
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2021, VOL. 67, NO. 2, PP. 229-234

Manuscript received June 2, 2020; revised April, 2021 DOI: 10.24425/ijet.2021.135969

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—The rapid development of the Internet of Things (IoT)

and the wide area of application rise the IoT concept to be the

future of the internet. Indeed, IoT environment has a special

nature with a lot of constraints in term of resource consumption.

Moreover, the data exchanged between things and the internet is

big data. In order to achieve efficiency in IoT communication,

many technologies and new protocols based on these technologies

have been developed. This paper aims to study the performance of

Message Queuing Telemetry Transport (MQTT) by implementing

this protocol on test-bed network infrastructure and analyzing the

performance properties such as delay, jitter, packet loss and

throughput for real time and non-real time scenarios. Finally,

future research issues in MQTT protocol are suggested.

Keywords—IoT, protocols, MQTT, computer networks

I. INTRODUCTION

INCE long time ago we have dreamed of smart homes, smart
cars, and smart clothes. We have always wanted to take

control over things in our life, observe the environment changes
all time and increase the efficiency in the industry. All this
become true now by Internet of Things (IoT). IoT is the term
that means to connect things with the internet and with other
things. Things are usually sensors [1]. In IoT, sensors obtained
the data and share it with the internet. The internet can be any
interested client or application such as mobile applications. In
dead, there are three main challenges in the communication
between things and internet [2]. The challenges are constrained
devices, big data and security. In order to meet the IoT
requirements and achieve the efficiency in IoT communication,
Message Queuing Telemetry Transport (MQTT) protocol has
been developed [3].

This paper will implement and evaluate the performance of
MQTT protocol in real-world network infrastructure. Z1 mote
is used as constraint device and raspberry pi as a server. In
addition, this paper gives a clear evaluation of the abilities and
of raspberry pi and Z1 mote when they are used in IoT network.
Also, it shows the effects of Quality of Service (QoS) levels on
both real and unreal time connections. The result of this paper
is so reasonable and realistic as it reflects real-world scenarios
that can be implemented in a wide range of applications such as
smart homes.

The main objectives of this paper are to.
• Develop a test-bed for the MQTT transport protocol.
• Evaluate the performance of the MQTT protocol in

real-time and non-real time application.

This work was conducted in IoT and Wireless Communication Protocols Lab

and is partially funded by international Islamic University Malaysia Publication

Research Initiative Grant Scheme no. P-RIGS18-003-0003.

Ghofran Hijazi, Mohamed Habaebi, and Ahmed Al-Haddad are with
Department of Electrical and Computer Engineering, Faculty of Engineering,

• Study QoS performance of the MQTT protocol and
evaluate the interaction response between test-bed
components.

The rest of this paper is organized as follows: the literature
review is presented in Section 2. Section 3 explains the
experimental setup. The results are discussed in Section 4. In
Section 5, future works are suggested. A conclusion is drawn in
Section 6.

II. LITERATURE REVIEW

This section gives an overview about IoT as it is important to
understand the environment of this study. Then the
characteristic of MQTT is summarized followed by an
explanation for publish/subscribe technology and QoS level as
these are the core concept behind MQTT protocol.

A. The Internet of Things

Generally, IoT is the concept of connecting the physical
things around us to the internet. This connection will allow
humans to communicate with the things and the things to
communicate with each other. There are two components in the
term of IoT, the internet, and things. Internet part indicates the
network-oriented view. The things part shows how objects can
be integrated into one framework [2].

The idea of communicating with things has developed over
decades. However, IoT term was first introducing by Kevin
Ashton in 1999 [4]. The IoT has developed dramatically since
that time especially after recent wireless technologies have been
adopted, for instance enabling wireless technologies such as
RFID tags, embedded sensor and actuator nodes. It is now
concerned as the next revolutionary technology. It is really
important to know that when we are talking about things we
mean sensors and actuators where sensors and actuators are
placed in the environment around us, and they share the
information in order to build a common operating picture.

In IoT technology, we need to achieve reliable connectivity
for three types of communication. The first type is
communication between two devices (D&D). The second type
is communication between device and server (D&S) to send the
data that have been collected to the server. The third type is the
communication between two servers (S&S) to share the
information with the internet [5]. This meaningful connectivity
is one of the most critical challenges in IoT due to the nature of
the devices and the sensor. Sensors have low power
consumption and supply (battery-powered devices), limited
resources and the huge number of the connected devices that

International Islamic University Malaysia, Kuala Lumpur, Malaysia. (e-mail:
ghofran.abd.hijazi@gmail.com, habaebi@iium.edu.my, itshaddad@gmail.com).

