ))

2 +AXf(P )Zf(P )),

Zf([2]P ) = (Xf(P ) + Zf(P ))
2(Xf(P ) − Zf(P ))

2,

(27)
where A = a

b + b
a + 2 and 4Xf(P )Zf(P ) can be computed

as 4Xf(P )Zf(P ) = (Xf(P ) + Zf(P ))
2 − (Xf(P ) − Zf(P ))

2.
The cost of these formulas is equal to 3M + 2S + c, where
M,S, c are costs of multiplication, squaring and multiplication
by a constant in K, respectively. Cost c can be made small,
if coefficients a, b are chosen such that A is small. Moreover,
computing 4Xf(P )Zf(P ) = (Xf(P ) + Zf(P ))

2 − (Xf(P ) −
Zf(P ))

2 for B = A/4, we obtain

Xf([2]P ) = 4Xf(P )Zf(P )((Xf(P ) − Zf(P ))
2 + B(4Xf(P )Zf(P )))

(28)
and in this way doubling requires 2M +2S+ c. Similarly, the
differential addition in projective representation is provided by

Xf(P+Q) = Zf(P−Q)

(
(Xf(P ) − Zf(P ))(Xf(Q) + Zf(Q))

−(Xf(P ) + Zf(P ))(Xf(Q) − Zf(Q))
)2
,

Zf(P+Q) = Xf(P−Q)

(
(Xf(P ) − Zf(P ))(Xf(Q) + Zf(Q))

+(Xf(P ) + Zf(P ))(Xf(Q) − Zf(Q))
)2
,

(29)

and has cost 4M + 2S.

B. General Huff’s curves

In [12] Wu and Feng introduced general Huff’s curves.
General Huff’s curves are provided by the equation

Ga,b : x(ay2 − 1) = y(bx2 − 1) (30)

where a 6= b and a, b 6= 0. Similarly as for Huff’s curve the
point O = (0, 0) is the neutral element, and the opposite point
−(x, y) = (−x,−y). For two points P = (xP , yP ),
Q = (xQ, yQ) on Ha,b their sum P + Q = (xR, yR) is
provided by 

xR =
(xP+xQ)(ayP yQ+1)

(bxP xQ+1)(1−ayP yQ)
,

yR =
(yP+yQ)(bxP xQ+1)

(1−bxP xQ)ayP yQ+1)
.

(31)

Lemma 1. Every Huff’s curve over a field K given by the
equation (7) is also a general Huff’s curve.

Proof. By the substitutions:

x = ax, y = by, a = 1
b2 and b = 1

a2
(32)

we can transform equation (7) into the following general
Huff’s curve equation

Ga,b : x(ay2 − 1) = y(bx2 − 1). (33)

If a and b are squares in K we can transform the general
Huff’s curve with equation (33) into the Huff’s curve (7) by
substitutions

x = x
√
b, y = y

√
a, a =

1√
b

and b =
1√
a
. (34)

Theorem 2. On general Huff’s curves (30) with a degree 2
compression function f(x, y) = xy, we have the following
formulas for doubling and differential addition

f([2]P ) =
4f(P )(abf(P )2+(a+b)f(P )+1)

(abf(P )2−1)2 , (35)

f(P +Q)f(P −Q) =

(
f(P )−f(Q)

abf(P )f(Q)−1

)2

. (36)

We also have the following formulas for point recovery. For
generic points P = (x1, y1), Q = (x2, y2) on Ga,b, if we
are given P , f(Q), f(P + Q), then the coordinates of Q are
provided by

{
x2 = f(Q)

(ay1f(P+Q)+x1)(bf(Q)+1)+(af(Q)+1)(bx1f(P+Q)+y1)

(bf(Q)+1)(f(P+Q)−f(Q)+x1y1(abf(Q)f(P+Q)−1)
,

y2 =
f(Q)
x2

.

