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Abstract—Assessment of seismic vulnerability of urban 

infrastructure is an actual problem, since the damage caused by 

earthquakes is quite significant. Despite the complexity of such 

tasks, today’s machine learning methods allow the use of “fast” 

methods for assessing seismic vulnerability. The article proposes a 

methodology for assessing the characteristics of typical urban 

objects that affect their seismic resistance; using classification and 

clustering methods. For the analysis, we use kmeans and hkmeans 

clustering methods, where the Euclidean distance is used as a 

measure of proximity. The optimal number of clusters is 

determined using the Elbow method. A decision-making model on 

the seismic resistance of an urban object is presented, also the most 

important variables that have the greatest impact on the seismic 

resistance of an urban object are identified. The study shows that 

the results of clustering coincide with expert estimates, and the 

characteristic of typical urban objects can be determined as a 

result of data modeling using clustering algorithms. 

 
Keywords—data analysis, seismic assessment, clustering, 

hkmeans, random forest 

I. INTRODUCTION 

HE use of data mining methods to assess the seismic 
vulnerability of urban environment objects has proven its 
effectiveness. These methods are based on relatively small 

but reliable sets of basic characteristics of buildings, which are 

accessible even at the regional level [2]. In studies [1, 2, 3, 4, 5, 
6] data mining methods were used to find the dependencies 
between the vulnerability of buildings and the range of their 
characteristics (building length, number of floors, total land 
area, etc.). In [8, 9, 10], the seismic vulnerability of historical 
centers is assessed based on a limited number of parameters and 

data collected after the earthquake.  
No less interesting is the work [11], where the use of methods 

of data mining for clustering spatial data is pronounced clearly. 
The research were carried out with the aim of developing a 
spatial data cluster and analyzing the characteristics of each data 
cluster to develop the spatial zoning of the danger of damage to 

buildings caused by an earthquake in the city of Banda Aceh 
(Indonesia). Banda Aceh and the surrounding areas were 
spatially divided into two classes of potential building damage 
caused by an earthquake which are Based on the results of 
research. The authors presented a spatial picture of the danger 
of damage to buildings in the city of Banda Aceh at the end of 

this work. In the next research work [12], an analysis of seismic 
vulnerability on an urban scale (Konstantin, Algeria cities) 
which are based on the data mining method ARL (association 
rule learning), i.e. learning association rules. The use of the ARL 
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method was to establish links between the attributes of the 
building (the number of floors or the age of the building) and 
the vulnerability classes of the European Macroseismic scale 

EMS98. As noted in the work, the using of this method helps to 
extract “hidden” connections between the elementary features 
of buildings and seismic vulnerability. At the same time, the 
ARL method allowed us to give an overall assessment of 
seismic risk in urban areas. According to the authors, this 
approach avoids the expensive process of compiling a cadastre 

of the characteristics of buildings in the field, which often 
hinders the assessment of seismic initiatives in weak and 
moderate seismically dangerous regions. In addition to 
everything else, the use of ARL in this research is related to 
seismic vulnerability in [1, 13]. Various methods for predicting 
the level of damage to buildings were made in the works [14, 

15], one of which is the Bayesian network model. The 
assessment of the level of destruction is based on the Bayesian 
network and allows you to accurately establish a causal 
relationship between variables, and also reflects the relationship 
between states. In these works, a new method for assessing the 
level of damage to a building is presented. The data set is based 

on a building unit. Data obtained from the Padang Regional 
Agency for Disaster Management and the Indonesian 
Meteorological, Climatological and Geophysical Agency. As an 
example we can also give the work [16] along with all the works 
devoted to the assessment of seismic vulnerability. This work 
presents a deep learning approach, which is based on a recurrent 

neural network with long and short-term memory (LSTM), for 
modeling the response and predicting the structural seismic 
response. The proposed deep learning model makes it possible 
to predict both elastic and inelastic reactions of building 
structures based on trained data instead of classical numerical 
methods. This approach to forecasting nonlinear structural 

responses is relevant in the field of analysis of seismic fragility 
of buildings to assess reliability. 

The purpose of this study is to develop a methodology for 
assessing the importance of the influence of factors on the 
seismic resistance of urban objects using cluster analysis and 
classification methods. At the initial stage of the study, to ensure 

a better analysis, data pre-processing was carried out, which is 
a necessary step in the data analysis process. The following 
steps are not less important: 

1) exploratory analysis and study of data structure by cluster 

analysis methods (kmeans and hkmeans);  

2) building a classification model for predicting the seismic 

resistance of an object; 
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3) identification of the influence degree of various building 

characteristics on its seismic resistance; 

4) model accuracy assessment. 