Alhareth Zyoud is with Department of Electrical and Computer Engineering,

Faculty of Engineering and Technology, Birzeit University, Birzeit, Ramallah,
Palestine. (e-mail: alhmtz@gmail.com).

Stress Testing MQTT Server

for Private IOT Networks
Ghofran Hijazi, Mohamed Hadi Habaebi, Ahmed Al-Haddad, and Alhareth Mohammed Zyoud

S

230 G. HIJAZI, M. HABAEBI, A. AL-HADDAD, A. ZYOUD

cause an address problem. Therefore, we need to develop new
protocols that meet the needs of IoT. This requirement can be
surmised as following key points [6].

• Deliver data from one to many.
• Deduct the changes whenever they may happen.
• Share small packets of data in a massive amount.
• Coast of transmitted data.
• Power consumption (battery-powered devices).
• High response time (real-time).
• Security and privacy.
• Scalability.
IoT will affect our daily life substantially. From normal

user prospective, this effect will appear clearly in assisted living,
smart homes, and offices e-health and enhanced learning. These
applications are only a few examples of the wide application of
IoT. From the point of view of the business user, it will enhance
the automation and industrial manufacturing, logistics, business
process management, intelligent transportation of people and
goods [2]. Figure 1 shows the wide range of IoT application
listed based on popularity.

Fig.1. Applications of the internet of things [7]

B. MQTT

MQTT was invented by Dr. Andy Stanford-Clark of IBM,
and Arlen Nipper of Arcom (now Eurotech), in 1999 [8]. The
main function of MQTT is remote monitoring by collecting data
from the large network with a large number of small devices,
and then sending it to the internet. It also monitors the small
devices in the network that need to be controlled from the cloud.
MQTT is suitable for the application where we need.

The main characteristic of MQTT is listed as following:-
• It works on top of IP/TCP transport protocol.
• It uses a data-centric communication publish/subscribe

technology. Data-centric communication is the
technique that focuses on the data itself. The main unit
is the data object value, not the message. The
infrastructure conceder successful when all nods get a
correct understanding of the data value.

• It is extremely simple.
• It is a lightweight messaging protocol. It has less

payload and small overhead.
• It is designed for constrained devices that have a severe

limitation on power, memory, and processing
resources.

It is suitable for low-bandwidth
• It is suitable for high-latency or unreliable networks

• It ensures reliability by using some degree of assurance
of delivery. MQTT support three levels of quality of
service (QoS) that will describe in details later in
Section 2.4.

• It has a tool to alert interested devices to an unexpected
disconnection of a client by using the Will message and
Testament feature.

C. Publish- Subscribe

Publish-Subscribe (pub/sub) technology is highly needed

for the flowing reasons. First of all, because The Wireless

Sensor Network (WSN) dynamic and temporal nature using

network address as a communication system between

Sensor/Actuator devices (SA devices) are complicated and not

efficient. SA devices change their addresses in unpredictable

time. They may stop working, so they need to be replaced. The

wireless link itself may fail. Moreover, as Hunkeler et al. [9]

noticed during their experiment that some network protocols

that use to connect between SA devices such as ZigBee change

the address of the devices. Thus, using network address is

troubled.

Second, in the most cases, the applications do not need to

know the actual address of the devices. They require for the

information and the data that has been collected by SA devices.

For example, GPS application does not need to know the

address of a moving car. They need more to know the

geographical location at the specific instant of time. In addition,

many applications may request for the same sensor data for

different intent or objective. From communication means, SA

needs to deal with the different application in parallel. This will

go beyond the limited resources and the low-coast of SA

devices. Therefore, the network address communication

approach need to be replaced by another one.

To overcome the problem described above, we use data-

centric approach where the delivery off the message depends on

the interest, not on the network address. Publish/subscribe

message system is one of the most common examples of the

data-centric system, see Fig. 2.

Fig. 2. Integrated wireless sensor networks with pub/sub communication [9]

The general concept of pub/sub method is that the consumer

who is interested to resave type of information will register its

interest and it will be called the subscriber. The device that

produces the same information will publish its information and

it will be called the publisher. The element which responsible to

ensures that the data is sent from the publishers to the

subscribers is called the broker. The broker is the server that

connects the gateway to the cloud.