(37)

Proof. Formula (35) can be mechanically obtained from (9)
by substitutions (32). Similarly we can derive the doubling
formula (36) from (10) and the point recovery formula (37)
from (11).
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III. APPLICATIONS TO THE ISOGENY-BASED
CRYPTOGRAPHY

In general, if ψ : E → E1 is an isogeny of elliptic curves,
and f : E → K, f1 : E1 → K are degree 2 compression
functions, then there exists an induced rational function ψ̃ :
K → K, which we call compression of isogeny ψ, such that
f1◦ψ = ψ̃◦f , because the function f1◦ψ ∈ K(E1) is constant
with respect to [−1], so it is of the form ψ̃◦f for some rational
function ψ̃. In this section we present applications of formulas
obtained in the previous sections.

A. General Huff’s isogenies computation using compression
techniques

Moody and Shumow in [15] gave formulas on isogenies
for general Huff’s curves. Because to compute values of
f(x, y) at points of order 2 at infinity requires to take another
representation of compression function f : Ga,b → K, we
consider isogenies of odd degrees.

Let F = {(0, 0), (αi, βi), (−αi,−βi) : i = 1 . . . s}, where
−(αi, βi) = (−αi,−βi), is the kernel of an isogeny ψ of
degree `, where ` = 2s + 1. Let A =

∏s
i=1 αi and B =∏s

i=1 βi.

Theorem 3. ( [15], Theorem 5.) Define

ψ(P ) =

xP ∏
Q6=(0,0)∈F

−xP+Q

xQ
, yP

∏
Q6=(0,0)∈F

−yP+Q

yQ

 .

(38)
Then ψ is an `-isogeny with kernel F from the curve Ga,b to

the curve Ga′,b′ , where a′ = a`B
4

and b
′

= b
`
A

4
.

Now we present how to compute isogeny f(ψ) using point
compression.

Corollary 1. Let R ∈ Ga,b and let (Xf(R) : Zf(R))

be projective representation of f(R), where R is the point
defining kernel F of the isogeny ψ. Let Ord(R) be the odd
number. Let’s note that f(ψ(P )) is provided by

f(ψ(P ))

=
(
xP
∏
Q6=(0,0)∈F

−xP+Q

xQ
· yP

∏
Q6=(0,0)∈F

−yP+Q

yQ

)
,

(39)
which is equal to

f(ψ(P )) =
(
xP yP

∏
Q6=(0,0)∈F

xP+QyP+Q

xQyQ

)
=
(
f(P )

∏
Q∈F+

f(P+Q)f(P−Q)

f(Q)2

)
,

(40)

where F
+

is the set {(αi, βi) : i = 1 . . . s}. Having
generator R of the kernel of the isogeny ψ, provided by
projective compression (Xf(R) : Zf(R)), it is easy to obtain

other elements of the F
+

, using for example a ladder method.
Let J be the set of compressions in projective representation
of F

+
, so J = {(Xf(P i)

: Zf(P i)
) : i = 1 . . . s}. The value

of f(ψ) using point compression may be provided by

f(ψ(P )) =

(
Xf(P )

Zf(P )

∏s
i=1

Xf(P+Qi)
Xf(P−Qi)

Z
2
f(Qi)

Zf(P+Qi)
Zf(P−Qi)

X
2
f(Qi)

)
.

(41)

Having compression f(P ) of point P , provided in projective
compression representation by (Xf(P ) : Zf(P )) and the set J ,

one can compute
Xf(P+Q)Xf(P−Q)

Zf(P+Q)Zf(P−Q)

using identities


Xf(P+Q)Xf(P−Q) =

(
Xf(P )Zf(Q) −Xf(Q)Zf(P )

)2
,

Zf(P+Q)Zf(P−Q) =
(
abXf(P )Xf(Q) − Zf(P )Zf(Q)

)2
,

(42)
and therefore one can obtain f(ψ(P )).