The structure of the operation is as follows: Section II presents 

a methodology for assessing the seismic resistance of typical 

urban objects based on data mining. Section III describes the 

progress and results of experimental work.  Section IV sets out 

the main conclusions of the work. 

II. DATASET AND CHARACTERISTICS 

As a dataset for the study, we used the data provided in the 

reporting documentation of JSC “KAZRICA” (Kazakh research 

institute of construction and architecture) about urban objects 

with 19 characteristics that belong to certain subdistrict of 

Almaty [29]. Table 1 presents the features which were used for 

data analysis. 
 TABLE I 

DATASET AND FEATURE NAMES 

№ Feature name 

1 object 11 foundations 

2 location 12 bearing_struct 

3 pr_develop_year 13 floor_struct 

4 year_constr 14 wall_fence 

5 type_pr 15 partitions 

6 seism_cat_soils 16 height 

7 space-plan_sol 17 total_area 

8 floors 18 construct_vol 

9 antiseism_activ 19 assessment 

10 gen_char   
 

A data normalization process must be performed to improve 

the quality of data extraction. Otherwise, there is a risk of 

incorrect data output. A raw data undergoes normalization, as it 

is shown in Fig. 1. 
 

 
Fig. 1. The structure of the research information model 

Then, hkmeans, Decision Tree and Random Forest clustering 

algorithms are applied to the processed dataset. Application of 

these methods is followed by the model accuracy assessment. 

Structural model of the research problem is shown in Fig. 1. 

III. METHODS  

K-Means Clustering  

The main idea of the method is to determine k centroids, one 

for each cluster. The algorithm’s goal is to minimize the target 

function, in the general case, the squared error function. Target 

function (1) 
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Hierarchical Clustering  

In hierarchical clustering, the main goal is to build a cluster 

structure. In this case, we apply the unification algorithm.   

The distance between the clusters is taken as the measure used 

to determine which clusters should be combined and which to 

be divided [17, 18]. In the hierarchical unification algorithm 

each element from the set of X observations is taken as a 

separate cluster. Further, at each step of the algorithm, more 

similar pairs of elements are combined into one cluster. Cluster 

join condition is shown (2). 

 D = min(dist(a,b)) (2) 

where a and b belong to X.  

The algorithm yields the structure of clusters, which is a graph. 

It ends when the required number of clusters is reached. [17]. 

Decision Tree 

In the decision tree, the partition criterion and the stop 

condition will be determined in advance on the basis of entropy. 

When splitting, different subsets of the data set are created and 

each instance belongs to a single subset. Finite subsets are finite 

nodes, and intermediate subsets are called internal nodes. The 

average result of training data in the particular node is used to 

predict the result in each node of the sheet. In each node of the 

decision tree, the entropy is determined by (3). 
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where pi represents the proportion of cases with class labels i, 

i=1 …c.  
Random Forest 

Random forest consists of many trees. It allows a large number 

of weakly correlated classifiers to form a strong one. 

The RF algorithm combines the ideas of bagging method 

(bagging, bootstrap aggregating) and random space method 

(RSM, random subspace method) [19, 20, 21]. 

A description of RF algorithm (Breiman, 2001) can be 

represented as follows. Let the training sample consist of N 

objects, the dimension of the attribute space is M, and the m 

parameter - the number of attributes; from which the selection 

of attributes for partitioning at the tree nodes occurs. All trees 

are built independently of each other as follows: 

– a random subsample is generated with repetition (i.e., some 

objects will get into it several times) of the same size as the 

training sample (i.e., dimension N), it is also called a 

bootstrap sample; 
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– a decision tree that classifies the objects of this subsample is 

constructed. During the creation of next node of the tree, the 

attribute on the basis of which partition is performed is not 

selected from all M attributes, but only from randomly 

selected m parameter (selection of the best among these m 

attributes can be made using the Gini index); 

– the tree is being built until there are no subsamples left and is 

not being cut. 

Unlike the classic decision trees [24, 25] construction 

algorithms, when constructing each tree by the random forest 

method, at the stages of node splitting only a fixed number of 

randomly selected attributes of the training set is used (the 

second parameter of the method) and a complete tree is 

constructed (without cutting), i.e., each leaf of the tree contains 

observations of only one class. Classification is carried out by 

the classifiers voting, which are determined by individual trees, 

and the regression is assessed by averaging the regression 

estimates of all trees [26]. 

Random forest provides many benefits: 

– It runs efficiently on large data bases. 

– It can handle thousands of input variables without variable 

deletion. 

– It gives estimates of what variables are important in the 

classification. 

– It generates an internal unbiased estimate of the 

generalization error (oob error). 

– It computes proximities between pairs of cases that can be 

used in locating outliers. 

– It is relatively robust to outliers and noise. 