STRESS TESTING MQTT SERVER FOR PRIVATE IOT NETWORKS 231

There are three basic types of pub/sub system. First, one is

the type-based system. It is not widely used. Second is the

content-based system. It is the most adaptable system where the

subscriber uses a tiny DB and SQL query to define the content

of the message that they would like to restive. The third one is

the topic-based system where the subscription and publishing

can be done only on the certain list of topics that has been

determined in the design stage. It is the simplest system and the

most applicable for the wireless sensor network that based on

the hardware. Figure 3 shows how pub/sub messaging system

works. The subscriber will send sub (topic) message to the

broker. The publisher will send pub (topic, data) to the broker.

The broker will look for matching topics. If it finds any

matching topics between publisher and subscriber, the pub

(topic, data) will be forwarded to the subscriber.

The main advantages of sub/pub system are that the

application will not be affected if a failure accrues in SA side, it

will get its information when the SA device replaced. Therefore,

the application does not need to know about the SA failure. In

the same way, the SA does not need to be aware of what

application needs its data or how many applications. Simply the

SA will send the data to the broker and the broker will be

speared the data to the subscriber application. In addition,

sub/pub system covers the complexity of the underlying

networks. That makes it easier for the developers and makes

them focus only on the application [9].

Fig. 3 Topic based pub/sup [9]

D. Quality of Services

MQTT supports reliability using three levels of QoS. The

application chose the suitable level for itself depending on how

much reliability is needed in the message delivered to the

destination. The first level is level 0. In this level, there is no

acknowledgement and no retransmission. Therefore, the

message may be delivered once or not delivered. Second is

level 1, the delivery of a message in this level is ensured and

acknowledge message will be sent but the message may deliver

more than once due to retransmission. Lastly, level 2 ensure that

the message will be delivered only once by using four steps

handshake. The nature of application determines what level of

QoS should be used. Figure 4 shows the three levels of

QoS [10].

Fig. 4 QoS levels [10]

III. EXPERIMENTAL SETUP

This section tackles the software and hardware that had

been used in this research. It also talks about the performance

elements under study. Then, it explains different suggested

scenarios. Finally, the steps of the followed experiment

procedure are listed.

A. Software/Hardware

There are several parts that are going to be used in this

study. At the beginning, a private network is going to be

constructed and MQTT protocol will be used as the main

messaging protocol. The hardware parts that are going to be

used are Raspberry Pi microprocessor to host the MQTT broker

and Z1 sensors. For the software used the study, Contiki

Operating System will be used to connect the sensors to the

network. To use MQTT on Raspberry Pi then Mosquitto broker

needs to be downloaded and installed. Also, MySQL database

is to be used to hold on the data fetched from the sensors.

• Hardware:

o Raspberry Pi

o Z1 sensors

• Software:

o Contiki

o Mosquitto broker

o MySQL

B. Performance Parameters

Average of total delay: can be simply defined as the time

difference between sending publish request message from the

client and resaving the response message that carries the data

from the sensor. It can be divided into four types: Transmission

delay, propagation delay, queuing delay and processing delay.

Delay variation (jitter): simply is the delay difference

between packets that are sent from the same source to the same

destination. In this case, one packet will have less delay than

expected and another packet will get more delay than expected,

this difference is called jitter.

Packet loss due to error or congestion: If an error happens

or congestion in any point of the network packet may drop and

if does not send again it will be lost.

Throughput or transmission rate: is the number of bits

passing through the point of the network per second.

C. Real-time Case

This case studies when the user needs to know the

information for this moment. So when he sends request he

connects with the corresponding sensing mote and gets the data.

So, it will be dealing with the MQTT domain and the ZigBee

domain.

Unreal-time Case

This is when the user needs to get old information from the

database. In this case, it needs to be connected only with the

broker. And no need to be connected with the gateway or Z

motes.

E. Experiment Procedures

The procedure for this experiment will be as following:

1. Set QoS level.

2. Send a different number of the messages starting

from the small number of the messages, around two

messages.

232 G. HIJAZI, M. HABAEBI, A. AL-HADDAD, A. ZYOUD

3. Increase the number of messages gradually.

4. Continue increasing until it reaches the crash

system level.

5. Calculate the total average delay, jitter, packet loss

and throughput.