To find the coefficients a′ and b
′

of general Huff’s curve
Ga′,b′ , one can use similar transformations as for formulas
(15) and (16) and obtain

x2
P

=
Xf(P )(aXf(P )+Zf(P ))
Zf(P )(bXf(P )+Zf(P ))

,

y2
P

=
Xf(P )(bXf(P )+Zf(P ))
Zf(P )(aXf(P )+Zf(P ))

.
(43)

Finally,

a′ = a`B
4
= a`

s∏
i=1

yP i

4 = a`
s∏

i=1

(
X

f(Pi)

(
bX

f(Pi)
+Z

f(Pi)

)
Z

f(Pi)

(
aX

f(Pi)
+Z

f(Pi)

)
)2

,

b
′
= b

`
A

4
= b

` s∏
i=1

xP i

4 = b
` s∏
i=1

(
X

f(Pi)

(
aX

f(Pi)
+Z

f(Pi)

)
Z

f(Pi)

(
bX

f(Pi)
+Z

f(Pi)

)
)2

.

(44)

B. Huff’s isogenies computation using compression techniques

In this subsection, it will be shown how to obtain formulas
for computation of isogeny on Huff’s curves using Theorem 3
and sequence of isomorphisms and isogenies between Huff’s
and general Huff’s curves.

Theorem 4. Let F = {(0, 0), (αi, βi), (−αi,−βi) : i =
1 . . . s}, where −(αi, βi) = (−αi,−βi), be the kernel of an
isogeny ψ. Let A =

∏s
i=1 αi and B =

∏s
i=1 βi. Let’s define

ψ(P ) =
(
xP (−1)s

∏
Q 6=(0,0)∈F xP+Q,

yP (−1)s
∏
Q6=(0,0)∈F yP+Q

)
.

(45)

Then ψ is a `-isogeny with kernel F , from the curve Ha,b, to
the curve Ha′,b′ , where a′ = a

A2 = a∏s
i=1 x

2
Qi

and b′ = b
B2 =

b∏s
i=1 y

2
Qi

Proof. To prove the Theorem 4 we will use the following
composition τ ◦ ψ ◦ ξ, where:

• ξ is an isomorphism from Huff’s curve Ha,b to general
Huff’s curve Ga,b, where a = 1

b2 , b = 1
a2 and where for

P = (x, y) the isomorphism ξ using Lemma 1 has the
form P = ξ(P ) = (ax, by) = (x, y),

• ψ is an isogeny from general Huff’s curve
Ga,b to general Huff’s curve Ga′,b′ , where the
kernel F = {(0, 0), ξ(αi, βi), ξ(−αi,−βi)} =

{(0, 0), (αi, βi), (−αi,−βi)} and for P = (x, y) the
isogeny ψ has the form
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P
′

= ψ(P )

=
(
xP
∏
Q6=(0,0)∈F

−xP+Q

xQ
, yP

∏
Q6=(0,0)∈F

−yP+Q

yQ

)
=
(
axP

∏
Q 6=(0,0)∈F

−xP+Q

xQ
, byP

∏
Q6=(0,0)∈F

−yP+Q

yQ

)
(46)

where
a′ = a`B

4
= a`

(∏s
i=1 βi

)4
,

b
′

= b
`
A

4
= b

`
(
∏s
i=1 αi)

4
.

(47)

• τ is an isomorphism from general Huff’s curve Ga′,b′ to
the Huff’s curve Ha′,b′ , where

a′ = 1√
b′

= 1√
1

a2`

(
s∏

i=1
axQi

)2 = 1

a2s

a`

(
s∏

i=1
xQi

)2 = a(
s∏

i=1
xQi

)2 ,

b′ = 1√
a′

= 1√
1

b2`

(
s∏

i=1
byQi

)2 = 1

b2s

b`

(
s∏

i=1
yQi

)2 = b(
s∏

i=1
yQi

)2

(48)
and

P ′ = τ(P
′
)

=
(

a
a′ xP

∏
Q6=(0,0)∈F

−xP+Q

xQ
, b
b′ yP

∏
Q6=(0,0)∈F

−yP+Q

yQ

)
=
(
xP
(∏s

i=1 xQi

)2∏
Q6=(0,0)∈F

−xP+Q

xQ
,

yP
(∏s

i=1 yQi

)2∏
Q6=(0,0)∈F

−yP+Q

yQ

)
=

(
xP (−1)s

∏
Q6=(0,0)∈F

xP+Q, yP (−1)s
∏

Q6=(0,0)∈F
yP+Q

)
.