– It is computationally lighter than other tree ensemble methods 

(e.g. Boosting) [27,28]. 

IV. RESULTS  

The optimal number of clusters k is determined using the 

Elbow method, where k =4 (Fig. 2). 

 

 
Fig. 2. Determination of the optimal number of clusters 

For cluster data analysis, kmeans and hkmeans methods were 

used, the results of which are shown in Fig. 3a and Fig. 3b. In 

both cases, the Euclidean distance was used as a measure of 

distance. 

Clustering using kmeans and hkmeans methods yields 4 

clusters:   

– cluster 1 groups earthquake-resistant large-panel buildings 

that contain objects built in 1975, 1978, 1986, 1987, 1993, 

1994; 

– cluster 2 contains earthquake-resistant frame-panel buildings 

with bored piles, where the load-bearing walls are brick walls. 

Cluster objects are constructions built in 1973, 1975, 1983; 

– cluster 3 includes earthquake-safe frame-type objects built in 

1972, 1985, 1992; 

– cluster 4 contains non-earthquake-resistant brick buildings 

built in 1932, 1936, 1952, 1954, 1956, 1958 [22, 23].  

As it is shown in Figure 3, the hkmeans method, which 

demonstrated a clear separation between clusters, rather than the 

kmeans method, is more successful in managing the clustering 

task. The kmeans method turned out to be very sensitive to the 

selection of the initial centers of the clusters, thereby failing to 

cope with the task when the object belongs to different clusters 

equally or does not belong to any. 

 

(а)  

 

(b)  

Fig. 3. Comparison of results of the constructed clusters by methods:  

(a) k-means (b) hkmeans 

The purpose of each cluster and their interpretation is verified 

through the decision tree and random forest methods.  

To implement verification by the decision tree method, the 

initial data set was divided into training (70%) and test (30%) 

samples. Using the k-fold cross-validation method, the training 

set was tested several times and branches with the smallest 

dispersion were selected. As a result, the decision tree algorithm 

determined three branches with the lowest dispersion. As can be 

seen from Fig. 4, if the value of the wall_fence parameter is <3.5 

(wall fence), then the object is considered earthquake-resistant, 

otherwise the foundation of the object should be checked where 

if foundations <4.5, then the object is not earthquake-resistant, 

otherwise it is considered earthquake-safe. The classification 

accuracy of the constructed decision tree was 91.3%. 
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Fig. 4. Forecast decision tree model 

Random forest was applied to refine the constructed model of 

the decision tree and identify the most crucial characteristics 

that affect the forecast model of seismic resistance of the 

objects.   

In this problem, the model type - regression, number of trees 

- 500, no. of variables tried at each split - 5, mean of squared 

residuals - 0.08. Minimum depth distribution values are 

presented in Table II. The distribution of the minimum depth for 

the first ten variables in accordance with the average minimum 

depth calculated using the upper trees is shown in Fig. 5a.  

For random forests with many variables with a large number 

of missed observations, we should always consider adding the 

min_no_of_trees option so that only those variables that were 

used to split at least into the declared number of trees will be 

taken into account. This allows us to avoid choosing variables 

that were accidentally used for splitting. However, in our case, 

we can simply increase the k parameter to build all the trees 

(Fig. 5b). 
TABLE II 

MINIMUM DEPTH DISTRIBUTION  

№ tree variable minimal_depth 

1 1 bearing_struct              0 

2 1 floors 2 

3 1 foundations              1 

4 1 gen_char 2 

5 1 height 2 

6 1 location              3 

7 1 partitions              3 

8 1 seism_cat_soils 9 

9 1 space.plan_sol 1 

10 1 type_pr              4 

 

Using only relevant trees to calculate the mean does not 

change it for variables that do not have missing values. In 

addition, the change does not affect the order of the variables in 

this case. 

In the next stage of the study, we studied the importance 

indicators of the variable through calculating the following 

measures: accuracy_decrease (classification), gini_decrease 

(classification), mse_increase (regression), 

node_purity_increase (regression), which extracted them from 

our random forest object.  

Accuracy_decrease (classification) and mse_increase 

(regression) measures are based on a decrease in the predictive 

accuracy of the forest. The gini_decrease (classification) and 

node_purity_increase (regression) measures are based on 

changes in node purity after splitting into a variable. The 

mean_minimal_depth, no_of_trees, no_of_nodes, 

times_a_root, p_value measures are based on the structure of the 

forest. 