6. Record the result for further analyses.

7. Repeat the steps from 2 to 6 for all QoS levels.

IV. ESULTS AND DISCUSSION

A. Network Design

Figure 5 illustrates the design elements, physical

connection and logical connection.

Fig. 5 Network design

B. Message Sequence

Figure 6 is the sequence diagram that shows the mechanism

of forwarding messages in the network.

Fig. 6 Message sequence.

C. Exchanged Messages Size

• Publish request message sent by client to broker:

the size of the message is 14-16 byte depending on

identifier value.

• Publish data message from the gateway to broker

and from broker to client: the size is between 54-

56 depending on the identifier value.

• Connect message: the size is 39 byte.

• Acknowledgment message that sends for QoS1

and QoS2 only and connects acknowledgment.

The length is 4 bytes.

• Disconnect message: the size is only 2 bytes.

D. Discussion

1) Delay

Figure 7 shows the average delay for non-real time scenario

for the three levels of QoS. Overall, the delay increases

dramatically when the number of messages increases. However,

the delay in QoS2 is the highest because of the four-hand check

that applied in QoS2 which increases the load on the network.

Another reason why QoS2 has a higher average delay is that the

server needs to wait for the acknowledgment. It is important to

clarify that the delay of received messages only was calculated.

The delay in QoS1 comes in second place because it waits only

for one acknowledgment and the load in the network is less than

QoS2. Third place is QoS0, it shows the best result for the delay

because the load on the network is less and no need to wait for

an acknowledgment. The lost messages were not included.

Therefore, the delay drop is noticed when the number of

messages gets over 5000 messages for QoS0 and QoS1, and

2500 for QoS2. If the delay of lost messages is considered, the

trend will rise up to infinity. From Fig. 8 it can be seen that the

QoS level has no impact on the delay. All QoS follow the same

trend. This result is reasonable because in real-time, the network

is working under the constraints of Z1 mote and ZigBee that

limit the performance of MQTT. This could be understood more

clearly when looking at the maximum number of messages that

can be sent in both scenarios.

Fig. 7 Average delay non-real time

Fig. 8 Average delay real-time

2) Jitter

As a propagation jitter is not expected, this jitter is the

processing jitter. The jitter is quit high for a large number of

messages in non-real time case as shown in Fig. 9. But it

fluctuates in the real-time case as shown in Fig. 10 with much

smaller value than non-real time.

STRESS TESTING MQTT SERVER FOR PRIVATE IOT NETWORKS 233

Fig. 9. Jitter non-real time

Fig. 10. Jitter real time

3) Throughput and Packet Loss

The packet loss diagram is the opposite of the throughput

diagram. So, same analysis will provide for them. For non-real

time analysis, as shown in Fig. 11 and Fig. 12, at a small number

of messages (0-1000) the throughput is maximum at 100%

while the packet loss ratio is equal to 0. After 1000 messages

per minute, the packet loss ratio increases until the packet lost

rich the pick at around 80%. While the throughput decreases

until the packet lost rich the bottom at around 20%. In addition,

QoS2 has the best throughput and less packet lost followed by

the Qos1 and last QoS0. That is because of the reliability that

ensured by the acknowledgment messages of QoS2 and QoS1.

For real-time analysis shown in Fig. 13 and Fig. 14, it is

seen that the resulting change. QoS2 is not the best now. It

derives the system to failure quickly because of the huge load

on the network that cannot be taken by the Z1 mote. QoS1

shows the best performance relative to packet loss and

throughput.

Fig. 11 Non-real time throughput

Fig. 12. Non-real time packet lost

Fig. 13. Real time throughput

Fig. 14. Real time packet lost

234 G. HIJAZI, M. HABAEBI, A. AL-HADDAD, A. ZYOUD

Comparing with non-real time scenario, the number of

messages that can be sent in real-time scenario is small. In non-

real time, up to 1000 message could be sent before the packet

lost start increasing while in real time scenario; only 60

messages could be sent for QoS0, 20 for QoS1 and 10 messages

for QoS2. This because of the limitation of Z1 mote and the

bottleneck occurs at Z1 base mote. Moreover, the system will

fall down at 40 messages for QoS2 and 150 messages for Qos1.

It gives better result in term of system fall for QoS0 at 200

messages. This gives the readers clear understanding of the

limitation of Z1.