(49)

Corollary 2. Let R ∈ Ha,b and let (Xf(R) : Zf(R))
be projective representation of f(R), where R is the point
defining the kernel F of the isogeny ψ. Let Ord(R) be the
odd number. Let’s note that f(ψ(P )) is given by

f(ψ(P )) =

xP (−1)s ∏
Q6=(0,0)∈F

xP+Q · yP (−1)s
∏

Q6=(0,0)∈F

yP+Q

 ,

(50)
which is equal to

f(ψ(P )) =
(
xP yP

∏
Q6=(0,0)∈F xP+QyP+Q

)
=
(
f(P )

∏
Q∈F+ f(P +Q)f(P −Q)

)
,

(51)

where F+ is the set {(αi, βi) : i = 1, . . . , s}. Having
generator R of the kernel of the isogeny ψ, given by projective
compression representation (Xf(R) : Zf(R)), it is easy to
obtain other elements of the F+, using for example a ladder
method. Let J be the set of projective representations of F+,
so J = {(Xf(Qi) : Zf(Qi)) : i = 1, . . . , s}. In a projective
representation f(ψ) using point compression may be provided
by

f(ψ(P )) =
(
Xf(P )

Zf(P )

∏s
i=1

Xf(P+Qi)
Xf(P−Qi)

Zf(P+Qi)
Zf(P−Qi)

)
. (52)

To find the coefficients a′ and b′ of Huff’s curve Ha′,b′ , if
f(P ) =

Xf(P )

Zf(P )
, one can use formula (53)

x2P =
Xf(P )(aXf(P )+bZf(P ))
Zf(P )(bXf(P )+aZf(P ))

,

y2P =
Xf(P )(bXf(P )+aZf(P ))
Zf(P )(aXf(P )+bZf(P ))

,
(53)

and finally gets

a′ = a

(
∏s

i=1 xQi)
2 =

a
∏s

i=1 Zf(Qi)(bXf(Qi)
+aZf(Qi))∏s

i=1Xf(Qi)(aXf(Qi)
+bZf(Qi))

,

b′ = b

(
∏s

i=1 xQi)
2 =

b
∏s

i=1 Zf(Qi)(aXf(Qi)
+bZf(Qi))∏s

i=1Xf(Qi)(bXf(Qi)
+aZf(Qi))

.

(54)

IV. EFFICIENCY OF OBTAINED FORMULAS

Formulas obtained in the previous sections may be used, for
example, in the isogeny-based cryptography, like in the SIDH
algorithm, and may be the alternative for Montgomery curves’
arithmetic.

Efficient algorithms for isogeny-based cryptography using
compression on Montgomery curves have been presented in
[16] and [17].

As follows from (27) and (29), the computation of f(P +
Q)f(P−Q), addition and doubling in all cases of (Huff’s and
Montgomery curves) costs 4M+2S, 2M+2S and 2M+2S+c
respectively. For general Huff’s curves computational costs are
4M + 2S + c, 6M + 2S + c and 2M + 3S + 2c.

It is worth noting that, e.g., in the SIKE algorithm, only
coefficient A of the Montgomery curve MA,B provided by
equation (26) is required, and this coefficient may be obtained
having x-coordinates of three distinct points on MA,B . It costs
8M + 3S. It is an open issue to use a similar approach to
(general) Huff’s curves.