(a)  
 

(b)  

Fig. 5. Graphs of calculating the average minimum depth:  

(а) top_trees (b) relevant_trees 

(a)  
 

(b)  

Fig. 6. Important variables extraction: (a) multi-way importance plot (top 10 

variables) (b) multi-way importance plot (top 5 variables) 

The result of important variables extraction is presented 

below in Fig. 6. As can be seen from Fig. 6a, by default, the top 

10 variables in the graph are highlighted in blue and marked, 

they are selected using the sum of the ranks based on the 

importance indicators. The superiority of wall_fence,  
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bearing_struct, year_constr, location, gen_char is evident in all 

three cases. Next, we present a graph of importance for several 

directions for another set of indicators of importance: grow of a 

mean squared error. We also set the marked variables to five so 

that only the top five variables are highlighted (Fig. 6b). In both 

graphs wall_fence, bearing_struct show the structure of the 

forest on the importance of variables.   
 

(a)  
 

(b)  

Fig. 7.  Comparison of measures: (а) Compare measures using ggpairs 

 (b)  Compare different rankings 

As can be seen from Fig. 6a, by default, the top 10 variables 

in the graph are highlighted in blue and marked, they are 

selected using the sum of the ranks based on the importance 

indicators. The superiority of wall_fence, bearing_struct, 

year_constr, location, gen_char is evident in all three cases. 

Next, we present a graph of importance for several directions 

for another set of indicators of importance: grow of a mean 

squared error. We also set the marked variables to five so that 

only the top five variables are highlighted (Fig. 6b). 

In both graphs wall_fence, bearing_struct show the structure 

of the forest on the importance of variables.   

Measures comparison result Fig. 6a, 6b offer many options 

for selecting variable importance, so this does not allow us to 

choose the most informative schedule for the analysis. In this 

regard, we studied the relationship between various importance 

measures, then selected the three that are least consistent with 

each other, and used them on a graph of versatile importance to 

select the top variables Fig. 7a, 7b. 

Comparing the ranking in the above graph, we see that the 

two pairs of measures almost exactly coincide in their variables 

ranking: mean_min_depth against mse_increase and 

mse_increase against node_purity_increase.  

After choosing the set of the most important variables, we 

investigated the interactions with respect to them, i.e. splitting 

that appear in the maximum subtrees with respect to one of the 

selected variables (assessment). Thus, the 5 most important 

variables were extracted in accordance with the average 

minimum depth and number of trees: "location", "year_constr", 

"height", "space.plan_sol", "wall_fence". At the next stage, we 

constructed a graph (Fig. 8) containing information on the 

average conditional minimum depth of variables for each 

element of variables. 
 

(a)  

(b)  

Fig. 8. Average conditional minimum depth of variables for each element of 

variables: (а) top_trees (b) «related_trees» 

Interactions are ordered by decreasing number of occurrences 

- the most frequent of them: year_constr:location, 

wall_fence:year_constr, wall_fence:location, 

wall_fence:space.plan_sol, also takes place with a minimum 

average conditional minimum depth (Fig. 8a).  

Comparing the graphs, it can be seen that in addition to the 

frequent ones, some of the less frequent ones are highlighted, 

such as wall_fence:foundadions (Fig. 8b). 

As a result of the study, the accuracy of the random forest 

model was 95.06%. 

V. DISCUSSION 

In the course of the study, the application of the hkmeans 

clustering method allowed us to obtain clusters (k = 4) with 

similar object variables and define the objects to a specific 

group. Compared to the conventional k-means clustering 

method, hkmeans showed a more accurate clustering result. To 

determine the optimal number of clusters, the Elbow method 

was used. For a more in-depth study of the resulting clusters and 

their interpretation, a decision tree was applied. To identify 

important characteristics, we used the random forest method, 

which allowed us to calculate the importance of variables. Thus, 

dependencies between the characteristics of objects were 

identified. These characteristics turned out to be the location, 
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year of construction, based on which typical design of the object 

is determined. Space-planning decisions, which also affect the 

general characteristics of an object are no less important. Based 

on the general characteristics of the urban object, random forest 

has identified the wall_fence variable as the most significant 

one. Also, to ensure the reliability of the obtained results, the 

accuracy of the constructed model was evaluated. 

VI. CONCLUSIONS 

This article proposed a methodology for assessing the 

importance of factors which affect the seismic resistance of 

urban objects. An exploratory study of the data set was carried 

out through the cluster analysis. The results of cluster analysis 

coincided with experts’ estimates. The application of cluster 

analysis revealed groups of urban objects with certain 

characteristics of building structures. For a detailed study of the 

structure of the obtained clusters, a classification model for 

assessing the seismic resistance of urban objects was built.  

Also, to clarify the relationship between the characteristics and 

determine their importance, the random forest method was used. 

The proposed methodology can be used to assess the seismic 

resistance of objects in the urban environment and in 

determination of strategies for planning urban infrastructure 

related to seismic risks. 
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