V. FUTURE WORK

For future work, it is planned to work on the recent network

and codes to develop it in order to get better performance. Ones

this is done, the best implementation design to be conducted

with MQTT will be suggested. Moreover, it is planned to

implement another protocol such as CoAP in the same scenario

and compare the performance of all protocols. This will help the

developers to define the strength area of application for each

protocol.

This will be a considerable contribution in IoT

implementation and performance.

CONCLUSION

From the results, it was shown that MQTT can work perfectly

as a reliable real-time protocol for a small number of messages.

The protocol loses its efficiency when the load of the network

(number of messages) goes extremely high. Four different

performance properties were analyzed. For real time scenarios,

it was found that the QoS level has no impact on the delay.

However, for non-real time scenarios, the delay is dramatically

increased as the number of messages increased. QoS0 showed

the best results of delay. Moreover, the processing jitter is much

smaller for real time scenarios than non-real time scenarios. In

terms of throughput and packet loss, QoS2 showed the best

performance for non-real time scenarios, while for real time

scenarios the QoS1 was the best.

REFERENCES

[1] I. T. S. Sector, Recommendation ITU-T Y. 2060, “Overview of the
Internet of things. Series Y: Global information infrastructure, internet

protocol aspects and next-generation networks-Frameworks and

functional architecture models,” 2012. Retrieved from https://www. itu.
int/rec/T-REC-Y, 2060-201206.

[2] D. Bandyopadhyay, and J. Sen, “Internet of Things: Applications and

Challenges in Technology and Standardization,” Wireless Pers Commun,
vol. 58(1), pp. 49-69, 2011. http://dx.doi.org/10.1007/s11277-011-0288-5

[3] MQTT Version 5.0. Edited by Andrew Banks, Ed Briggs, Ken

Borgendale, and Rahul Gupta. 07 March 2019. OASIS Standard.
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html.

[4] Postscapes.com, Internet of Things Examples – Postscapes, 2020.

Retrieved 20 April 2020, from http://postscapes.com/internet-of-things-
examples/

[5] S. Schneider, Understanding The Protocols Behind The Internet Of

Things. Electronicdesign.com, 2013. Retrieved 20 April 2020, from

http://electronicdesign.com/iot/understanding-protocols-behind-internet-

things

[6] C. Karasiewicz, Why HTTP is not enough for the Internet of Things (The
Mobile Frontier). Ibm.com, 2013. Retrieved 20 April 2020, from

https://www.ibm.com/developerworks/community/blogs/mobileblog/date

/201309?lang=en
[7] IoT Analytics - Market Insights for the Internet Of Things, The 10 most

popular Internet of Things applications right now, 2015. Retrieved 20

April 2020, from http://iot-analytics.com/10-internet-of-things-
applications/

[8] Mqtt.org, FAQ - Frequently Asked Questions | MQTT, 2020. Retrieved

20 April 2020, from http://mqtt.org/faq
[9] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S—A

publish/subscribe protocol for Wireless Sensor Networks,” In 2008 3rd

International Conference on Communication Systems Software and
Middleware and Workshops (COMSWARE'08), Jan. 2008, pp. 791-798,

IEEE. https://doi.org/10.1109/COMSWA.2008.4554519

[10] R. Webb, A Brief, but Practical Introduction to the MQTT Protocol and
its Application to IoT | Zoetrope, 2016. Retrieved 20 April 2020, from

https://zoetrope.io/tech-blog/brief-practical-introduction-mqtt-protocol-
and-its-application-iot

http://dx.doi.org/10.1007/s11277-011-0288-5
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
http://postscapes.com/internet-of-things-examples/
http://postscapes.com/internet-of-things-examples/
http://electronicdesign.com/iot/understanding-protocols-behind-internet-things
http://electronicdesign.com/iot/understanding-protocols-behind-internet-things
https://www.ibm.com/developerworks/community/blogs/mobileblog/date/201309?lang=en
https://www.ibm.com/developerworks/community/blogs/mobileblog/date/201309?lang=en
http://iot-analytics.com/10-internet-of-things-applications/
http://iot-analytics.com/10-internet-of-things-applications/
http://mqtt.org/faq
https://doi.org/10.1109/COMSWA.2008.4554519
https://zoetrope.io/tech-blog/brief-practical-introduction-mqtt-protocol-and-its-application-iot
https://zoetrope.io/tech-blog/brief-practical-introduction-mqtt-protocol-and-its-application-iot