A. Huff’s curves

1) Cost of `-isogenous curve computation: At first, one
needs to compute the projective representation of elements
Qi, for i = 1, s of the kernel of the isogeny. This may be
computed having the first element of the kernel (generator of
the subgroup) in projective representation

(
Xf(Q1) : Zf(Q1)

)
and making doubling to obtain

(
Xf(Q2) : Zf(Q2)

)
and

s − 2 times differential addition to obtain other elements
of the kernel

(
Xf(Q3) : Zf(Q3)

)
,
(
Xf(Q4) : Zf(Q4)

)
, . . . ,(

Xf(Qs) : Zf(Qs)

)
. Moreover, let’s note, that in both formulas

for a′ and b′ (54), there appears aXf(Qi), bXf(Qi), aZf(Qi),
bZf(Qi) for every i = 1, s. The computation of these elements
requires 4 multiplications by constants. Additionally, in both
nominators and denominators, there are required multiplica-
tions by Zf(Qi) and Xf(Qi) respectively, which results in
4 additional multiplications. Product multiplications require
additional 4(s− 1) multiplications. Finally, there are required
other multiplications by a and b. So finally, to compute a′ and
b′ one requires

Doub+ (s− 2)DiffAdd+ 4s(c+M) + 4(s− 1)M + 2M
= (s− 1)(4M + 2S) + 4s(c+M) + 4(s− 1)M + 2M
= 2sS + 4sc+ 12sM − 2S − 6M,

(55)

where Doub and DiffAdd are the costs of doubling and
differential addition respectively. In the most interesting cases
for us, computation of the 3-isogenous and 5-isogenous curve,
one obtains that computing the isogenous curve Ha′,b′ costs
6M + 4c and 2S + 8c+ 18M respectively.
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2) Cost of odd `-isogeny evaluation, where ` = 2s + 1:
Let’s note, that every computation of Xf(P+Qi)Xf(P−Qi) and
Zf(P+Qi)Zf(P−Qi) for i = 1, s requires 2M+2S every. Addi-
tionally, there are required 2(s−1) product multiplications (in
the nominator and denominator). Moreover, there are required
2 additional multiplications by Xf(P ) and Zf(P ). So finally,
for ` = 2s+ 1 isogeny evaluation cost is

s(2M + 2S) + 2(s− 1)M + 2M
= 2sS + 4sM.

(56)

In the most interesting cases, evaluation of 3-isogeny and
5-isogeny, one obtains that such evaluation costs 4M+2S and
8M + 4S respectively.

B. General Huff’s curves

1) Cost of `-isogenous curve computation: Similarly to
Huff’s curves at the beginning, one needs to compute pro-
jective representation of the isogeny elements Qi, for i =
1, s of the kernel of the isogeny. This may be computed
having the first element of the kernel (generator of the
subgroup) in projective representation

(
Xf(Q1)

: Zf(Q1)

)
and making doubling to obtain

(
Xf(Q2)

: Zf(Q2)

)
and

s − 2 times differential addition to obtain other elements
of the kernel

(
Xf(Q3)

: Zf(Q3)

)
,
(
Xf(Q4)

: Zf(Q4)

)
, . . . ,(

Xf(Qs)
: Zf(Qs)

)
. Moreover, let’s note, that in both for-

mulas for a′ and b
′

(44), there appears aXf(Qi)
, bXf(Qi)

,
aZf(Qi)

, bZf(Qi)
for every i = 1, s. The computation of

these elements requires 4 multiplications by constants. Ad-
ditionally, in both nominators and denominators, there are
required multiplications by Zf(Qi)

and Xf(Qi)
respectively

and squarings, which results in 4 additional multiplications
and 4 squarings. Product multiplications require additional
4(s − 1) multiplications. Finally, there are required other
multiplications by a` and b

`
. Computing both a` and b

`

requires len(`)−1 constant doubling and hwt(`)−1 constant
squaring respectively, where len(`) denotes binary length of `
and hwt(`) the Hamming weight of `. So finally, to compute
a′ and b

′
one requires

Doub+ (s− 2)DiffAdd+ s(4c+ 6M + 2S)
+ 4(s− 1)M + 2M + 2((len(`)− 1)d+ (hwt(`)− 1)c)
= 4M(4s− 3) + S(4s− 1) + c(5s+ 2hwt(`)− 3)
+ 2d(len(`)− 1),

(57)

where, Doub and DiffAdd are the costs of doubling and
differential addition respectively and d is a cost of constant
squaring. In the most interesting cases for us, computation of
3-isogeny and 5-isogeny, one obtains that computing isoge-
nous curve Ga′,b′ costs 4M + 3S+ 6c+ 2d and 20M + 7S+
11c+ 4d respectively. Performing a constant squaring simply
as a multiplication we obtain for the `-isogeny

4M(4s− 3) + S(4s− 1) + c(5s+ 2hwt(`) + 2len(`)− 5).
(58)

For the computation of 3-isogenous and 5-isogenous curves,
one obtains 4M + 3S+ 8c and 20M + 7S+ 15c respectively.

2) Cost of odd `-isogeny evaluation, where ` = 2s+1: Let’s
note, that every computation of Xf(P+Qi)

Xf(P−Qi)
Z

2

f(Qi)

and Zf(P+Qi)
Zf(P−Qi)

X
2

f(Qi)
for i = 1, s requires 4M +

4S every. Additionally, there are required 2(s − 1) product
multiplications (in the nominator and denominator). Moreover,
there are required 2 additional multiplications by Xf(P ) and
Zf(P ) and 4 squarings. So finally, for the ` = 2s+ 1 isogeny
evaluation cost is

s(4M + 4S) + 2(s− 1)M + 2M
= 4sS + 6sM.

(59)

In the most interesting cases, evaluation of 3-isogeny and
5-isogeny, one obtains that such evaluation costs 6M+4S and
12M + 8S, respectively.

V. ECM ALGORITHM USING HUFF’S AND GENERAL
HUFF’S CURVES

In this subsection we will show how to generate Huff’s
and general Huff’s curves convenient for the use in ECM
algorithm, where compression techniques presented in this
paper may be used.

In [18] the Theorem 5 was proven.

Theorem 5. ( [18], Theorem 4.10.)
Let K = Q

(√
−1,
√
t4 − 6t2 + 1

)
with t ∈ Q and t 6= 0,±1

and let E be an elliptic curve defined by the equation

E : y̆2 + x̆y̆ −
(
v2 − 1

16

)
y̆ = x̆3 −

(
v2 − 1

16

)
x̆2, (60)

where v = t4−6t2+1
4(t2+1)2 . Then, the torsion subgroup of E over K

is equal to Z/4Z⊕ Z/8Z for almost all t.

We will show how to find Huff’s curve Ha,b isomorphic to
the curve E.

At first, the isomorphic short Weierstrass curve E1 to the
curve E is equal to

E1 : ẏ2 = ẋ3 + (−432s2 − 432s− 27)ẋ
+(−3456s3 + 6480s2 + 1296s+ 54),

(61)

where s =
(
v2 − 1

16

)
. Now it is necessary to find the x-

coordinate of three points of order 2, which are the roots of
f(u) = u3 + (−432s2− 432s− 27)u+ (−3456s3 + 6480s2 +
1296s+ 54). They are equal to

r0 = 3t8−12t6+66t4−12t2+3
t8+4t6+6t4+4t2+1 ,

r1 = − 6t8−24t6−12t4−24t2+6
t8+4t6+6t4+4t2+1 ,

r2 = 3t8−12t6−78t4−12t2+3
t8+4t6+6t4+4t2+1 .

(62)

Substituting,

R0 = 0, R1 = r1 − r0, R2 = r2 − r0,

one obtains isomorphic elliptic curve

E2 : ŷ2 = x̂3 − (R1 +R2)x̂2 +R1R2x̂. (63)

The roots R0, R1, R2 are equal to:
R0 = 0,

R1 = − 9(t−1)4 (t+1)4

(t2+1)4
= −

(
3(t−1)2(t+1)2

(t2+1)2

)2
,

R2 = − 144t4

(t2+1)4
= −

(
12t2

(t2+1)2

)2
.

(64)
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Using isomorphism between Weierstrass and Huff’s curve
given in [11]

Ha,b : ax(y2−1) = by(x2−1) ∼= E2 : ŷ2 = x̂(x̂+a2)(x̂+b2)
(65)

and isomorphism between general Huff’s and Weierstrass
curve [12]

Ga,b : x(ay2− 1) = y(bx2− 1) ∼= E2 : ŷ2 = x̂(x̂+ a)(x̂+ b),
(66)

one can find the coefficients of the isomorphic Huff’s curve
whose are therefore equal to

a =
3(t− 1)2(t+ 1)2

(t2 + 1)2
, b =

12t2

(t2 + 1)2
. (67)

and the coefficients of the isomorphic general Huff’s curve
whose are therefore equal to

a =
9(t− 1)4(t+ 1)4

(t2 + 1)4
, b =

144t4

(t2 + 1)4
. (68)

VI. CONCLUSION

This paper presents formulas for doubling and differential
addition on Huff’s and general Huff’s curves of odd char-
acteristic and the degree 2 compression function. For Huff’s
curves, the efficiency of those formulas is similar as for the
Montgomery curve and formulas for general Huff’s curves
are not so efficient. Moreover, these formulas seem to be new
for these models of elliptic curves. Additionally, formulas for
point recovery after compression were presented.

Recently formulas as efficient as Montgomery’s were given
by Farashahi [5] for twisted Edwards curves, who used a
compression function E → K of degree 8.

The important part of the paper is the presentation of for-
mulas for general odd-isogeny computation on Huff’s curves,
which seem to be new for this model. Additionally, it is shown
how to apply these formulas to the isogeny-based cryptography
using a proposed compression function.

The applications of obtained formulas for Huff’s and general
Huff’s curves to the isogeny-based cryptography and ECM
method have been shown.

It is an open issue, if for the presented formulas for Huff’s
curves it is possible to use a similar scheme as in [16] and
[17] for Montgomery curves to obtain better efficiency.
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VII. APPENDICES

A. Comparison of computational costs

In the Table I computational costs of operations on Huff’s
curve using compression function f(x, y) = xy, general
Huff’s curve operations using compression function f(x, y) =
xy and Montgomery curve operations using compression
function f(x, y) = x are presented.
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TABLE I
COMPUTATIONAL COSTS OF OPERATIONS ON HUFF’S CURVE USING COMPRESSION FUNCTION f(x, y) = xy, GENERAL HUFF’S CURVE OPERATIONS

USING COMPRESSION FUNCTION f(x, y) = xy AND MONTGOMERY CURVE OPERATIONS USING COMPRESSION FUNCTION f(x, y) = x, WHERE COSTS OF
OPERATIONS IN FIELD K ARE DENOTED AS: M FOR MULTIPLICATION, S FOR SQUARING, c FOR MULTIPLICATION BY CONSTANT.

Operation Ha,b Ga,b MA,B

f(P +Q)f(P −Q) 2M + 2S 4M + 2S + c 2M + 2S [3]
Differential addition f(P +Q) 4M + 2S 6M + 2S + c 4M + 2S [3]

Doubling f([2]P ) 3M + 2S + c 2M + 3S + 3c 3M + 2S + c [3]
Doubling

( (a+b)2

4ab
, ab and A−2

4
are constant)

2M + 2S + c 2M + 3S + 2c 2M + 2S + c [3]

2-isogenous curve - - 2S [17]
2-isogenous curve - - w [17]
3-isogenous curve 6M + 4c 6M + 2S + 8c 2M + 3S
5-isogenous curve

the full kernel is not given 18M + 2S + 8c 20M + 7S + 15c 8M + 3S [16][Eq. 16]

`-isogenous curve
the full kernel is not given

6M(2s− 1)+
S(2s− 1) + 4sc

4M(4s− 3)+
S(4s− 1)+

c(5s+ 2hwt(`)+
2len(`)− 5)

8M + 3S [16][Eq. 16]

2-isogeny evaluation - - 4M [17]
3-isogeny evaluation 4M + 2S 6M + 4S 2M + 3S [17]
5-isogeny evaluation 8M + 4S 12M + 8S 8M + 2S [16][Alg. 3]
`-isogeny evaluation 4sM + 2sS 6sM + 4sS 4sM + 2S
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